Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 臨床醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70513
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor胡芳蓉
dc.contributor.authorYi-Chen Sunen
dc.contributor.author孫逸珍zh_TW
dc.date.accessioned2021-06-17T04:29:55Z-
dc.date.available2023-08-30
dc.date.copyright2018-08-30
dc.date.issued2018
dc.date.submitted2018-08-12
dc.identifier.citation1. Theodore FH. Superior limbic keratoconjunctivitis. Eye Ear Nose Throat Mon. 1963;42:25-8.
2. Mendoza-Adam G, Rodríguez-Garcíia A. Superior limbic keratoconjunctivitis (SLK) and its association to systemic dieseases. Rev Mex Oft. 2013;87:93-99.
3. Cher I. Clinical features of superior limbic keratoconjunctivitis in Australia. A probable association with thyrotoxicosis. Arch Ophthalmol. 1969;82:580-586.
4. Theodore FH. Comments on findings of elevated protein-bound iodine in superior limbic keratoconjunctivitis: part I. Arch Ophthalmol. 1968;79:508.
5. Tenzel RR. Comments on superior limbic filamentous keratitis: part II. Arch Ophthalmol. 1968;79:508.
6. Li DQ, Meller D, Liu Y, Tseng SC. Overexpression of MMP-1 and MMP-3 by cultured conjunctivochalasis fibroblasts. Invest Ophthalmol Vis Sci. 2000;41(2):404-10.
7. Westermarck J, Kahari VM. Regulation of matrix metalloproteinase expression in tumor invasion. FASEB J. 1999;13(8):781-92.
8. Emonard H, Grimaud JA. Matrix metalloproteinases. A review. Cell Mol Biol. 1990;36(2):131-53.
9. Sivak JM, Fini ME. MMPs in the eye: emerging roles for matrix metalloproteinases in ocular physiology. Prog Retin Eye Res. 2002;21(1):1-14.
10. Brew K, Dinakarpandian D, Nagase H. Tissue inhibitors of metalloproteinases: evolution, structure and function. Biochim Biophys Acta. 2000;1477(1-2):267-83.
11. Murphy G, Willenbrock F. Tissue inhibitors of matrix metalloendopeptidases. Methods Enzymol. 1995;248:496-510.
12. Nelson JD. Superior limbic keratoconjunctivitis (SLK). Eye (Lond). 1989;3 ( Pt 2):180-9.
13. Confino J, Brown SI. Treatment of superior limbic keratoconjunctivitis with topical cromolyn sodium. Ann Ophthalmol. 1987;19(4):129-31.
14. Grutzmacher RD, Foster RS, Feiler LS. Lodoxamide tromethamine treatment for superior limbic keratoconjunctivitis. Am J Ophthalmol. 1995;120(3):400-2.
15. Udell IJ, Guidera AC, Madani-Becker J. Ketotifen fumarate treatment of superior limbic keratoconjunctivitis. Cornea. 2002;21(8):778-80.
16. Prussin C, Metcalfe DD. 4. IgE, mast cells, basophils, and eosinophils. J Allergy Clin Immunol. 2003;111(2 Suppl):S486-94.
17. Ono SJ, Abelson MB. Allergic conjunctivitis: update on pathophysiology and prospects for future treatment. J Allergy Clin Immunol. 2005;115(1):118-22.
18. Sun YC, Hsiao CH, Chen WL, Wang IJ, Hou YC, Hu FR. Conjunctival resection combined with tenon layer excision and the involvement of mast cells in superior limbic keratoconjunctivitis. Am J Ophthalmol. 2008;145(3):445-52.
19. Nakagami T, Murakami A, Okisaka S, Ebihara N. Mast cells in pterygium: number and phenotype. Jpn J Ophthalmol. 1999;43(2):75-9.
20. Leonardi A. Vernal keratoconjunctivitis: pathogenesis and treatment. Prog Retin Eye Res. 2002;21(3):319-39.
21. Foster CS, Rice BA, Dutt JE. Immunopathology of atopic keratoconjunctivitis. Ophthalmology. 1991;98(8):1190-6.
22. Sahin A, Bozkurt B, Irkec M. Topical cyclosporine a in the treatment of superior limbic keratoconjunctivitis: a long-term follow-up. Cornea. 2008;27(2):193-5.
23. Perry HD, Doshi-Carnevale S, Donnenfeld ED, Kornstein HS. Topical cyclosporine A 0.5% as a possible new treatment for superior limbic keratoconjunctivitis. Ophthalmology. 2003;110(8):1578-81.
24. Ito F, Toyota N, Sakai H, Takahashi H, Iizuka H. FK506 and cyclosporin A inhibit stem cell factor-dependent cell proliferation/survival, while inducing upregulation of c-kit expression in cells of the mast cell line MC/9. Arch Dermatol Res. 1999;291(5):275-83.
25. Toyota N, Hashimoto Y, Matsuo S, Kitamura Y, Iizuka H. Effects of FK506 and cyclosporin A on proliferation, histamine release and phenotype of murine mast cells. Arch Dermatol Res. 1996;288(8):474-80.
26. Nilsson G, Butterfield JH, Nilsson K, Siegbahn A. Stem cell factor is a chemotactic factor for human mast cells. J Immunol. 1994;153(8):3717-23.
27. Keshet E, Lyman SD, Williams DE, Anderson DM, Jenkins NA, Copeland NG, et al. Embryonic RNA expression patterns of the c-kit receptor and its cognate ligand suggest multiple functional roles in mouse development. EMBO J. 1991;10(9):2425-35.
28. Parrott JA, Kim G, Skinner MK. Expression and action of kit ligand/stem cell factor in normal human and bovine ovarian surface epithelium and ovarian cancer. Biol Reprod. 2000;62(6):1600-9.
29. Peters EM, Maurer M, Botchkarev VA, Jensen K, Welker P, Scott GA, et al. Kit is expressed by epithelial cells in vivo. J Invest Dermatol. 2003;121(5):976-84.
30. Ren X, Hu B, Colletti L. Stem cell factor and its receptor, c-kit, are important for hepatocyte proliferation in wild-type and tumor necrosis factor receptor-1 knockout mice after 70% hepatectomy. Surgery. 2008;143(6):790-802.
31. Miyamoto K, Kobayashi T, Hayashi Y, Zhang Y, Hara Y, Higashine M, et al. Involvement of stem cell factor and c-kit in corneal wound healing in mice. Mol Vis. 2012;18:1505-15.
32. Ebihara N, Matsuda A, Seto T, Ohtomo K, Funaki T, Takai T, et al. The epithelium takes center stage in allergic keratoconjunctivitis. Cornea. 2010;29 Suppl 1:S41-7.
33. Zheng X, Ma P, de Paiva CS, Cunningham MA, Hwang CS, Pflugfelder SC, et al. TSLP and downstream molecules in experimental mouse allergic conjunctivitis. Invest Ophthalmol Vis Sci. 2010;51(6):3076-82.
34. He R, Geha RS. Thymic stromal lymphopoietin. Ann N Y Acad Sci. 2010;1183:13-24.
35. Zhong J, Sharma J, Raju R, Palapetta SM, Prasad TS, Huang TC, et al. TSLP signaling pathway map: a platform for analysis of TSLP-mediated signaling. Database (Oxford). 2014;2014:bau007.
36. Roan F, Bell BD, Stoklasek TA, Kitajima M, Han H, Ziegler SF. The multiple facets of thymic stromal lymphopoietin (TSLP) during allergic inflammation and beyond. J Leukoc Biol. 2012;91(6):877-86.
37. Comeau MR, Ziegler SF. The influence of TSLP on the allergic response. Mucosal Immunol. 2010;3(2):138-47.
38. Katz Y, Nadiv O, Beer Y. Interleukin-17 enhances tumor necrosis factor alpha-induced synthesis of interleukins 1,6, and 8 in skin and synovial fibroblasts: a possible role as a 'fine-tuning cytokine' in inflammation processes. Arthritis Rheum. 2001;44(9):2176-84.
39. Yamamoto T, Kita M, Kimura I, Oseko F, Terauchi R, Takahashi K, et al. Mechanical stress induces expression of cytokines in human periodontal ligament cells. Oral Dis. 2006;12(2):171-5.
40. Pflugfelder SC, Solomon A, Dursun D, Li DQ. Dry eye and delayed tear clearance: 'a call to arms.'. Adv Exp Med Biol. 2002;506(Pt B):739-43.
41. Pflugfelder SC, de Paiva CS. The Pathophysiology of Dry Eye Disease: What We Know and Future Directions for Research. Ophthalmology. 2017;124(11S):S4-S13.
42. Nedoszytko B, Sokolowska-Wojdylo M, Ruckemann-Dziurdzinska K, Roszkiewicz J, Nowicki RJ. Chemokines and cytokines network in the pathogenesis of the inflammatory skin diseases: atopic dermatitis, psoriasis and skin mastocytosis. Postepy Dermatol Alergol. 2014;31(2):84-91.
43. Wei Y, Gadaria-Rathod N, Epstein S, Asbell P. Tear cytokine profile as a noninvasive biomarker of inflammation for ocular surface diseases: standard operating procedures. Invest Ophthalmol Vis Sci. 2013;54(13):8327-36.
44. Erdogan-Poyraz C, Mocan MC, Bozkurt B, Gariboglu S, Irkec M, Orhan M. Elevated tear interleukin-6 and interleukin-8 levels in patients with conjunctivochalasis. Cornea. 2009;28(2):189-93.
45. Lam H, Bleiden L, de Paiva CS, Farley W, Stern ME, Pflugfelder SC. Tear cytokine profiles in dysfunctional tear syndrome. Am J Ophthalmol. 2009;147(2):198-205 e1.
46. Li S, Sack R, Vijmasi T, Sathe S, Beaton A, Quigley D, et al. Antibody protein array analysis of the tear film cytokines. Optom Vis Sci. 2008;85(8):653-60.
47. Na KS, Mok JW, Kim JY, Rho CR, Joo CK. Correlations between tear cytokines, chemokines, and soluble receptors and clinical severity of dry eye disease. Invest Ophthalmol Vis Sci. 2012;53(9):5443-50.
48. Tan X, Sun S, Liu Y, Zhu T, Wang K, Ren T, et al. Analysis of Th17-associated cytokines in tears of patients with dry eye syndrome. Eye (Lond). 2014;28(5):608-13.
49. Norn MS. Micropunctate fluorescein vital staining of the cornea. Acta Ophthalmol (Copenh). 1970;48(1):108-18.
50. Caffery BE, Josephson JE. Corneal staining after sequential instillations of fluorescein over 30 days. Optom Vis Sci. 1991;68(6):467-9.
51. Tabery HM. Micropunctate fluorescein staining of the human corneal surface: microerosions or cystic spaces? A non-contact photomicrographic in vivo study. Acta Ophthalmol Scand. 1997;75(2):134-6.
52. Romanchuk KG. Fluorescein. Physiochemical factors affecting its fluorescence. Surv Ophthalmol. 1982;26(5):269-83.
53. Josephson JE, Caffery BE. Corneal staining characteristics after sequential instillations of fluorescein. Optom Vis Sci. 1992;69(7):570-3.
54. Morgan PB, Maldonado-Codina C. Corneal staining: do we really understand what we are seeing? Cont Lens Anterior Eye. 2009;32(2):48-54.
55. Mokhtarzadeh M, Casey R, Glasgow BJ. Fluorescein punctate staining traced to superficial corneal epithelial cells by impression cytology and confocal microscopy. Invest Ophthalmol Vis Sci. 2011;52(5):2127-35.
56. Wilson G, Ren H, Laurent J. Corneal epithelial fluorescein staining. J Am Optom Assoc. 1995;66(7):435-41.
57. Tchao R, McCanna DJ, Miller MJ. Comparison of contact lens multipurpose solutions by in vitro sodium fluorescein permeability assay. CLAO J. 2002;28(3):151-6.
58. Bandamwar KL, Garrett Q, Papas EB. Mechanisms of superficial micropunctate corneal staining with sodium fluorescein: the contribution of pooling. Cont Lens Anterior Eye. 2012;35(2):81-4.
59. Bakkar MM, Hardaker L, March P, Morgan PB, Maldonado-Codina C, Dobson CB. The cellular basis for biocide-induced fluorescein hyperfluorescence in mammalian cell culture. PLoS One. 2014;9(1):e84427.
60. Thinda S, Sikh PK, Hopp LM, Glasgow BJ. Polycarbonate membrane impression cytology: evidence for fluorescein staining in normal and dry eye corneas. Br J Ophthalmol. 2010;94(4):406-9.
61. Kuwayama K, Miyauchi S, Tateoka R, Abe H, Kamo N. Fluorescein uptake by a monocarboxylic acid transporter in human intestinal Caco-2 cells. Biochem Pharmacol. 2002;63(1):81-8.
62. Berginc K, Zakelj S, Levstik L, Ursic D, Kristl A. Fluorescein transport properties across artificial lipid membranes, Caco-2 cell monolayers and rat jejunum. Eur J Pharm Biopharm. 2007;66(2):281-5.
63. Chidlow G, Wood JP, Graham M, Osborne NN. Expression of monocarboxylate transporters in rat ocular tissues. Am J Physiol Cell Physiol. 2005;288(2):C416-28.
64. Vellonen KS, Hakli M, Merezhinskaya N, Tervo T, Honkakoski P, Urtti A. Monocarboxylate transport in human corneal epithelium and cell lines. Eur J Pharm Sci. 2010;39(4):241-7.
65. Wilson FM, 2nd, Ostler HB. Superior limbic keratoconjunctivitis. Int Ophthalmol Clin. 1986;26(4):99-112.
66. Wright P. Superior limbic keratoconjunctivitis. Trans Ophthalmol Soc U K. 1972;92:555-60.
67. Donshik PC, Collin HB, Foster CS, Cavanagh HD, Boruchoff SA. Conjunctival resection treatment and ultrastructural histopathology of superior limbic keratoconjunctivitis. Am J Ophthalmol. 1978;85(1):101-10.
68. Passons GA, Wood TO. Conjunctival resection for superior limbic keratoconjunctivitis. Ophthalmology. 1984;91(8):966-8.
69. Yokoi N, Komuro A, Maruyama K, Tsuzuki M, Miyajima S, Kinoshita S. New surgical treatment for superior limbic keratoconjunctivitis and its association with conjunctivochalasis. Am J Ophthalmol. 2003;135(3):303-8.
70. Tchougounova E, Lundequist A, Fajardo I, Winberg JO, Abrink M, Pejler G. A key role for mast cell chymase in the activation of pro-matrix metalloprotease-9 and pro-matrix metalloprotease-2. J Biol Chem. 2005;280(10):9291-6.
71. Tseng SC. Staging of conjunctival squamous metaplasia by impression cytology. Ophthalmology. 1985;92(6):728-33.
72. Nagase H. Activation mechanisms of matrix metalloproteinases. Biol Chem. 1997;378(3-4):151-60.
73. Visse R, Nagase H. Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry. Circ Res. 2003;92(8):827-39.
74. Sato H, Seiki M. Membrane-type matrix metalloproteinases (MT-MMPs) in tumor metastasis. J Biochem. 1996;119(2):209-15.
75. Cockett MI, Murphy G, Birch ML, O'Connell JP, Crabbe T, Millican AT, et al. Matrix metalloproteinases and metastatic cancer. Biochem Soc Symp. 1998;63:295-313.
76. Benaud C, Dickson RB, Thompson EW. Roles of the matrix metalloproteinases in mammary gland development and cancer. Breast Cancer Res Treat. 1998;50(2):97-116.
77. Newby AC, Southgate KM, Davies M. Extracellular matrix degrading metalloproteinases in the pathogenesis of arteriosclerosis. Basic Res Cardiol. 1994;89 Suppl 1:59-70.
78. Ikeda U, Shimada K. Matrix metalloproteinases and coronary artery diseases. Clin Cardiol. 2003;26(2):55-9.
79. Kieseier BC, Seifert T, Giovannoni G, Hartung HP. Matrix metalloproteinases in inflammatory demyelination: targets for treatment. Neurology. 1999;53(1):20-5.
80. Elliott S, Cawston T. The clinical potential of matrix metalloproteinase inhibitors in the rheumatic disorders. Drugs Aging. 2001;18(2):87-99.
81. Corbel M, Belleguic C, Boichot E, Lagente V. Involvement of gelatinases (MMP-2 and MMP-9) in the development of airway inflammation and pulmonary fibrosis. Cell Biol Toxicol. 2002;18(1):51-61.
82. Hatamochi A, Kuroda K, Shinkai H, Kohma H, Oishi Y, Inoue S. Regulation of matrix metalloproteinase (MMP) expression in cutis laxa fibroblasts: upregulation of MMP-1, MMP-3 and MMP-9 genes but not of the MMP-2 gene. Br J Dermatol. 1998;138(5):757-62.
83. Zhou L, Sawaguchi S, Twining SS, Sugar J, Feder RS, Yue BY. Expression of degradative enzymes and protease inhibitors in corneas with keratoconus. Invest Ophthalmol Vis Sci. 1998;39(7):1117-24.
84. Fini ME, Girard MT, Matsubara M. Collagenolytic/gelatinolytic enzymes in corneal wound healing. Acta Ophthalmol Suppl. 1992;(202):26-33.
85. Meller D, Li DQ, Tseng SC. Regulation of collagenase, stromelysin, and gelatinase B in human conjunctival and conjunctivochalasis fibroblasts by interleukin-1beta and tumor necrosis factor-alpha. Invest Ophthalmol Vis Sci. 2000;41(10):2922-9.
86. Schlotzer-Schrehardt U, Lommatzsch J, Kuchle M, Konstas AG, Naumann GO. Matrix metalloproteinases and their inhibitors in aqueous humor of patients with pseudoexfoliation syndrome/glaucoma and primary open-angle glaucoma. Invest Ophthalmol Vis Sci. 2003;44(3):1117-25.
87. Schlotzer-Schrehardt U, Stojkovic M, Hofmann-Rummelt C, Cursiefen C, Kruse FE, Holbach LM. The Pathogenesis of floppy eyelid syndrome: involvement of matrix metalloproteinases in elastic fiber degradation. Ophthalmology. 2005;112(4):694-704.
88. Vincenti MP, White LA, Schroen DJ, Benbow U, Brinckerhoff CE. Regulating expression of the gene for matrix metalloproteinase-1 (collagenase): mechanisms that control enzyme activity, transcription, and mRNA stability. Crit Rev Eukaryot Gene Expr. 1996;6(4):391-411.
89. Sternlicht MD, Bissell MJ, Werb Z. The matrix metalloproteinase stromelysin-1 acts as a natural mammary tumor promoter. Oncogene. 2000;19(8):1102-13.
90. Petersen MJ, Hansen C, Craig S. Ultraviolet A irradiation stimulates collagenase production in cultured human fibroblasts. J Invest Dermatol. 1992;99(4):440-4.
91. Brenneisen P, Oh J, Wlaschek M, Wenk J, Briviba K, Hommel C, et al. Ultraviolet B wavelength dependence for the regulation of two major matrix-metalloproteinases and their inhibitor TIMP-1 in human dermal fibroblasts. Photochem Photobiol. 1996;64(5):877-85.
92. Moran DJ, Hollows FC. Pterygium and ultraviolet radiation: a positive correlation. Br J Ophthalmol. 1984;68(5):343-6.
93. Li DQ, Lee SB, Gunja-Smith Z, Liu Y, Solomon A, Meller D, et al. Overexpression of collagenase (MMP-1) and stromelysin (MMP-3) by pterygium head fibroblasts. Arch Ophthalmol. 2001;119(1):71-80.
94. Rodewald HR, Dessing M, Dvorak AM, Galli SJ. Identification of a committed precursor for the mast cell lineage. Science. 1996;271(5250):818-22.
95. Murphy GF, Austen KF, Fonferko E, Sheffer AL. Morphologically distinctive forms of cutaneous mast cell degranulation induced by cold and mechanical stimuli: an ultrastructural study. J Allergy Clin Immunol. 1987;80(4):603-11.
96. Bussmann C, Hagemann T, Hanfland J, Haidl G, Bieber T, Novak N. Flushing and increase of serum tryptase after mechanical irritation of a solitary mastocytoma. Eur J Dermatol. 2007;17(4):332-4.
97. Allakhverdi Z, Comeau MR, Jessup HK, Yoon BR, Brewer A, Chartier S, et al. Thymic stromal lymphopoietin is released by human epithelial cells in response to microbes, trauma, or inflammation and potently activates mast cells. J Exp Med. 2007;204(2):253-8.
98. Soter NA. Mast cells in cutaneous inflammatory disorders. J Invest Dermatol. 1983;80 Suppl:22s-5s.
99. Liu C, Zhou J, Zhang LD, Wang YX, Kang ZM, Chen YZ, et al. Rapid inhibitory effect of corticosterone on histamine release from rat peritoneal mast cells. Horm Metab Res. 2007;39(4):273-7.
100. Miller TA, Schaefer FW, 3rd. Changes in mouse circulating leukocyte numbers in C57BL/6 mice immunosuppressed with dexamethasone for Cryptosporidium parvum oocyst production. Vet Parasitol. 2007;149(3-4):147-57.
101. Lindsey JW. Dexamethasone-induced Ras-related protein 1 is a potential regulatory protein in B lymphocytes. Int Immunol. 2007;19(5):583-90.
102. Theodore FH, Ferry AP. Superior limbic keratoconjunctivitis. Clinical and pathological correlations. Arch Ophthalmol. 1970;84(4):481-4.
103. Gruber BL, Marchese MJ, Kew RR. Transforming growth factor-beta 1 mediates mast cell chemotaxis. J Immunol. 1994;152(12):5860-7.
104. Olsson N, Piek E, ten Dijke P, Nilsson G. Human mast cell migration in response to members of the transforming growth factor-beta family. J Leukoc Biol. 2000;67(3):350-6.
105. Nilsson G, Metcalfe DD, Taub DD. Demonstration that platelet-activating factor is capable of activating mast cells and inducing a chemotactic response. Immunology. 2000;99(2):314-9.
106. Nilsson G, Johnell M, Hammer CH, Tiffany HL, Nilsson K, Metcalfe DD, et al. C3a and C5a are chemotaxins for human mast cells and act through distinct receptors via a pertussis toxin-sensitive signal transduction pathway. J Immunol. 1996;157(4):1693-8.
107. Hartmann K, Henz BM, Kruger-Krasagakes S, Kohl J, Burger R, Guhl S, et al. C3a and C5a stimulate chemotaxis of human mast cells. Blood. 1997;89(8):2863-70.
108. Nakagami T, Watanabe I, Murakami A, Okisaka S, Ebihara N. Expression of stem cell factor in pterygium. Jpn J Ophthalmol. 2000;44(3):193-7.
109. Gris O, Plazas A, Lerma E, Guell JL, Pelegrin L, Elies D. Conjunctival resection with and without amniotic membrane graft for the treatment of superior limbic keratoconjunctivitis. Cornea. 2010;29(9):1025-30.
110. Tuaillon N, Shen DF, Berger RB, Lu B, Rollins BJ, Chan CC. MCP-1 expression in endotoxin-induced uveitis. Invest Ophtahlmol Vis Sci 2202;43(5):1493-8.
111. Tominaga T, Miyazaki D, Sasaki S, et al. Bloicking mast cell-medicated type I hypersensitivity in experimental allergic conjunctivitis by monocyte chemoattractant protein-1/CCR2. Invest Ophthalmol Vis Sci 2009;50(11):5181-8.
112. Abu EI-Asrar AM, Struyf S, AI-Kharashi SA, Missotten L, Van Damme J, Geboes K. Chemokines in the limbal form of vernal keratoconjunctivitis. Br J Ophthalmol 2000;84(12):1360-6.
113. Tang I, Wong DM, Yee DJ, Harris MG. The pH of multi-purpose soft contact lens solutions. Optom Vis Sci. 1996;73(12):746-9.
114. Glasgow BJ. Fluorescence lifetime imaging microscopy reveals quenching of fluorescein within corneal epithelium. Exp Eye Res. 2016;147:12-9.
115. Doughty MJ. pH dependent spectral properties of sodium fluorescein ophthalmic solutions revisited. Ophthalmic Physiol Opt. 2010;30(2):167-74.
116. Udell IJ, Kenyon KR, Sawa M, Dohlman CH. Treatment of superior limbic keratoconjunctivitis by thermocauterization of the superior bulbar conjunctiva. Ophthalmology. 1986;93(2):162-6.
117. Sheu MC, Schoenfield L, Jeng BH. Development of superior limbic keratoconjunctivitis after upper eyelid blepharoplasty surgery: support for the mechanical theory of its pathogenesis. Cornea. 2007;26(4):490-2.
118. Kheirkhah A, Casas V, Esquenazi S, Blanco G, Li W, Raju VK, et al. New surgical approach for superior conjunctivochalasis. Cornea. 2007;26(6):685-91.
119. Ohashi Y, Watanabe H, Kinoshita S, Hosotani H, Umemoto M, Manabe R. Vitamin A eyedrops for superior limbic keratoconjunctivitis. Am J Ophthalmol. 1988;105(5):523-7.
120. Yang HY, Fujishima H, Toda I, Shimazaki J, Tsubota K. Lacrimal punctal occlusion for the treatment of superior limbic keratoconjunctivitis. Am J Ophthalmol. 1997;124(1):80-7.
121. Kabat AG. Lacrimal occlusion therapy for the treatment of superior limbic keratoconjunctivitis. Optom Vis Sci. 1998;75(10):714-8.
122. Tai MC, Cosar CB, Cohen EJ, Rapuano CJ, Laibson PR. The clinical efficacy of silicone punctal plug therapy. Cornea. 2002;21(2):135-9.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70513-
dc.description.abstract上輪部角結膜炎(superior limbic keratoconjunctivitis, SLK)是一種眼表疾病(ocular surface disorder),其臨床表徵主要為單側或雙側上部球結膜鬆弛以及上部瞼結膜和球結膜的發炎表現。此病症雖有明顯的炎症表現,但其致病機轉至今仍然未明。為進一步探討其致病機轉,我們收集包括SLK患者和正常受試者的上部球結膜和淚液樣本。
首先,我們將基質金屬蛋白酶(matrix metalloproteinase, MMP)-1和-3列為研究的主要焦點,因為它們在結膜鬆弛症(conjunctivochalasis)中有過度表達的情形,而結膜鬆弛症是另一種也合併有球結膜鬆弛病徵的眼表疾病。我們發現,在SLK患者的結膜上皮下基質中MMP-1和-3免疫染色的程度與對照組有顯著差異。同樣地,我們以SLK患者手術中所取下之結膜樣本進行培養,其纖維母細胞也被發現與正常受試者相比具有明顯的MMP-1和-3過度表現。其次,為了證實肥大細胞穩定劑在SLK治療中臨床應用效果的基礎理論,我們研究兩個會促使肥大細胞遷移和活化的因子在SLK的表現,分別是幹細胞因子(stem cell factor, SCF)和胸腺基質淋巴細胞生成素(thymic stromal lymphopoietin, TSLP)。我們發現SLK患者結膜上皮細胞中SCF和TSLP免疫染色的強度都高於對照組,並且,TSLP的免疫染色分級與結膜上皮下基質中的肥大細胞數量有顯著的正相關。此外,由於淚液中細胞因子(cytokine)的表現已被認為炎症性眼表疾病的其中一種客觀且可量化的量度因子,我們於是進行一系列研究來探討SLK患者是否有淚液之細胞因子不平衡的現象。結果發現,單核細胞趨化蛋白(monocyte chemoattractant protein, MCP)-1的表現在SLK患者治療前的淚液中有明顯的增加,且MCP-1的濃度與SLK臨床分級呈現正相關的情形,隨後在SLK的藥物或手術治療後則可見MCP-1表現出很明顯的降低情形。
關於SLK臨床轉譯方面的研究,我們還進行了相關的臨床診斷和治療方式的研究。 SLK診斷的幾個關鍵特徵包括上部角膜輪狀區域呈現點狀螢光染色。儘管使用螢光劑作為標記染料來評估眼表的緊密連接通透性已被廣泛接受,但角膜螢光染色的機轉仍未達成共識。經由動物實驗(紐西蘭白兔之乾眼症模型)和體外細胞實驗的證實,我們發現螢光劑得以進入角膜上皮細胞中,而且其中一個進入細胞的方法是透過單羧酸鹽轉運蛋白(monocarboxylate transporter, MCT)家族所主導的。未來對於MCT與角膜上皮細胞的相關研究可能會有助於許多眼表疾病的鑑別診斷及病理機轉的了解。關於治療方面,雖然眼部局部藥物使用通常是SLK的第一線治療選擇,但結膜切除手術治療迄今為止則是有效控制該疾病的最佳方式。為了探討及提高手術治療效果的可能性,我們分析並改良手術方式,主要對於藥物治療無反應之SLK患者施以上部球結膜切除術合併Tenon囊切除。在所有的手術眼中,病人眼部臨床症狀和徵象在手術後三個月都有顯著減少的現象。結膜切除術後40眼中僅有3眼有邊緣復發的情形(7.5%),復發之眼睛都於再次手術後完全緩解。研究結果顯示以上部球結膜切除術合併Tenon囊切除作為SLK患者的常規手術治療的確具有很大的前景。
此博士研究主要著重於SLK的分子和臨床兩方面的研究。我們發現結膜上皮基質和上皮細胞中分別有MMP-1,MMP-3,SCF和TSLP的過度表現。另外,在手術標本中注意到有顯著數目的肥大細胞。在淚液樣品收集中,也發現藥物及手術治療前後之MCP-1的表現有顯著差異。然而,在對藥物治療無反應的患者中,我們進行了結膜切除合併Tenon囊切除術,這對緩解患者的眼部症狀和表徵則非常有效。
在未來,儘管眼表面的機械性摩擦被認為是SLK的主要原因之一,但這一概念尚未能被清楚的直接證明。因此,我們希望能開發一種工具,使我們能夠明確地確定機械摩擦力對SLK發病機轉的作用。若能順利建立了所謂的“模擬摩擦力裝置”,直接測試機械摩擦力對於角膜及結膜細胞發生的影響。我們相信這樣的努力將會加深我們對SLK的了解,最終讓受SLK患者受益。
zh_TW
dc.description.abstractSuperior limbic keratoconjunctivitis (SLK) is an ocular surface disorder characterized by unilateral or bilateral redundancy of the superior bulbar conjunctiva with inflammation of the superior palpebral and bulbar conjunctiva.
While SLK has been known as an inflammatory disease, the pathogenesis at molecular level remains largely unexplored. To this end, we first established a tissue collection including superior bulbar conjunctiva and tear samples from SLK patients and normal subjects. Matrix metalloproteinase (MMP)-1 and -3 were the main focus of our study due to their overexpression in conjunctivochalasis, a pathological process associated with redundant inferior bulbar conjunctiva. We found that MMP-1 and -3 immunostaining were more prominent in the subepithelial stroma of the SLK patients than that in controls. Consistently, the primary cultivated conjunctival fibroblasts obtained from SLK patients were also found with apparent overexpression of MMP-1 and -3, comparing with those from normal subjects. Furthermore, in order to provide a molecular basis for the clinical application of mast cell stabilizer in the treatment of SLK, we also investigated the roles of stem cell factor (SCF) and thymic stromal lymphopoietin (TSLP), two factors involving mast cell migration and activation, in SLK. We found that the intensity of SCF and TSLP immunostaining were higher in the conjunctival epithelium of SLK patients than control subjects, and that the TSLP grading is significantly correlated with the number of mast cells. In addition, because tear cytokine profile has been represented as an objective and quantifiable measure of inflammatory ocular surface disorder, we also intended to investigate whether tear cytokine is indeed imbalance in SLK patients. We found that the level of monocyte chemoattractant protein (MCP)-1 is augmented in SLK patients prior to treatment and is subsequently decreased following the medical or surgical treatment of SLK.
To enhance the translational significance of our study on SLK, we also conducted the associated studies with respect to its clinical diagnosis as well as treatment. Positive fluorescein staining over superior limbal area is among several key characteristics for SLK diagnosis. Despite the use of fluorescein as a marker dye for the evaluation of tight junctional permeability is widely accepted, the interpretation of corneal fluorescein staining is still not in consensus. Based on our in vitro as well as in vivo experiments employing the rabbit model, we found that, rather than a passive permeabilization, fluorescein ingress in corneal epithelial cell is in fact mediated by the monocarboxylate transporter (MCT) family. Future investigation of MCT-mediated transport on human corneal epithelial cells may potentially benefit differential diagnosis and contribute better understandings of ocular surface disorders. Regarding the treatment, although topical medication is usually the first-line treatment choice for SLK, surgical intervention is thus far the most effective modality to manage this disease. To explore the possibility of improving the effectiveness of surgical treatment, we conduct a study analyzing the outcome of the modified surgical modality, of which the superior bulbar conjunctival resection combined with Tenon’s capsule excision, on SLK patients who were unresponsive to medical treatment. In all operated eyes, the clinical symptoms and signs subsided significantly three months after operation. Only three out of 40 eyes (7.5%) had recurrence from the margin of conjunctival resection, and this was relieved after reoperation. This suggests that the modified modality has great promise as the routine surgical treatment for SLK patients.
In conclusion, this Ph.D. study primarily focuses on SLK molecularly and clinically. We showed higher levels of MMP-1, MMP-3, SCF, and TSLP in conjunctival subepithelial stroma and epithelial cell, respectively. Also, a prominent number of mast cell was noted in the surgical specimens. In the tear sample collection, we found a significant differential expression of tear MCP-1 and IL-6 before and after medical/surgical treatment. In patients unresponsive to medical treatment, we performed conjunctival resection combined with Tenon’s capsule excision, which is very effective to relieve patients’ symptoms and signs.
In the future, although mechanical friction force over the ocular surface is considered the primary cause of SLK, this concept has yet clearly and directly demonstrated. In this regard, we set to develop a device that allows us to determine the role of mechanical friction force on the pathogenesis of SLK unambiguously. In cooperation with National Chin-Hwa University bioengineering department, we established so-called “the modulated friction force device” to directly test the effect of mechanical friction force on the genesis of SLK. We believe our endeavor will improve our understanding on SLK, ultimately benefiting patients afflicted by this disease.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T04:29:55Z (GMT). No. of bitstreams: 1
ntu-107-D97421011-1.pdf: 11264395 bytes, checksum: c2d59a40e6e48835d584dcd4f77361e3 (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents口試委員會審定書 i
誌謝 ii
中文摘要 iii
英文摘要 v
博士論文內容
第一章Introduction 1
第二章Materials and methods 9
第三章Results
第一節Overexpression of matrix metalloproteinase (MMP)-1 and MMP-3 in superior limbic keratoconjunctivitis (SLK) 21
第二節The involvement of mast cells in SLK & stem cell factor and thymic stromal lymphopoietin overexpression with correlation to mast cells in SLK 23
第三節Tear cytokine profiling in SLK patients underwent medical or in conjunction with surgical treatment 25
第四節Monocarboxylate transporters mediate fluorescein uptake in corneal epithelial cells 28
第五節Conjunctival resection combined with Tenon’s capsule excision in SLK 32
第四章Discussion 35
第五章Future plan 52
參考文獻 54
圖 67
表 85
附錄 91
dc.language.isoen
dc.subject基質金屬蛋白?zh_TW
dc.subject上輪部角結膜炎zh_TW
dc.subject肥胖細胞zh_TW
dc.subject淚液細胞因子zh_TW
dc.subject單羧鹽轉運蛋白zh_TW
dc.subjectmatrix metalloproteinaseen
dc.subjectmonocarboxylate transporteren
dc.subjecttear cytokineen
dc.subjectmast cellen
dc.subjectsuperior limbic keratoconjunctivitisen
dc.title上輪部角結膜炎之病理機轉及臨床治療之研究zh_TW
dc.titlePathogenesis and Treatment Modalities of Superior Limbic Keratoconjunctivitisen
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree博士
dc.contributor.coadvisor郭冠廷
dc.contributor.oralexamcommittee羅正汎,陳偉勵,楊偉勛,孫啟欽
dc.subject.keyword上輪部角結膜炎,肥胖細胞,基質金屬蛋白?,淚液細胞因子,單羧鹽轉運蛋白,zh_TW
dc.subject.keywordsuperior limbic keratoconjunctivitis,mast cell,matrix metalloproteinase,tear cytokine,monocarboxylate transporter,en
dc.relation.page91
dc.identifier.doi10.6342/NTU201802010
dc.rights.note有償授權
dc.date.accepted2018-08-13
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept臨床醫學研究所zh_TW
顯示於系所單位:臨床醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  未授權公開取用
11 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved