Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70527
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蔡偉博(Wei-Bor Tsai)
dc.contributor.authorPei-En Shenen
dc.contributor.author沈培恩zh_TW
dc.date.accessioned2021-06-17T04:30:15Z-
dc.date.available2022-09-01
dc.date.copyright2020-09-29
dc.date.issued2019
dc.date.submitted2020-09-01
dc.identifier.citation1. Hoffman, A.S., “Intelligent” polymers in medicine and biotechnology. Artificial organs, 1995. 19(5): p. 458-467.
2. Lendlein, A. and S. Kelch, Shape‐memory polymers. Angewandte Chemie International Edition, 2002. 41(12): p. 2034-2057.
3. Liu, C., H. Qin, and P. Mather, Review of progress in shape-memory polymers. Journal of materials chemistry, 2007. 17(16): p. 1543-1558.
4. Weiss, R.A. and C.K. Ober, Liquid-crystalline polymers. 1990: ACS Publications.
5. Zhang, S., E.M. Terentjev, and A.M. Donald, Optical microscopy study for director patterns around disclinations in side-chain liquid crystalline polymer films. The Journal of Physical Chemistry B, 2005. 109(27): p. 13195-13199.
6. Hoogenboom, R., Temperature-Responsive Polymers: Properties, Synthesis, and Applications, in Smart Polymers and their Applications. 2019, Elsevier. p. 13-44.
7. White, M.A., Properties of materials. 1999.
8. Zhang, Q., et al., Thermoresponsive polymers with lower critical solution temperature: from fundamental aspects and measuring techniques to recommended turbidimetry conditions. Materials Horizons, 2017. 4(2): p. 109-116.
9. Niskanen, J. and H. Tenhu, How to manipulate the upper critical solution temperature (UCST)? Polymer Chemistry, 2017. 8(1): p. 220-232.
10. Saeki, S., et al., Upper and lower critical solution temperatures in poly (ethylene glycol) solutions. Polymer, 1976. 17(8): p. 685-689.
11. Nord, F., M. Bier, and S.N. Timasheff, Investigations on proteins and polymers. IV. 1 Critical phenomena in polyvinyl alcohol-acetate copolymer solutions. Journal of the American Chemical Society, 1951. 73(1): p. 289-293.
12. Longenecker, R., et al., Thermally responsive 2-hydroxyethyl methacrylate polymers: soluble–insoluble and soluble–insoluble–soluble transitions. Macromolecules, 2011. 44(22): p. 8962-8971.
13. Scarpa, J.S., D.D. Mueller, and I.M. Klotz, Slow hydrogen-deuterium exchange in a non-. alpha.-helical polyamide. Journal of the American Chemical Society, 1967. 89(24): p. 6024-6030.
14. Schild, H.G., Poly (N-isopropylacrylamide): experiment, theory and application. Progress in polymer science, 1992. 17(2): p. 163-249.
15. Solomon, O., et al., Properties of solutions of poly‐N‐vinylcaprolactam. Journal of Applied Polymer Science, 1968. 12(8): p. 1835-1842.
16. Han, S., M. Hagiwara, and T.J.M. Ishizone, Synthesis of thermally sensitive water-soluble polymethacrylates by living anionic polymerizations of oligo (ethylene glycol) methyl ether methacrylates. 2003. 36(22): p. 8312-8319.
17. Horne, R., et al., Macromolecule hydration and the effect of solutes on the cloud point of aqueous solutions of polyvinyl methyl ether: a possible model for protein denaturation and temperature control in homeothermic animals. Journal of colloid and interface science, 1971. 35(1): p. 77-84.
18. Iwasaki, Y., C. Wachiralarpphaithoon, and K. Akiyoshi, Novel thermoresponsive polymers having biodegradable phosphoester backbones. Macromolecules, 2007. 40(23): p. 8136-8138.
19. Iwasaki, Y., Modern synthesis and thermoresponsivity of polyphosphoesters. Biomedical Engineering-Frontiers and Challenges, Prof. Reza Fazel (Ed.), InTech, 2011: p. 1-4.
20. Pietsch, C., et al., A fluorescent thermometer based on a pyrene-labeled thermoresponsive polymer. Sensors, 2010. 10(9): p. 7979-7990.
21. Pietsch, C., R. Hoogenboom, and U.S. Schubert, PMMA based soluble polymeric temperature sensors based on UCST transition and solvatochromic dyes. Polymer Chemistry, 2010. 1(7): p. 1005-1008.
22. Takahashi, A., et al., Thermosensitive properties of semi-IPN gel composed of amphiphilic gel and zwitterionic thermosensitive polymer in buffer solutions containing high concentration salt. Polymer, 2011. 52(17): p. 3791-3799.
23. Mary, P., et al., Reconciling low-and high-salt solution behavior of sulfobetaine polyzwitterions. The Journal of Physical Chemistry B, 2007. 111(27): p. 7767-7777.
24. Willcock, H., et al., One-pot synthesis of responsive sulfobetaine nanoparticles by RAFT polymerisation: the effect of branching on the UCST cloud point. Polymer Chemistry, 2014. 5(3): p. 1023-1030.
25. Plamper, F.A., M. Ballauff, and A.H. Müller, Tuning the thermoresponsiveness of weak polyelectrolytes by pH and light: lower and upper critical-solution temperature of poly (N, N-dimethylaminoethyl methacrylate). Journal of the American Chemical Society, 2007. 129(47): p. 14538-14539.
26. Seuring, J. and S. Agarwal, First example of a universal and cost-effective approach: Polymers with tunable upper critical solution temperature in water and electrolyte solution. Macromolecules, 2012. 45(9): p. 3910-3918.
27. Aoki, T., et al., Adenosine-induced changes of the phase transition of poly (6-(acryloyloxymethyl) uracil) aqueous solution. Polymer journal, 1999. 31(11_2): p. 1185.
28. Seuring, J., et al., Upper critical solution temperature of poly (N-acryloyl glycinamide) in water: a concealed property. Macromolecules, 2011. 45(1): p. 374-384.
29. Liu, F., J. Seuring, and S. Agarwal, Controlled radical polymerization of N‐acryloylglycinamide and UCST‐type phase transition of the polymers. Journal of Polymer Science Part A: Polymer Chemistry, 2012. 50(23): p. 4920-4928.
30. Glatzel, S., A. Laschewsky, and J.-F.o. Lutz, Well-defined uncharged polymers with a sharp UCST in water and in physiological milieu. Macromolecules, 2010. 44(2): p. 413-415.
31. Seuring, J. and S. Agarwal, Polymers with upper critical solution temperature in aqueous solution. Macromolecular rapid communications, 2012. 33(22): p. 1898-1920.
32. Shimada, N., et al., Ureido-derivatized polymers based on both poly (allylurea) and poly (L-citrulline) exhibit UCST-type phase transition behavior under physiologically relevant conditions. Biomacromolecules, 2011. 12(10): p. 3418-3422.
33. Shimada, N., et al., Design of UCST polymers for chilling capture of proteins. Biomacromolecules, 2013. 14(5): p. 1452-1457.
34. Plein, L.C., Popularizing biotechnology: The influence of issue definition. Science, Technology, Human Values, 1991. 16(4): p. 474-490.
35. Chibata, I., Immobilized enzymes, research and development. 1978, Tokyo, Japan: Kodansha.
36. Bickerstaff, G.F., Immobilization of enzymes and cells, in Immobilization of enzymes and cells. 1997, Springer. p. 1-11.
37. Cao, L., Carrier-bound immobilized enzymes: principles, application and design. 2006: John Wiley Sons.
38. Sheldon, R.A., Enzyme immobilization: the quest for optimum performance. Advanced Synthesis Catalysis, 2007. 349(8‐9): p. 1289-1307.
39. Matsukata, M., et al., Temperature modulated solubility-activity alterations for poly (N-isopropylacrylamide)-lipase conjugates. The Journal of Biochemistry, 1994. 116(3): p. 682-686.
40. Tümtürk, H., et al., Preparation and application of poly (N, N-dimethylacrylamide-co-acrylamide) and poly (N-isopropylacrylamide-co-acrylamide)/κ-Carrageenan hydrogels for immobilization of lipase. International journal of biological macromolecules, 2007. 40(3): p. 281-285.
41. Anderson, G.W., J.E. Zimmerman, and F.M. Callahan, The use of esters of N-hydroxysuccinimide in peptide synthesis. Journal of the American Chemical Society, 1964. 86(9): p. 1839-1842.
42. Leiro, V., et al., Conjugation Chemistry Principles and Surface Functionalization of Nanomaterials, in Biomedical Applications of Functionalized Nanomaterials. 2018, Elsevier. p. 35-66.
43. Sheehan, J., P. Cruickshank, and G. Boshart, A Convenient Synthesis of Water-Soluble Carbodiimides. The Journal of Organic Chemistry, 1961. 26(7): p. 2525-2528.
44. Grabarek, Z. and J. Gergely, Zero-length crosslinking procedure with the use of active esters. Analytical biochemistry, 1990. 185(1): p. 131-135.
45. Bohara, R.A., N.D. Thorat, and S.H. Pawar, Immobilization of cellulase on functionalized cobalt ferrite nanoparticles. Korean Journal of Chemical Engineering, 2016. 33(1): p. 216-222.
46. Staros, J.V., N-hydroxysulfosuccinimide active esters: bis (N-hydroxysulfosuccinimide) esters of two dicarboxylic acids are hydrophilic, membrane-impermeant, protein cross-linkers. Biochemistry, 1982. 21(17): p. 3950-3955.
47. Limadinata, P.A., A. Li, and Z. Li, Temperature-responsive nanobiocatalysts with an upper critical solution temperature for high performance biotransformation and easy catalyst recycling: efficient hydrolysis of cellulose to glucose. Green Chemistry, 2015. 17(2): p. 1194-1203.
48. Homaei, A.A., et al., Enzyme immobilization: an update. Journal of chemical biology, 2013. 6(4): p. 185-205.
49. Huisgen, R., Centenary lecture-1, 3-dipolar cycloadditions. 1961, Royal Soc Chemistry Thomas Graham House, Science Park, Milton Rd, Cambridge.
50. Rostovtsev, V.V., et al., A stepwise huisgen cycloaddition process: copper (I)‐catalyzed regioselective “ligation” of azides and terminal alkynes. Angewandte Chemie International Edition, 2002. 41(14): p. 2596-2599.
51. Tornøe, C.W., C. Christensen, and M. Meldal, Peptidotriazoles on solid phase:[1, 2, 3]-triazoles by regiospecific copper (I)-catalyzed 1, 3-dipolar cycloadditions of terminal alkynes to azides. The Journal of Organic Chemistry, 2002. 67(9): p. 3057-3064.
52. Brennan, J.L., et al., Bionanoconjugation via click chemistry: The creation of functional hybrids of lipases and gold nanoparticles. Bioconjugate chemistry, 2006. 17(6): p. 1373-1375.
53. Afaq, S. and J. Iqbal, Immobilization and stabilization of papain on chelating sepharose: a metal chelate regenerable carrier. Electronic Journal of Biotechnology, 2001. 4(3): p. 1-2.
54. Sarı, M., et al., Reversible immobilization of catalase by metal chelate affinity interaction on magnetic beads. Industrial Engineering Chemistry Research, 2006. 45(9): p. 3036-3043.
55. Mol, N.J. and M.J. Fischer, Surface plasmon resonance: methods and protocols. 2010: Springer.
56. Takei, Y.G., et al., Dynamic contact angle measurement of temperature-responsive surface properties for poly (N-isopropylacrylamide) grafted surfaces. Macromolecules, 1994. 27(21): p. 6163-6166.
57. Kondo, T., et al., Characteristics of acrylic acid and N‐isopropylacrylamide binary monomers–grafted polyethylene film synthesized by photografting. Journal of Applied Polymer Science, 1998. 67(12): p. 2057-2064.
58. Galaev, I. and B. Mattiasson, Smart polymers: applications in biotechnology and biomedicine. 2007: CRC Press.
59. Iwata, H., et al., Preparation of temperature-sensitive membranes by graft polymerization onto a porous membrane. Journal of Membrane Science, 1991. 55(1-2): p. 119-130.
60. Hesampour, M., et al., Grafting of temperature sensitive PNIPAAm on hydrophilised polysulfone UF membranes. Journal of Membrane Science, 2008. 310(1-2): p. 85-92.
61. Huang, J., et al., Temperature sensitivity and electrokinetic behavior of a N-isopropylacrylamide grafted microporous polyethylene membrane. Desalination, 2002. 146(1-3): p. 345-351.
62. Kim, S.Y., T. Kanamori, and T. Shinbo, Preparation of thermal‐responsive poly (propylene) membranes grafted with n‐isopropylacrylamide by plasma‐induced polymerization and their water permeation. Journal of Applied Polymer Science, 2002. 84(6): p. 1168-1177.
63. Xie, R., Y. Li, and L.-Y. Chu, Preparation of thermo-responsive gating membranes with controllable response temperature. Journal of Membrane Science, 2007. 289(1-2): p. 76-85.
64. Da Silva, R.M., J.F. Mano, and R.L. Reis, Smart thermoresponsive coatings and surfaces for tissue engineering: switching cell-material boundaries. TRENDS in Biotechnology, 2007. 25(12): p. 577-583.
65. Okano, T., et al., Mechanism of cell detachment from temperature-modulated, hydrophilic-hydrophobic polymer surfaces. Biomaterials, 1995. 16(4): p. 297-303.
66. Galaev, I.Y. and B. Mattiasson, ‘Smart’polymers and what they could do in biotechnology and medicine. TRENDS in Biotechnology, 1999. 17(8): p. 335-340.
67. Hoffman, A.S., Applications of thermally reversible polymers and hydrogels in therapeutics and diagnostics. Journal of Controlled Release, 1987. 6(1): p. 297-305.
68. Tan, I., F. Roohi, and M.-M. Titirici, Thermoresponsive polymers in liquid chromatography. Analytical Methods, 2012. 4(1): p. 34-43.
69. Hosoya, K., et al., In situ surface-selective modification of uniform size macroporous polymer particles with temperature-responsive poly-N-isopropylacrylamide. Macromolecules, 1994. 27(14): p. 3973-3976.
70. Kanazawa, H., et al., Temperature-responsive liquid chromatography. 2. Effects of hydrophobic groups in N-isopropylacrylamide copolymer-modified silica. Analytical chemistry, 1997. 69(5): p. 823-830.
71. Kobayashi, J., et al., Aqueous chromatography utilizing pH-/temperature-responsive polymer stationary phases to separate ionic bioactive compounds. Analytical chemistry, 2001. 73(9): p. 2027-2033.
72. Stayton, P.S., et al., Control of protein–ligand recognition using a stimuli-responsive polymer. Nature, 1995. 378(6556): p. 472.
73. Kanazawa, H., Thermally responsive chromatographic materials using functional polymers. Journal of separation science, 2007. 30(11): p. 1646-1656.
74. Mattiasson, B., et al., Metal-chelate affinity precipitation of proteins using responsive polymers. Nature protocols, 2007. 2(1): p. 213.
75. Hilbrig, F. and R. Freitag, Protein purification by affinity precipitation. Journal of chromatography B, 2003. 790(1-2): p. 79-90.
76. Gaberc-Porekar, V. and V. Menart, Perspectives of immobilized-metal affinity chromatography. Journal of biochemical and biophysical methods, 2001. 49(1-3): p. 335-360.
77. Porath, J., et al., Metal chelate affinity chromatography, a new approach to protein fractionation. Nature, 1975. 258(5536): p. 598-599.
78. Porath, J., Immobilized metal ion affinity chromatography. Protein expression and purification, 1992. 3(4): p. 263-281.
79. Hochuli, E., et al., Genetic approach to facilitate purification of recombinant proteins with a novel metal chelate adsorbent. Bio/technology, 1988. 6(11): p. 1321.
80. Porath, J. and B. Olin, Immobilized metal affinity adsorption and immobilized metal affinity chromatography of biomaterials. Serum protein affinities for gel-immobilized iron and nickel ions. Biochemistry, 1983. 22(7): p. 1621-1630.
81. Odabašı, M., L. Uzun, and A. Denizli, Porous magnetic chelator support for albumin adsorption by immobilized metal affinity separation. Journal of Applied Polymer Science, 2004. 93(5): p. 2501-2510.
82. Loberg, M.D., et al., Development of new radiopharmaceuticals based on N-substitution of iminodiacetic acid. Journal of Nuclear Medicine, 1976. 17(7): p. 633-638.
83. Galaev, I.Y., et al., Imidazole—a new ligand for metal affinity precipitation. Applied biochemistry and biotechnology, 1997. 68(1-2): p. 121-133.
84. Stiborova, H., et al., One‐step metal‐affinity purification of histidine‐tagged proteins by temperature‐triggered precipitation. Biotechnology and bioengineering, 2003. 82(5): p. 605-611.
85. Livingston, D.M., [91] Immunoaffinity chromatography of proteins, in Methods in enzymology. 1974, Elsevier. p. 723-731.
86. Ehle, H. and A. Horn, Immunoaffinity chromatography of enzymes. Bioseparation, 1990. 1(2): p. 97-110.
87. Chen, J.P. and A.S. Huffman, Polymer-protein conjugates: II. Affinity precipitation separation of human immunogammaglobulin by a poly (N-isopropylacrylamide)-protein A conjugate. Biomaterials, 1990. 11(9): p. 631-634.
88. Zambare, V., et al., Biochemical characterization of thermophilic lignocellulose degrading enzymes and their potential for biomass bioprocessing. International Journal of Energy and Environment, 2011. 2(1): p. 99-112.
89. Mubasshir, S., et al., Biochemical studies on the amylase of mango mealybug (Drosicha stebbingi Green). Türkiye Entomoloji Dergisi, 2014. 38(3): p. 307-321.
90. Ghose, T., Measurement of cellulase activities. Pure and applied Chemistry, 1987. 59(2): p. 257-268.
91. Boyer, R.F., Purification of milk whey α-lactalbumin by immobilized metal-ion affinity chromatography. Journal of Chemical Education, 1991. 68(5): p. 430.
92. Lineweaver, H. and D. Burk, The determination of enzyme dissociation constants. Journal of the American Chemical Society, 1934. 56(3): p. 658-666.
93. Markowicz, M., et al., Evaluation of poly (amidoamine) dendrimers as potential carriers of iminodiacetic derivatives using solubility studies and 2D-NOESY NMR spectroscopy. Journal of biological physics, 2012. 38(4): p. 637-656.
94. Kumar, A., I.Y. Galaev, and B. Mattiasson, Affinity precipitation of α‐amylase inhibitor from wheat meal by metal chelate affinity binding using cu (II)‐loaded copolymers of 1‐vinylimidazole with N‐isopropylacrylamide. Biotechnology and bioengineering, 1998. 59(6): p. 695-704.
95. Carter, S., et al., Highly branched poly (N-isopropylacrylamide) for use in protein purification. Biomacromolecules, 2006. 7(4): p. 1124-1130.
96. Cobo, I., et al., Smart hybrid materials by conjugation of responsive polymers to biomacromolecules. Nature materials, 2015. 14(2): p. 143.
97. Chaplin, M.F. and C. Bucke, Enzyme technology. 1990: CUP Archive.
98. Hutchens, T.W., T.-T. Yip, and J. Porath, Protein interaction with immobilized ligands: quantitative analyses of equilibrium partition data and comparison with analytical chromatographic approaches using immobilized metal affinity adsorbents. Analytical biochemistry, 1988. 170(1): p. 168-182.
99. Shukla, A.A., M.R. Etzel, and S. Gadam, Process scale bioseparations for the biopharmaceutical industry. 2006: CRC Press.
100. Ling, Y.-Q., et al., Metal chelate affinity precipitation: Purification of BSA using poly (N-vinylcaprolactam-co-methacrylic acid) copolymers. Colloids and Surfaces B: Biointerfaces, 2012. 94: p. 281-287.
101. Flory, P.J., Principles of polymer chemistry. 1953: Cornell University Press.
102. Parker, G., Encyclopedia of materials: science and technology. 2001.
103. Pelton, R. and P. Chibante, Preparation of aqueous latices with N-isopropylacrylamide. Colloids and Surfaces, 1986. 20(3): p. 247-256.
104. Zhang, Y., A. Dragan, and C.D. Geddes, Broad wavelength range metal-enhanced fluorescence using nickel nanodeposits. The Journal of Physical Chemistry C, 2009. 113(36): p. 15811-15816.
105. Maji, D., et al. Near infrared fluorescence quenching properties of copper (II) ions for potential applications in biological imaging. in Reporters, Markers, Dyes, Nanoparticles, and Molecular Probes for Biomedical Applications VI. 2014. International Society for Optics and Photonics.
106. Wang, X., et al., A fluorescent switch for sequentially and selectively sensing copper (II) and L-histidine in vitro and in living cells. Analyst, 2014. 139(13): p. 3360-3364.
107. Qiao, Y. and X. Zheng, Highly sensitive detection of copper ions by densely grafting fluorescein inside polyethyleneimine core–silica shell nanoparticles. Analyst, 2015. 140(24): p. 8186-8193.
108. SJÖHOLM, I., Protein A from Staphylococcus aureus: spectropolarimetric and spectrophotometric studies. European journal of biochemistry, 1975. 51(1): p. 55-61.
109. Nasiri, H., et al. Production and purification of polyclonal antibody against F (ab') 2 fragment of human immunoglobulin G. in Veterinary Research Forum. 2017. Faculty of Veterinary Medicine, Urmia University, Urmia, Iran.
110. Block, H., et al., Immobilized-metal affinity chromatography (IMAC): a review, in Methods in enzymology. 2009, Elsevier. p. 439-473.
111. Hoffman, A.S., et al., Really smart bioconjugates of smart polymers and receptor proteins. Journal of Biomedical Materials Research, 2000. 52(4): p. 577-586.
112. Shakya, A.K. and K.S. Nandakumar, An update on smart biocatalysts for industrial and biomedical applications. Journal of The Royal Society Interface, 2018. 15(139): p. 20180062.
113. Mosier, N.S. and M.R. Ladisch, Modern Biotechnology. 2009: Wiley Online Library.
114. Hurst, P.L., et al., Purification and properties of a cellulase from Aspergillus niger. Biochemical Journal, 1977. 165(1): p. 33-41.
115. Abubakar, F., Production and activity of cellulase from Aspergillus niger using rice bran and orange peel as substrates. International Journal of scientific research and management, 2013. 1(5).
116. Okada, G., Purification and properties of a cellulase from Aspergillus niger. Agricultural and biological chemistry, 1985. 49(5): p. 1257-1265.
117. Garcia‐Galan, C., et al., Potential of different enzyme immobilization strategies to improve enzyme performance. Advanced Synthesis Catalysis, 2011. 353(16): p. 2885-2904.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70527-
dc.description.abstract  相較於具有低臨界溶解溫度(LCST)之高分子(LCST-type高分子),具有高臨界溶解溫度(UCST)之高分子(UCST-type高分子)的應用比較少被開發,因其相轉變溫度通常對於溶液中環境的變化較敏感。然而,我們團隊認為具有高臨界溶解溫度的高分子(UCST-type高分子)在與生物技術相關的領域中具有龐大的發展潛力,尤其是於有機體以及其衍生物之固定化上的應用。LCST-type高分子常當作有機體之固定化基質,由於其透過溫度控制的沉澱在工業操作上的便利性,然而該分離過程中需有的升溫程序,很可能造成生物質的失活。而透過改用UCST-type高分子為基質,升溫的過程能夠被避免,解決了這樣的問題。
  這份研究主要針對於UCST-type高分子在蛋白質純化以及固定化酵素方面的應用。我們選用之UCST-type高分子為烯丙基胺/烯丙基脲共聚物(Poly(allylamine)-copoly(allylurea)s, PAUs),因其具有幾下優點:(1)合成步驟簡單。(2)具有能夠被改質的官能基,胺基。(3)在較高的鹽類條件下具有較高之相轉變溫度的特性使其分離步驟更加簡單。
  在應用UCST-type高分子於金屬螯合法蛋白質純化的研究中,我們利用亞氨基二乙酸(IDA)改質了PAU,成功的合成出同時具有UCST以及螯合金屬離子能力的高分子PAU-IDA。其中,含有0.75及0.1的莫爾比之胺基分別被改質成脲基及IDA基的PAU-IDA,不帶有金屬離子、螯合鎳離子、以及螯合銅離子時,在PBS中的相轉變溫度分別為14.4°C、14.8°C、以及21.5°C,而這些溫度皆適用於蛋白質純化的操作過程中。在蛋白質捕捉實驗中,螯合有銅離子的PAU-IDA(PAU-0.75-IDA-0.10-Cu)對於帶有組氨酸標籤的蛋白A (his-tag protein A),每毫克高分子能夠捕捉396 微克的蛋白質,並且只需要2.5毫克的高分子及能在含有100 微克蛋白A的溶液中捕捉高達98%的蛋白質。被捕捉的蛋白質能夠透過含有咪唑的溶液洗脫,透過含有50 mM咪唑的溶液洗脫一次即可洗出89.7%的被捕捉蛋白。最後,PAU-0.75-IDA-0.10-Cu被用於蛋白質分離程序中,並且成功的將蛋白A從蛋白質混和液中分離出來。
  在利用UCST-type高分子用作固定化酵素基質的研究中,纖維素酶透過1-乙基-3-(3-二甲基氨基丙基)碳醯二亞胺/N-羥基丁二醯亞胺(EDC/NHS)偶和法固定在PAU上。合成出之固定化酶在醋酸緩衝液中(300 mM, pH 3)具有22.1°C的相轉變溫度,該溫度適用於纖維素之水解反應。在羧甲基纖維素之水解中,酸鹼值與溫度對於固定化酶的活性影響皆被測定。在水解反應後,固定化酶可以透過降溫與離心進行分離與再利用,並且經過五次的回收後,仍有81.1%的初始活性成功被保留。
zh_TW
dc.description.abstractApplication of polymers with upper critical solution temperature (UCST-type polymers) was less investigated comparing to polymers with lower critical solution temperature (LCST-type polymers), as they are generally more sensitive to environmental changes, such as pH and salt condition. However, in our view, UCST-type polymers have great potential application in the territory of biotechnology. Using UCST-type polymers as supports for immobilization of organisms and their derivatives could solves the problem of deactivation caused by the requirement of increasing temperature during the separation process of LCST-type polymers.
In this study, we focused on developing the application of UCST-type polymers in protein purification and enzyme immobilization. Ureido-derivatized UCST-type polymers, Poly(allylamine)-co-poly(allylurea)s (PAUs) were chosen based on the following advantages: (1) Synthesis procedure of PAUs is simple; (2) PAUs have easily-modified functional groups, amine group; (3) Increasing phase separation temperature of PAUs under elevated salt condition makes the separation process of these polymers easier.
In the metal-chelate protein purification based on UCST-type polymers, we successfully modified PAUs with iminodiacetic acid (IDA) to create PAU-IDAs, polymers simultaneously present UCST behavior and have the ability to chelate metal ion. PAU-IDA with 0.75 and 0.10 ratio of original amine groups transformed to ureido groups and IDA groups respectively (PAU-0.75-IDA-0.10) show phase separation temperature (Tp) of 14.4°C without metal ion, 14.8°C with nickel ion loaded, and 21.5°C with copper ion loaded in PBS, which is suitable operation condition for protein purification. In protein capture investigation, Cu2+ loaded PAU-0.75-IDA-0.10 (PAU-0.75-IDA-0.10-Cu) displayed a his-tagged protein A binding capacities of 396 μg/ mg polymer and captured up to 98% among 100 μg his-tagged protein A in the solution by 2.5 mg of this polymer. Besides, up to 89.7% of captured his-tag protein A was eluted by one time of elution through buffer containing 50 mM imidazole. Lastly, PAU-IDA-Cu was used to treat protein mixture and successfully separated his-tagged protein A form the mixture.
In the enzyme immobilization on UCST-type polymers, cellulase was immobilized on PAU through EDC/NHS coupling. The immobilized cellulase show a Tp of 22.1°C in acetate buffer (300 mM, pH 4.8) which is desirable for cellulase reaction. The influence of pH and temperature to the hydrolysis of CMC by immobilized CMC was investigated. After hydrolysis reaction, immobilized cellulase can be recovered through cooling and centrifugation. In the recycling experiment, immobilized cellulase remained undenatured after 5 cycles of hydrolysis reaction.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T04:30:15Z (GMT). No. of bitstreams: 1
U0001-3108202016232200.pdf: 6163520 bytes, checksum: 3f7236b458c737eac75efb5b2814217a (MD5)
Previous issue date: 2019
en
dc.description.tableofcontents口試委員會審定書 I
致謝 II
摘要 IV
Abstract VI
Content VIII
List of figures XIII
List of tables XV
Chapter 1 Introduction 1
1.1 Thermoresponsive polymers 1
1.1.1 Polymers with lower critical solution temperature behavior 3
1.1.2 Polymers with upper critical solution temperature behavior 5
1.2 Application of temperature responsive polymers in biotechnology 13
1.2.1 Immobilized biocatalyst 13
1.2.2 Temperature-responsive surfaces 16
1.2.3 Bioseparation 18
1.3 Research motivation and objective 21
Chapter 2 Materials and Methods 26
2.1 Chemicals 26
2.1.1 Synthesis of PAU, PAU-IDA-Ni, and PAU-IDA-Cu 26
2.1.2 Protein capture 26
2.1.3 Enzyme immobilization 27
2.1.4 Cellulase activity assay 28
2.1.5 Protein quantification 28
2.1.6 Electrophoresis 28
2.1.7 NMR 29
2.1.8 AA 30
2.2 Experimental instrument 30
2.3 Experimental materials 31
2.4 Solution formula 32
2.5 Methods 35
2.5.1 Synthesis of UCST-type polymers 35
2.5.2 Loading of metal ion 37
2.5.3 Polymer Characterization 38
2.5.4 Affinity precipitation of BSA 38
2.5.5 Affinity precipitation of protein A 39
2.5.6 Investigation of elution condition of protein A bound by metal ion loaded UCST-type polymers 40
2.5.5 Preparation of whey protein 41
2.5.6 Purification of BSA from protein mixture via PAU-0.75-IDA-0.10 41
2.5.7 Purification of protein A from protein mixture via PAU-0.75-IDA-0.10 42
2.5.8 Immunoaffinity purification of immunoglobulin G based on a conjugate of protein A and UCST-type polymer 43
2.5.9 Immobilization of enzyme on PAU 44
2.5.10 Gel filtration 45
2.5.11 Measurement of cellulase activity 45
2.5.12 Determination of Vmax and Km 46
2.5.13 Recycling of PAU-0.9-cellulase in the hydrolysis of CMC 46
2.5.14 Sodium dodecyl sulphate polyacrylamide gel Electrophoresis (SDS-PAGE) 47
2.5.15 Bicinchoninic acid (BCA) assay 48
2.5.16 DNS assay 48
2.5.17 Statistical analysis 49
Chapter 3 Metal-chelate affinity purification of proteins based on UCST-type polymer: poly(allylamine)-co-poly(allylurea)s 54
3.1 Synthesis and characterization of polymers 54
3.1.1 Moiety composition of PAUs and PAU-IDAs 54
3.1.2 Phase separation temperature (Tp) 56
3.1.3 Metal ion loading 58
3.2 Protein capture ability of PAU-IDA-Ni and PAU-IDA-Cu 58
3.2.1 Capturing BSA by PAU-IDA loaded with copper ion 58
3.2.2 Dependence of captured amount of protein A to initial protein A concentration 59
3.2.3 Amount of polymers vs. captured amount of protein 60
3.3 Protein elution 62
3.4 Separation of BSA from the mixture with whey protein 64
3.5 His-tagged protein separation form protein mixture 65
3.5.1 Influence of used amount of PAU-0.75-IDA-0.10-Cu and incubation time to protein separation performance 65
3.5.2 Protein purification with and without gradient imidazole elution 67
3.6 Immunoaffinity purification of immunoglobulin G based on the conjugate of protein A and UCST-type polymer 69
3.7 Discussion 71
3.8 Conclusion 75
Chapter 4 Immobilization of cellulase based on UCST-type polymer: poly(allylamine)-co-poly(allylurea)s 96
4.1 Immobilization of cellulase on PAU 96
4.2 The pH dependence and the temperature dependence of the activities of PAU-0.9-cellulase and free cellulase 98
4.3 Hydrolysis Kinetics of CMC 99
4.4 Recycling of PAU-0.9-cellualse in the hydrolysis of CMC 100
4.5 Discussion 102
4.6 Conclusion 105
Chapter 5 Conclusion Future Work 111
Reference 113
Appendix 122
dc.language.isoen
dc.title具高臨界溶解溫度之高分子應用於生物技術的研究zh_TW
dc.titleApplication of UCST-type polymers in biotechnologyen
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.advisor-orcid蔡偉博(0000-0002-2316-5751)
dc.contributor.oralexamcommittee王勝仕(Steven S.-S. Wang),曾文祺(Wen-Chi Tseng)
dc.contributor.oralexamcommittee-orcid王勝仕(0000-0001-5432-3268)
dc.subject.keyword應答性高分子,UCST,蛋白質純化,固定化酶,生物技術,zh_TW
dc.subject.keywordSmart polymer,UCST,Protein purification,Immobilized enzyme,Biotech,en
dc.relation.page124
dc.identifier.doi10.6342/NTU202004193
dc.rights.note有償授權
dc.date.accepted2020-09-01
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept化學工程學研究所zh_TW
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
U0001-3108202016232200.pdf
  目前未授權公開取用
6.02 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved