Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 分子與細胞生物學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70535
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor溫進德(Jin-Der Wen)
dc.contributor.authorJyun Wangen
dc.contributor.author王駿zh_TW
dc.date.accessioned2021-06-17T04:30:27Z-
dc.date.available2023-08-16
dc.date.copyright2018-08-16
dc.date.issued2018
dc.date.submitted2018-08-13
dc.identifier.citationAitken, C. E., A. Petrov and J. D. Puglisi (2010). 'Single ribosome dynamics and the mechanism of translation.' Annual Review of Biophysics 39: 491-513.
Baranovskaya, M. D., V. I. Ugarov, H. V. Chetverina and A. B. Chetverin (2017). 'Removal of protein S1 from Escherichia coli ribosomes without the use of affinity chromatography.' Analytical Biochemistry 517: 53-55.
Beura, L. K., S. N. Sarkar, B. Kwon, S. Subramaniam, C. Jones, A. K. Pattnaik and F. A. Osorio (2010). 'Porcine reproductive and respiratory syndrome virus nonstructural protein 1beta modulates host innate immune response by antagonizing IRF3 activation.' Journal of Virology 84(3): 1574-1584.
Carmichael, G. G. (1975). 'Isolation of bacterial and phage proteins by homopolymer RNA-cellulose chromatography.' Journal of Biological Chemistry 250(15): 6160-6167.
Chang, K.-C. (2018). Single-Molecule and Theoretical Approaches Reveal Translational Recoding Guided by mRNA Dynamics Doctor, Natonal Taiwan University.
Chen, J., A. Petrov, A. Tsai, S. E. O'Leary and J. D. Puglisi (2013). 'Coordinated conformational and compositional dynamics drive ribosome translocation.' Nature Structural & Molecular Biology 20(6): 718-727.
Chen, Z., S. Lawson, Z. Sun, X. Zhou, X. Guan, J. Christopher-Hennings, E. A. Nelson and Y. Fang (2010). 'Identification of two auto-cleavage products of nonstructural protein 1 (nsp1) in porcine reproductive and respiratory syndrome virus infected cells: nsp1 function as interferon antagonist.' Virology 398(1): 87-97.
Draper, D. E., C. W. Pratt and P. H. von Hippel (1977). 'Escherichia coli ribosomal protein S1 has two polynucleotide binding sites.' Proceedings of the National Academy of Sciences of the United States of America 74(11): 4786-4790.
Dunkle, J. A. and J. H. Cate (2010). 'Ribosome structure and dynamics during translocation and termination.' Annual Review of Biophysics 39: 227-244.
Duval, M., A. Korepanov, O. Fuchsbauer, P. Fechter, A. Haller, A. Fabbretti, L. Choulier, R. Micura, B. P. Klaholz, P. Romby, M. Springer and S. Marzi (2013). 'Escherichia coli ribosomal protein S1 unfolds structured mRNAs onto the ribosome for active translation initiation.' PLoS Biology 11(12): e1001731.
Farabaugh, P. J. (1996). 'Programmed translational frameshifting.' Annual Review of Genetics 30: 507-528.
Giraud, P., J. B. Crechet, M. Uzan, F. Bontems and C. Sizun (2015). 'Resonance assignment of the ribosome binding domain of E. coli ribosomal protein S1.' Biomolecular NMR Assignments 9(1): 107-111.
Green, R. and H. F. Noller (1997). 'Ribosomes and translation.' Annual Review of Biophysics 66: 679-716.
Gualerzi, C., G. Risuleo and C. L. Pon (1977). 'Initial rate kinetic analysis of the mechanism of initiation complex formation and the role of initiation factor IF-3.' Biochemistry 16(8): 1684-1689.
Iwasaki, K., S. Sabol, A. J. Wahba and S. Ochoa (1968). 'Translation of the genetic message. VII. Role of initiation factors in formation of the chain initiation complex with Escherichia coli ribosomes.' Archives of Biochemistry and Biophysics 125(2): 542-547.
Kawashima, T., C. Berthet-Colominas, M. Wulff, S. Cusack and R. Leberman (1996). 'The structure of the Escherichia coli EF-Tu.EF-Ts complex at 2.5 A resolution.' Nature 379(6565): 511-518.
Leung, E. K., N. Suslov, N. Tuttle, R. Sengupta and J. A. Piccirilli (2011). 'The mechanism of peptidyl transfer catalysis by the ribosome.' Annual Review of Biochemistry 80: 527-555.
Li, G. W., E. Oh and J. S. Weissman (2012). 'The anti-Shine-Dalgarno sequence drives translational pausing and codon choice in bacteria.' Nature 484(7395): 538-541.
Li, Y., P. Shang, D. Shyu, C. Carrillo, P. Naraghi-Arani, C. J. Jaing, G. J. Renukaradhya, A. E. Firth, E. J. Snijder and Y. Fang (2018). 'Nonstructural proteins nsp2TF and nsp2N of porcine reproductive and respiratory syndrome virus (PRRSV) play important roles in suppressing host innate immune responses.' Virology 517: 164-176.
Li, Y., E. E. Treffers, S. Napthine, A. Tas, L. Zhu, Z. Sun, S. Bell, B. L. Mark, P. A. van Veelen, M. J. van Hemert, A. E. Firth, I. Brierley, E. J. Snijder and Y. Fang (2014). 'Transactivation of programmed ribosomal frameshifting by a viral protein.' Proceedings of the National Academy of Sciences of the United States of America 111(21): E2172-2181.
Loveland, A. B. and A. A. Korostelev (2018). 'Structural dynamics of protein S1 on the 70S ribosome visualized by ensemble cryo-EM.' Methods 137: 55-66.
Moll, I., S. Grill, A. Grundling and U. Blasi (2002). 'Effects of ribosomal proteins S1, S2 and the DeaD/CsdA DEAD-box helicase on translation of leaderless and canonical mRNAs in Escherichia coli.' Molecular Microbiology 44(5): 1387-1396.
Moore, P. B. (2012). 'How should we think about the ribosome.' Annual Review of Biophysics 41: 1-19.
Qi, H., Y. Shimizu and T. Ueda (2007). 'Ribosomal protein S1 is not essential for the trans-translation machinery.' Journal of Molecular Biology 368(3): 845-852.
Qu, X., L. Lancaster, H. F. Noller, C. Bustamante and I. Tinoco, Jr. (2012). 'Ribosomal protein S1 unwinds double-stranded RNA in multiple steps.' Proceedings of the National Academy of Sciences of the United States of America 109(36): 14458-14463.
Ramakrishnan, V. (2002). 'Ribosome structure and the mechanism of translation.' Cell 108(4): 557-572.
Salah, P., M. Bisaglia, P. Aliprandi, M. Uzan, C. Sizun and F. Bontems (2009). 'Probing the relationship between Gram-negative and Gram-positive S1 proteins by sequence analysis.' Nucleic Acids Research 37(16): 5578-5588.
Schluenzen, F., A. Tocilj, R. Zarivach, J. Harms, M. Gluehmann, D. Janell, A. Bashan, H. Bartels, I. Agmon, F. Franceschi and A. Yonath (2000). 'Structure of functionally activated small ribosomal subunit at 3.3 angstroms resolution.' Cell 102(5): 615-623.
Selmer, M., C. M. Dunham, F. V. t. Murphy, A. Weixlbaumer, S. Petry, A. C. Kelley, J. R. Weir and V. Ramakrishnan (2006). 'Structure of the 70S ribosome complexed with mRNA and tRNA.' Science 313(5795): 1935-1942.
Skouv, J., J. Schnier, M. D. Rasmussen, A. R. Subramanian and S. Pedersen (1990). 'Ribosomal protein S1 of Escherichia coli is the effector for the regulation of its own synthesis.' Journal of Biological Chemistry 265(28): 17044-17049.
Sun, Z., Z. Chen, S. R. Lawson and Y. Fang (2010). 'The cysteine protease domain of porcine reproductive and respiratory syndrome virus nonstructural protein 2 possesses deubiquitinating and interferon antagonism functions.' Journal of Virology 84(15): 7832-7846.
Takeshita, D., S. Yamashita and K. Tomita (2014). 'Molecular insights into replication initiation by Qbeta replicase using ribosomal protein S1.' Nucleic Acids Research 42(16): 10809-10822.
Tsai, A., A. Petrov, R. A. Marshall, J. Korlach, S. Uemura and J. D. Puglisi (2012). 'Heterogeneous pathways and timing of factor departure during translation initiation.' Nature 487(7407): 390-393.
Tsuchihashi, Z. and P. O. Brown (1992). 'Sequence requirements for efficient translational frameshifting in the Escherichia coli dnax gene and the role of an unstable interaction between transfer RNA(lys) and an AAG lysine codon.' Genes & Development 6(3): 511-519.
Wang, J.-Z. (2016). Study of polyribosome-induced Frameshifting in vivo Master, Natonal Taiwan University.
Wang, Y., Y. Jiang, M. Meyering-Voss, M. Sprinzl and P. B. Sigler (1997). 'Crystal structure of the EF-Tu.EF-Ts complex from Thermus thermophilus.' Nature Structural & Molecular Biology 4(8): 650-656.
Warner, J. R., P. M. Knopf and A. Rich (1963). 'A multiple ribosomal structure in protein synthesis.' Proceedings of the National Academy of Sciences of the United States of America 49: 122-129.
Xue, F., Y. Sun, L. Yan, C. Zhao, J. Chen, M. Bartlam, X. Li, Z. Lou and Z. Rao (2010). 'The crystal structure of porcine reproductive and respiratory syndrome virus nonstructural protein Nsp1beta reveals a novel metal-dependent nuclease.' Journal of Virology 84(13): 6461-6471.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70535-
dc.description.abstract在mRNA進行轉譯的時候,會以三個鹼基為一組密碼子進行轉譯,當核醣體碰撞到下游的二級結構,就有機會在滑動序列的位置產生框架位移。框架位移會使得核醣體讀取鹼基的方式與原先不同,並且生成不同的蛋白產物。
關於框架位移的研究大多在探討甚麼因子能引起框架位移,或是會造成甚麼影響。對於產生框架位移的機制仍不了解,但我們依據二級結構與蛋白引起的框架位移現象推測與轉譯時碰撞到下游的障礙有關,因此我們以鍵結RNA的蛋白作為障礙物,並且設計能讓蛋白鍵結的序列,觀察轉譯時框架位移發生的狀況。
一開始我們讓帶有Nsp1β鍵結序列 (C-rich) 的mRNA與Nsp1β蛋白共同進行轉譯實驗。我們認為在Nsp1β蛋白結合到C-rich上後能作為障礙,核醣體轉譯時碰撞到Nsp1β蛋白時會促使-1框架位移發生。但在我們操作一連串的細胞內、外轉譯實驗後,並沒有看見-1框架位移效率有顯著的提升。
於是我們將目標轉向帶有Nsp1β鍵結序列的mRNA,發現在細胞內轉譯的狀況下滑動序列與C-rich距離較短者,其-1框架位移的效率較原本長度高。但令人驚訝的是在細胞外轉譯中卻沒有太大差別,於是我們懷疑有其他蛋白在參與框架位移的發生。我們發現核醣體蛋白S1具有鍵結C-rich序列的傾向,且在細胞外轉譯中加入S1蛋白使得-1框架位移的比例上升。不過沒辦法很好地再現實驗。我們認為轉譯試劑中原先存在的S1蛋白會影響實驗結果,在嘗試減少試劑中的S1蛋白後,發現-1框架位移的效率下降,就上述的實驗,我們認為S1蛋白能以路障的方式促使框架位移提升。為了提出更有說服力的結論,我們嘗試純化去除S1蛋白的核醣體,並用此核醣體來進行細胞外轉譯實驗。若沒有S1蛋白在轉譯時,框架位移效率會有明顯下降,重新加入S1蛋白後又能回復框架位移的效率。
在細菌、病毒甚至人體中都有用框架位移來調控轉譯的現象,或許清楚機制後,能用於消滅病原或是調控人體基因的表現。
zh_TW
dc.description.abstractDuring translation, programmed ribosomal frameshifting occurs when the ribosome encounters a secondary structure downstream from a slippery sequence. Despite decades of research, the mechanistic details on how frameshifting is induced remain unclear. Here we ask whether frameshifting can be induced with a non-RNA obstacle. We use the RNA-binding protein and an mRNA with the protein target site (the C-rich motif) downstream from a slippery sequence as our model system.
First, we performed in vitro translation of the target sequence in the presence of the purified Nsp1β. Next, we assembled the genes of nsp1β and the target sequence into a single plasmid by PCR, and shortened the distance between the slippery sequence and C-rich motif to express the protein together with the target mRNA. In these experiments, we did not see the -1 frameshifting efficiency strongly enhanced. Then we turned our attention to the construct with the C-rich motif. We found that shortening the distance between slippery sequence and C-rich motif increases -1 frameshifting efficiency in vivo. Surprisingly, there was no difference in vitro. We suspected there were other proteins that could induce frameshifting. We found that ribosomal protein S1 has the tendency of binding to C-rich sequences. When we added S1 protein during translation, the -1 frameshifting efficiency was enhanced. We think the S1 protein in the translation kit may influence the results. When we sequestered the S1 protein from the kit, the frameshifting efficiency was dropped. To further confirm this result, we purified the ribosomal protein S1 depleted ribosome and used the purified ribosome to perform in vitro translation experiments. The preliminary data show that the translation activity was low and thus the frameshifting efficiency was difficult to assess.
According to our results, we reason that ribosomal protein S1 binds to the C-rich sequence and act as a road block that may induce -1 ribosomal frameshifting.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T04:30:27Z (GMT). No. of bitstreams: 1
ntu-107-R05b43030-1.pdf: 4546851 bytes, checksum: 12048a1e1aa52b1bab98f118dfe5de63 (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents國立臺灣大學碩士學位論文口試委員會審定書 i
致謝 ii
摘要 iii
ABSTRACT iv
目錄 vi
圖目錄 x
表目錄 xii
英文縮寫檢索表 xiii
第一章 前言 1
1.1 核醣體 1
1.2 蛋白質 1
1.3 原核生物的轉譯 1
1.3.1 轉譯起始 (initiation) 2
1.3.2 轉譯延伸 (elongation) 2
1.3.3 轉譯終止 (termination) 3
1.4 Porcine reproductive and respiratory syndrome virus (PRRSV) 3
1.5 Non-structural protein beta (Nsp1β) 4
1.6 Ribosomal protein S1 5
1.7 核醣體的框架位移 6
1.8 聚合醣體所引起的框架位移 6
1.9 蛋白所引起的框架位移 7
1.10 研究目的和動機 8
第二章 材料和方法 9
2.1 材料 9
2.1.1 載體 9
2.1.2 菌株 9
2.1.3 酵素 9
2.1.4 抗體 9
2.1.5 試劑 10
2.1.6 藥品 10
2.1.7 主要耗材 11
2.1.8 主要儀器 12
2.1.9 聚丙烯醯胺凝膠 12
2.1.10 緩衝液 12
2.2 方法 15
2.2.1 勝任細胞 15
2.2.2 全基因合成 15
2.2.3 質體構築 15
2.2.4 引子列表 18
2.2.5 共同轉形 19
2.2.6 點突變 20
2.2.7 蛋白質表現 22
2.2.8 Nsp1β蛋白純化 22
2.2.9 核醣體純化 24
2.2.10 去除核醣體蛋白S1 28
2.2.11 細胞外實驗 30
2.2.12 西方墨點法 30
2.2.13 蛋白質定量和分析 31
第三章 結果 32
3.1 純化nsp1β蛋白 32
3.2 在細胞外轉譯實驗加入純化的Nsp1β蛋白 33
3.3 合成帶有nsp1β基因與其目標序列的質體並進行轉譯 33
3.4 同時轉形兩種質體進入大腸桿菌中 34
3.5 縮短滑動序列到C-rich的距離 34
3.6 去除Nsp1β蛋白上結合C-rich motif的能力 35
3.7 細胞內未知的框架位移效率提升 35
3.8 C-rich motif促使框架位移的發生 36
3.9 核醣體蛋白S1促使框架位移發生 36
3.10 減少試劑中的核醣體蛋白S1框架位移效率隨之下降 38
3.11 純化不具有核醣體蛋白S1的核醣體 38
3.12 重新加入核醣體蛋白S1參與轉譯 40
第四章 討論 41
4.1 Nsp1β蛋白的核酸酶活性 (nuclease activity) 41
4.2 Nsp1β蛋白參與反應的形式 41
4.3 NSC mRNA和Nsp1β蛋白的交互作用 42
4.4 以RNA進行細胞外轉譯觀察框架位移 42
4.5 Nsp1β在真核原核系統內作用比較 43
4.6 以隨機的序列替代C-rich motif同樣使框架位移下降 43
4.7 增強C-rich序列對框架位移的影響 44
4.8 核醣體蛋白S1貢獻框架位移的不一致性 44
4.9 核醣體蛋白S1可能的作用機制 44
4.10 實驗方法改進 45
4.11 後續研究 45
4.11.1 嘗試進一步去除核醣體蛋白S1 45
4.11.2 設計5’ UTR上不含二級結構的mRNA 46
4.11.3 測試核醣體蛋白S1結合RNA傾向 46
4.11.4 以Dcas 9蛋白作為下游障礙 47
4.11.5 C-rich序列對於框架位移的影響 47
參考文獻 48
圖1.1. 核醣體 52
圖1.2. 轉譯過程 53
圖1.3. Porcine reproductive and respiratory syndrome virus (PRRSV) 54
圖1.4. Non-structural protein beta (Nsp1β) 55
圖1.5. Ribosomal protein S1 56
圖1.6. 框架位移 57
圖1.7. 聚核醣體的框架位移 58
圖2.1. pGS-21a質體 59
圖2.2. NSC質體 61
圖2.3. 合成pGSBC質體之方法 62
圖3.1. Nsp1β質體 64
圖3.2. 純化Nsp1β蛋白 65
圖3.3. 有Nsp1β蛋白的參與的細胞外轉譯實驗 66
圖3.4. 利用pGSBC質體進行細胞內實驗 67
圖3.5. 共同轉形pNsp1β與NSC進行細胞內實驗 68
圖3.6. 縮短滑動序列至C-rich motif的距離對框架位移之影響 69
圖3.7. 細胞內的框架位移效率 (無Nsp1β表現) 70
圖3.8. 去除C-rich motif對框架位移的影響 71
圖3.9. 核醣體蛋白S1對框架位移效率的貢獻 72
圖3.10. 核醣體蛋白S1偏好結合特定序列 73
圖3.11. 減少核醣體蛋白S1對框架位移的影響 74
圖3.12. 利用不具有S1蛋白的核醣體觀測框架位移效率 75
圖4.1. 觀測Nsp1β蛋白存在的形式 76
圖4.2. 利用NSC mRNA操作轉譯實驗並測試nsp1β蛋白結合能力 77
圖4.3. 以隨機序列再次證實C-rich motif的重要性 78
圖4.4 以增強的CU-rich序列觀測框架位移效率 79
表1. 所有質體在細胞內轉譯之實驗數據分析 81
表2. 所有質體在細胞外轉譯之實驗數據分析 84
表3. 細胞外轉譯加入不同濃度ss18LHC引子之實驗數據分析 85
dc.language.isozh-TW
dc.subjectNsp1βzh_TW
dc.subject核醣體zh_TW
dc.subject框架位移zh_TW
dc.subject轉譯zh_TW
dc.subject核醣體蛋白S1zh_TW
dc.subjecttranslationen
dc.subjectribosomeen
dc.subjectribosomal protein S1en
dc.subjectframeshiften
dc.subjectNsp1βen
dc.title核醣體轉譯框架位移與下游阻礙因子關係之研究zh_TW
dc.titleSteric Hindrance-Induced Ribosomal Frameshiftingen
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.oralexamcommittee張功耀(Kung-Yao Chang),李盼(Pan T. X. Li),周信宏(Hsin-Hung David Chou)
dc.subject.keyword核醣體,框架位移,轉譯,Nsp1β,核醣體蛋白S1,zh_TW
dc.subject.keywordribosome,frameshift,translation,Nsp1β,ribosomal protein S1,en
dc.relation.page85
dc.identifier.doi10.6342/NTU201803058
dc.rights.note有償授權
dc.date.accepted2018-08-13
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept分子與細胞生物學研究所zh_TW
顯示於系所單位:分子與細胞生物學研究所

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  未授權公開取用
4.44 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved