Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物機電工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70515
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳洵毅
dc.contributor.authorHsin-Ju Loen
dc.contributor.author羅心茹zh_TW
dc.date.accessioned2021-06-17T04:29:57Z-
dc.date.available2019-08-15
dc.date.copyright2018-08-15
dc.date.issued2018
dc.date.submitted2018-08-13
dc.identifier.citation賴柏宇. (2015). 鋰硫電池材料開發與電化學分析-PVDF 膠體電解質對枝晶生成及碳保護層對硫電極之影響. 臺灣大學生物產業機電工程學研究所學位論文, 1-105.
陳奕惟. (2017). 含PVdF膠體電解質之結構超級電容複合材料研究 - 電化學性質與封裝製程探討. 臺灣大學工程科學及海洋工程學研究所學位論文, 1-106.
Bagotsky, V. S. (Ed.). (2005). Fundamentals of electrochemistry (Vol. 44). John Wiley & Sons.
Bard, A. J., Faulkner, L. R., Leddy, J., & Zoski, C. G. (1980). Electrochemical methods: fundamentals and applications (Vol. 2). New York: Wiley.
Barzegar, F., Dangbegnon, J. K., Bello, A., Momodu, D. Y., Johnson Jr, A. C., & Manyala, N. (2015). Effect of conductive additives to gel electrolytes on activated carbon-based supercapacitors. AIP Advances, 5(9), 097171.
Beck, F., & Rüetschi, P. (2000). Rechargeable batteries with aqueous electrolytes. Electrochimica Acta, 45(15-16), 2467-2482.
Chin, S. F., Pang, S. C., & Anderson, M. A. (2010). Self-assembled manganese dioxide nanowires as electrode materials for electrochemical capacitors. Materials Letters, 64(24), 2670-2672.
Conway, B. E. (2013). Electrochemical supercapacitors: scientific fundamentals and technological applications. Springer Science & Business Media.
Endo, M., Takeda, T., Kim, Y. J., Koshiba, K., & Ishii, K. (2001). High power electric double layer capacitor (EDLC's); from operating principle to pore size control in advanced activated carbons. Carbon letters, 1(3_4), 117-128.
Gentili, V., Panero, S., Reale, P., & Scrosati, B. (2007). Composite gel-type polymer electrolytes for advanced, rechargeable lithium batteries. Journal of power sources, 170(1), 185-190.
González, A., Goikolea, E., Barrena, J. A., & Mysyk, R. (2016). Review on supercapacitors: technologies and materials. Renewable and Sustainable Energy Reviews, 58, 1189-1206.
Jiang, C., Zhao, B., Cheng, J., Li, J., Zhang, H., Tang, Z., & Yang, J. (2015). Hydrothermal synthesis of Ni (OH) 2 nanoflakes on 3D graphene foam for high-performance supercapacitors. Electrochimica Acta, 173, 399-407.
Johra, F. T., Lee, J. W., & Jung, W. G. (2014). Facile and safe graphene preparation on solution based platform. Journal of Industrial and Engineering Chemistry, 20(5), 2883-2887.
Kim, I. H., & Kim, K. B. (2006). Electrochemical characterization of hydrous ruthenium oxide thin-film electrodes for electrochemical capacitor applications. Journal of The Electrochemical Society, 153(2), A383-A389.
Halper, M. S., & Ellenbogen, J. C. (2006). Supercapacitors: A brief overview. MITRE Nanosystems Group.
Hassan, F. M., Chabot, V., Li, J., Kim, B. K., Ricardez-Sandoval, L., & Yu, A. (2013).
Periasamy, P., Tatsumi, K., Kalaiselvi, N., Shikano, M., Fiyieda, T., Saito, Y., ... & Deki, S. (2002). Performance evaluation of PVdF gel polymer electrolytes. Ionics, 8(5-6), 453-460.
Hirahara, S., Okuyama, K., Suzuki, M., Matsuura, K., & Takeda, Y. (1999). High energy density electric double-layer capacitor by Li-doping techniques. In Selected Battery Topics: Proceedings of the Symposia on Aqueous Batteries; Battery Applications; Batteries for the 21st Century; Corrosion in Batteries and Fuel Cells; Exploratory Research and Development of Batteries & Supercapacitors for Electric and Hybrid Vehicles II (Vol. 98, No. 15, p. 353). The Electrochemical Society.
Hsu, H. C., Shown, I., Wei, H. Y., Chang, Y. C., Du, H. Y., Lin, Y. G., ... & Chen, K. H. (2013). Graphene oxide as a promising photocatalyst for CO 2 to methanol conversion. Nanoscale, 5(1), 262-268.
Huang, C. W., Wu, C. A., Hou, S. S., Kuo, P. L., Hsieh, C. T., & Teng, H. (2012). Gel Electrolyte Derived from Poly (ethylene glycol) Blending Poly (acrylonitrile) Applicable to Roll‐to‐Roll Assembly of Electric Double Layer Capacitors. Advanced Functional Materials, 22(22), 4677-4685.
Hummers Jr, William S., and Richard E. Offeman. 'Preparation of graphitic oxide.' Journal of the american chemical society 80.6 (1958): 1339-1339.
Lewandowski, A., Zajder, M., Frąckowiak, E., & Beguin, F. (2001). Supercapacitor based on activated carbon and polyethylene oxide–KOH–H2O polymer electrolyte. Electrochimica Acta, 46(18), 2777-2780.
Lee, K. T., & Wu, N. L. (2008). Manganese oxide electrochemical capacitor with potassium poly (acrylate) hydrogel electrolyte. Journal of Power Sources, 179(1), 430-434.
Lee, J. W., Choi, W. C., & Kim, J. D. (2010). Size-controlled layered zinc hydroxide intercalated with dodecyl sulfate: effect of alcohol type on dodecyl sulfate template. CrystEngComm, 12(10), 3249-3254.
Lee, H., Cho, M. S., Kim, I. H., Do Nam, J., & Lee, Y. (2010). RuOx/polypyrrole nanocomposite electrode for electrochemical capacitors. Synthetic Metals, 160(9-10), 1055-1059.
Lee, J. W., Ahn, T., Kim, J. H., Ko, J. M., & Kim, J. D. (2011). Nanosheets based mesoporous NiO microspherical structures via facile and template-free method for high performance supercapacitors. Electrochimica Acta, 56(13), 4849-4857.
Lin, C., Ritter, J. A., & Popov, B. N. (1998). Characterization of sol‐gel‐derived cobalt oxide xerogels as electrochemical capacitors. Journal of the Electrochemical Society, 145(12), 4097-4103.
Liu, K. C., & Anderson, M. A. (1996). Porous nickel oxide/nickel films for electrochemical capacitors. Journal of the Electrochemical Society, 143(1), 124-130.
Liu, C., Yu, Z., Neff, D., Zhamu, A., & Jang, B. Z. (2010). Graphene-based supercapacitor with an ultrahigh energy density. Nano letters, 10(12), 4863-4868.
Lo, H. J., & Chen, H. Y. (2017). All-Solid-State Supercapacitor Based on Graphene Oxide Composite Electrodes. ECS Transactions, 80(10), 453-462.
Lu, X., Yu, M., Wang, G., Tong, Y., & Li, Y. (2014). Flexible solid-state supercapacitors: design, fabrication and applications. Energy & Environmental Science, 7(7), 2160-2181.
Miller, J. R., & Simon, P. (2008). Electrochemical capacitors for energy management. Science Magazine, 321(5889), 651-652.
Min, S., Zhao, C., Chen, G., & Qian, X. (2014). One-pot hydrothermal synthesis of reduced graphene oxide/Ni (OH) 2 films on nickel foam for high performance supercapacitors. Electrochimica Acta, 115, 155-164.
Mitra, S., & Sampath, S. (2004). Electrochemical capacitors based on exfoliated graphite electrodes. Electrochemical and solid-state letters, 7(9), A264-A268.
Neiva, E. G., Oliveira, M. M., Bergamini, M. F., Marcolino Jr, L. H., & Zarbin, A. J. (2016). One material, multiple functions: graphene/Ni (OH) 2 thin films applied in batteries, electrochromism and sensors. Scientific reports, 6, 33806.
Nethravathi, C., & Rajamathi, M. (2008). Chemically modified graphene sheets produced by the solvothermal reduction of colloidal dispersions of graphite oxide. Carbon, 46(14), 1994-1998.
Oliva, P., Leonardi, J., Laurent, J. F., Delmas, C., Braconnier, J. J., Figlarz, M., ... & De Guibert, A. (1982). Review of the structure and the electrochemistry of nickel hydroxides and oxy-hydroxides. Journal of Power sources, 8(2), 229-255.
Pramanik, A., Maiti, S., & Mahanty, S. (2015). β-Ni (OH) 2 nanoflowers as anode material for lithium-ion battery. Sci. Lett., 4, 104.
Pyrrolic-structure enriched nitrogen doped graphene for highly efficient next generation supercapacitors. Journal of Materials Chemistry A, 1(8), 2904-2912.
Pandolfo, A. G., & Hollenkamp, A. F. (2006). Carbon properties and their role in supercapacitors. Journal of power sources, 157(1), 11-27.
Pang, S. C., Anderson, M. A., & Chapman, T. W. (2000). Novel electrode materials for thin‐film ultracapacitors: comparison of electrochemical properties of sol‐gel‐derived and electrodeposited manganese dioxide. Journal of the Electrochemical Society, 147(2), 444-450.
Pan, D., Wang, S., Zhao, B., Wu, M., Zhang, H., Wang, Y., & Jiao, Z. (2009). Li storage properties of disordered graphene nanosheets. Chemistry of Materials, 21(14), 3136-3142.
Pumera, M. (2010). Graphene-based nanomaterials and their electrochemistry. Chemical Society Reviews, 39(11), 4146-4157.
Rakhi, R. B., Chen, W., Cha, D., & Alshareef, H. N. (2012). Substrate dependent self-organization of mesoporous cobalt oxide nanowires with remarkable pseudocapacitance. Nano letters, 12(5), 2559-2567.
Reddy, R. N., & Reddy, R. G. (2006). Porous structured vanadium oxide electrode material for electrochemical capacitors. Journal of Power Sources, 156(2), 700-704.
Rudge, A., Davey, J., Raistrick, I., Gottesfeld, S., & Ferraris, J. P. (1994). Conducting polymers as active materials in electrochemical capacitors. Journal of Power Sources, 47(1-2), 89-107.
Saravanakumar, B., Purushothaman, K. K., & Muralidharan, G. (2012). Interconnected V2O5 nanoporous network for high-performance supercapacitors. ACS applied materials & interfaces, 4(9), 4484-4490.
Sekhon, S. S. (2003). Conductivity behaviour of polymer gel electrolytes: Role of polymer. Bulletin of Materials Science, 26(3), 321-328.
Song, X., & Gao, L. (2008). Facile synthesis and hierarchical assembly of hollow nickel oxide architectures bearing enhanced photocatalytic properties. The Journal of Physical Chemistry C, 112(39), 15299-15305.
Taberna, P. L., Simon, P., & Fauvarque, J. F. (2003). Electrochemical characteristics and impedance spectroscopy studies of carbon-carbon supercapacitors. Journal of The Electrochemical Society, 150(3), A292-A300.
Tessier, C., Guerlou-Demourgues, L., Faure, C., Demourgues, A., & Delmas, C. (2000). Structural study of zinc-substituted nickel hydroxides. Journal of Materials Chemistry, 10(5), 1185-1193.
Wang, G., Zhang, L., & Zhang, J. (2012). A review of electrode materials for electrochemical supercapacitors. Chemical Society Reviews, 41(2), 797-828.
Wang, H., Hao, Q., Yang, X., Lu, L., & Wang, X. (2009). Graphene oxide doped polyaniline for supercapacitors. Electrochemistry Communications, 11(6), 1158-1161.
Wang, Y., Shi, Z., Huang, Y., Ma, Y., Wang, C., Chen, M., & Chen, Y. (2009). Supercapacitor devices based on graphene materials. The Journal of Physical Chemistry C, 113(30), 13103-13107.
Wang, Y., Wu, Y., Huang, Y., Zhang, F., Yang, X., Ma, Y., & Chen, Y. (2011). Preventing graphene sheets from restacking for high-capacitance performance. The Journal of Physical Chemistry C, 115(46), 23192-23197.
Wang, X., Wang, Y., Zhao, C., Zhao, Y., Yan, B., & Zheng, W. (2012). Electrodeposited Ni (OH) 2 nanoflakes on graphite nanosheets prepared by plasma-enhanced chemical vapor deposition for supercapacitor electrode. New Journal of Chemistry, 36(9), 1902-1906.
Wu, Z. S., Zhou, G., Yin, L. C., Ren, W., Li, F., & Cheng, H. M. (2012). Graphene/metal oxide composite electrode materials for energy storage. Nano Energy, 1(1), 107-131.
Uddin, M. E., Kim, N. H., Kuila, T., Lee, S. H., Hui, D., & Lee, J. H. (2015). Preparation of reduced graphene oxide-NiFe2O4 nanocomposites for the electrocatalytic oxidation of hydrazine. Composites Part B: Engineering, 79, 649-659.
Yang, P., & Mai, W. (2014). Flexible solid-state electrochemical supercapacitors. Nano Energy, 8, 274-290.
Yang, X., Zhang, F., Zhang, L., Zhang, T., Huang, Y., & Chen, Y. (2013). A High‐Performance Graphene Oxide‐Doped Ion Gel as Gel Polymer Electrolyte for All‐Solid‐State Supercapacitor Applications. Advanced Functional Materials, 23(26), 3353-3360.
Xia, J., Chen, F., Li, J., & Tao, N. (2009). Measurement of the quantum capacitance of graphene. Nature nanotechnology, 4(8), 505.
Xing, W., Qiao, S., Wu, X., Gao, X., Zhou, J., Zhuo, S., ... & Hulicova-Jurcakova, D. (2011). Exaggerated capacitance using electrochemically active nickel foam as current collector in electrochemical measurement. Journal of Power Sources, 196(8), 4123-4127.
Xu, Y., Lin, Z., Zhong, X., Huang, X., Weiss, N. O., Huang, Y., & Duan, X. (2014). Holey graphene frameworks for highly efficient capacitive energy storage. Nature communications, 5, 4554.
Yao, X., & Zhao, Y. (2017). Three-dimensional porous graphene networks and hybrids for lithium-ion batteries and supercapacitors. Chem, 2(2), 171-200.
Zhang, L. L., & Zhao, X. S. (2009). Carbon-based materials as supercapacitor electrodes. Chemical Society Reviews, 38(9), 2520-2531.
Zhang, M., Huang, Z., Shen, Z., Gong, Y., Chi, B., Pu, J., & Li, J. (2017). High‐Performance Aqueous Rechargeable Li‐Ni Battery Based on Ni (OH) 2/NiOOH Redox Couple with High Voltage. Advanced Energy Materials, 7(17).
Zheng, J. P., & Jow, T. R. (1995). A new charge storage mechanism for electrochemical capacitors. Journal of the Electrochemical Society, 142(1), L6-L8.
Zhou, H., Chen, H., Luo, S., Lu, G., Wei, W., & Kuang, Y. (2005). The effect of the polyaniline morphology on the performance of polyaniline supercapacitors. Journal of Solid State Electrochemistry, 9(8), 574-580.
Zhuang, Q. C., Chen, Z. F., Dong, Q. F., Jiang, Y. X., Zhou, Z. Y., & Sun, S. G. (2005). Effects of methanol contaminant in electrolyte on performance of graphite electrodes for Li-ion batteries studied via electrochemical impedance spectroscopy. CHEMICAL JOURNAL OF CHINESE UNIVERSITIES-CHINESE, 26(11), 2073-2076.
Zhuang, Q., Tian, L., Wei, G., Dong, Q., & Sun, S. (2009). Two-and three-electrode impedance spectroscopic studies of graphite electrode in the first lithiation. Chinese Science Bulletin, 54(15), 2627-2632.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70515-
dc.description.abstract近年來,儲能裝置伴隨著再生能源而持續發展,其中超級電容器擁有高功率密度、高充放電效率,壽命高且高穩定性的優勢。提高超級電容器的能量密度,拓展其應用在攜帶式電子裝置、電動車和智慧電網是次世代儲能裝置的核心課題。
本研究藉由提高超級電容器電極的比電容數值與操作電位來提高能量密度,並使用膠體聚合物取代水溶液電解質製成全固態電容器以提升安全性及拓展應用範圍。石墨烯擁有高導電性,但其比電容會因為重組現象而降低,故另外配合高比電容數值但低導電性的氫氧化鎳製備複合電極。我們首先以XRD和FT-IR觀察水熱法合成電極的材料特性,再以電化學方法檢視以水熱法在180 反應三小時製成的複合電極,其在鹼性水溶液電解質擁有高達5404 F g-1的比電容值。
將此具高比電容值的複合電極,配合鋰離子膠體聚合物電解質組裝成全固態對稱超級電容器,再以循環伏安法分析電容器的反應電位,結果顯示若系統的操作電位控制在3 V內,能避免電解質裂解且具有可逆性。若以操作電位3 V進行長時間充放電,經過活化後電容器的比電容高達97 F g-1;推測是由氫氧化鎳氧化還原對貢獻並伴隨有機溶劑裂解。其性能展現類似電池的高能量密度121 Wh kg-1與高功率密度231 W kg-1,但庫倫效率僅54%。
為提高庫倫效率,將操作電位控制在2.5 V並同時提高電流密度,讓系統反應機制以電雙層電容為主;此時系統擁有的比電容數值6.8 F g-1,經過100次循環後,庫倫率效率都超過95%,能量密度為12 Wh kg-1,而功率密度高達6.8 kW kg-1。該系統經過5000次循環後,比電容數值還保有初始值的67%。
最後,經由電化學阻抗分析發現,對稱複合電極在鋰離子膠體聚合物電解質電化學特性會比在1 M KOH系統下,更接近理想電容器,代表全固態對稱超級電容器有更好的可逆性與穩定性。
zh_TW
dc.description.abstractRecently, energy storage devices continue to develop with the expanding of renewable energy sources. Among energy storage systems, supercapacitors are receiving increasing attention becaue of their high power density, high columbic efficiency, greater stability and long lifespan. The main challenge facing supercapaciors for further applications to portable electronics, electric vehicles, and smart grids is their low energy density.
In this study, we raise the supercapacitor energy desnsity by incrasing the specific capacitance and widening the electrochemical operation window. In addition, we replace the aqueous electrolyte with a gel polymer to improve safety and widen applications of super capacitors. Serving as electrode materials in a supercapacitor, graphene possesses high electrical conductivity but the capacity it supplies could be low due to its re-staking phenomenon, while nickel hydroxide has excellent specific capacitance capability but low electrical conductivity. We aim to synthesize the Ni(OH)2/rGO composite electrode via the hydrothermal process to raise overall specific capacitance.
First, material characteristics of the composite electrode were investigated by XRD and FT-IR. The electrochemical performance of the composite electrode in the alkaline aqueous electrolyte were examined. A composite electrode reacted for three hours at 180 °C via the hydrothermal method reaches the highest specific capacitance value of 5404 F g-1.
To fabricate an all-solid-state symmetric supercapacitor, the optimized composite electrodes were combined with lithium-ion gel polymer electrolyte, which is to widen the operation window. Cyclic voltammetry was used to identify redox reactions occur within the supercapactior, and we found that to avoid the EC/PC decomposition the operation potential is limited to 3 V to preserve the reversibility of the system.
The highest operation potential is thus set as 3 V for long-term galvanostatic charge and discharge. After activation, the specific capacitance of the all all-solid-state supercapacitor based on Ni(OH)2/rGO composite electrode is as high as 97 F g-1, which is attributed to the redox couple of nickel hydroxide and the oxidation of organic electrolyte. The supercapacitor exhibits a battery-like high energy density of 121 Wh kg-1and a high power density of 231W kg-1; however, its columbic efficicency is only of 54%.
To raise columbic efficiency, the highest operation potential of the supercapacitor is controlled at 2.5 V. In turn, the specic capacitance of the system is 6.8 F g-1. After 100 cycles, the colmbic efficiency remains over 95% and achieves a better energy density of 12 Wh kg-1and high power density of 6.8 kW kg-1. The capacitance retention of the system is 67% after 5000 cycles.
Finally, through electrochemical impedance analysis we found that the symmetric composite electrodes in lithium-ion gel polymer electrolyte behaves more similar to an ideal capacitor than in the 1 M KOH system. It also means the all-solid-state symmetric supercapacitor have better reversibility and stability than its 1 M KOH counter part.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T04:29:57Z (GMT). No. of bitstreams: 1
ntu-107-R05631020-1.pdf: 11933248 bytes, checksum: 7b8eaa86a3851b8089364c8a49d8decc (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents誌謝 i
中文摘要 ii
ABSTRACT iv
總目錄 vii
圖目錄 x
表目錄 xv
符號與縮寫列表 xvi
第一章 前言 1
1.1 研究動機 1
1.2 研究目的 2
1.3 電化學原理 4
第二章 文獻探討 5
2.1 超級電容器 5
2.1.1 超級電容器的簡介 5
2.1.2 超級電容器的電雙層電容反應機制 8
2.1.3 擬電容 9
2.2 超級電容器的電極材料 11
2.2.1 石墨烯 11
2.2.2 氫氧化鎳及其複合電極 12
2.3 電解質 14
2.3.1 水溶液電解質 14
2.3.2 膠體聚合物電解質 14
第三章 材料與方法 17
3.1 研究流程 17
3.2 製備與檢測氧化石墨烯 19
3.2.1 氧化石墨烯的材料製備 20
3.2.2 氧化石墨烯的材料分析 20
3.3 製備與檢測氫氧化鎳/還原氧化石墨烯複合電極 21
3.3.1 氫氧化鎳/還原氧化石墨烯的材料製備 22
3.3.2 氫氧化鎳/還原氧化石墨烯的材料分析 23
3.2.3 氫氧化鎳/還原氧化石墨烯複合電極的電化學分析 24
3.4 製備與檢測三維還原氧化石墨烯電極 26
3.4.1 三維還原氧化石墨烯的材料製備 27
3.4.2 三維還原氧化石墨烯的材料分析 27
3.5 製備與檢測三電極檢測系統應用於膠體聚合物電解質 28
3.5.1 三電極系統與全固態鋰/鎳半電池的製備 28
3.5.2 三電極系統與全固態鋰/鎳半電池電化學特性分析 29
3.6 製備與檢測全固態超級電容器 30
3.6.1全固態超級電容器的製備 30
3.6.2 全固態超級電容器的電化學分析 31
第四章 結果與討論 33
4.1 材料分析 33
4.1.1 X-光繞射分析(XRD) 33
4.1.2遠紅外光圖譜分析(FT-IR) 35
4.1.3元素分析(ESCA) 36
4.1.4表面形態分析(SEM) 38
4.1.5表面孔徑分析(BET) 45
4.2 複合電極製程參數決定 47
4.3 電化學分析 49
4.3.1單電極在鹼性水溶液電解質的性能檢測 49
4.3.2單電極在鋰離子膠體聚合物電解質的性能檢測 54
4.3.3全固態對稱電容器的性能檢測 60
4.4 全固態超級電容器和水溶液電解電容比較 75
第五章 結論 77
5.1 結論 77
5.2 未來發展 78
參考文獻 79
dc.language.isozh-TW
dc.subject全固態超級電容器zh_TW
dc.subject水熱法zh_TW
dc.subject氫氧化鎳zh_TW
dc.subject還原氧化石墨烯zh_TW
dc.subject複合電極zh_TW
dc.subject鋰zh_TW
dc.subject膠體聚合物電解質zh_TW
dc.subjectgel polymer electrolyteen
dc.subjectall-solid-state supercapacitoren
dc.subjecthydrothermalen
dc.subjectnickel hydroxideen
dc.subjectreduced graphene oxideen
dc.subjectcomposite electrodesen
dc.subjectlithiumen
dc.title氫氧化鎳/還原氧化石墨烯複合電極製備全固態超級電容器zh_TW
dc.titleTowards all-solid-state supercapacitor based on Ni(OH)2/rGO Composite Electrodesen
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.oralexamcommittee黃心豪,張豐丞,郭彥廷
dc.subject.keyword全固態超級電容器,水熱法,氫氧化鎳,還原氧化石墨烯,複合電極,鋰,膠體聚合物電解質,zh_TW
dc.subject.keywordall-solid-state supercapacitor,hydrothermal,nickel hydroxide,reduced graphene oxide,composite electrodes,lithium,gel polymer electrolyte,en
dc.relation.page87
dc.identifier.doi10.6342/NTU201802370
dc.rights.note有償授權
dc.date.accepted2018-08-13
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept生物產業機電工程學研究所zh_TW
顯示於系所單位:生物機電工程學系

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  未授權公開取用
11.65 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved