Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 土木工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70500
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor邱俊翔(Jiunn-Shyang Chiou)
dc.contributor.authorCheng-Chang Tsaien
dc.contributor.author蔡承昌zh_TW
dc.date.accessioned2021-06-17T04:29:35Z-
dc.date.available2021-08-14
dc.date.copyright2018-08-14
dc.date.issued2018
dc.date.submitted2018-08-13
dc.identifier.citation1. 陳正興、柯永彥、邱俊翔(2015),「沉箱基礎設計規範之評析與側向阻抗之簡化分析模式」,地工技術,第143期,頁7-20。
2. 國家地震工程研究中心(2011),「牛鬥橋現地實驗研討會會議手冊」,財團法人國家實驗研究院國家地震工程研究中心出版。
3. 國家地震工程研究中心(2012),「牛鬥橋耐震能力現地試驗」,實驗資料庫,計畫編號NCREE-F2012001。
4. 傅紹倫(2012),「牛鬥橋沉箱基礎側向荷載試驗之模擬分析」,國立台灣大學碩士論文。
5. AASHTO (2009). “Guide Specifications for LRFD Seismic Bridge Design.” American Association of State Highway and Transportation Officials, Washington, D.C.
6. API (American Petroleum Institute) (2011). “Geotechnical and foundation design considerations.” Washinton, D.C.
7. Ashour, M. and Helal, A. (2014). “Contribution of vertical skin friction to the lateral resistance of large-diameter shafts.” Journal of Bridge Engineering, 19(2), 289-302.
8. Brown, D. A. and Shie, C. F. (1990). “Three dimensional finite element model of laterally loaded piles.” Computers and Geotechnics, 10, 59-79.
9. Chang, K. C., Sung, Y. C., Liu, K. Y., Wang, P. H., Lee, Z. K., Lee, L. S. and Witarto (2014). “Seismic performance of an existing bridge with scoured caisson foundation.” Earthquake engineering and Engineering vibration, Vol. 13, Suppl. 1, 151-165.
10. Chiou, J. S. and Chen, C. H. (2005). “Subgrade modulus used for Winkler analysis of a laterally loaded pile.” Journal of the Chinese Institute of Civil and Hydraulic Engineering, 17(2), 311-319 (in Chinese).
11. Chiou, J. S. and Tsai, C. C. (2018). “Behavior of in situ exposed bridge caisson foundations under lateral loading.” (Submitted manuscript)
12. Chiou, J. S., Ko, Y. Y., Hsu, S. Y. and Tsai, Y. C. (2012). “Testing and analysis of a laterally loaded bridge caisson foundation in gravel.” Soils and Foundations, Vol. 52, No. 3, 562-573.
13. Chiou, J. S., Yang, H. H. and Chen, C. H. (2009). “Use of plastic hinge model in nonlinear pushover analysis of a pile.” Journal of Geotechnical and Geoenvironmental Engineering (ASCE), 135(9), 1341-1346.
14. Choo, Y. W., and Kim, D. (2016). “Experimental development of the p-y relationship for large-diameter offshore monopoles in sands: centrifuge tests.” Journal of Geotechnical and Geoenvironmental Engineering, 142(1), 04015058-1-12.
15. Computer & Structures, Inc, SAP2000 (2017). Integrated software for structure analysis and design [computer program]. Computer & Structure, Inc., Berkeley, Calif.
16. Cox, J. A., O’Loughlin, C., Cassidy, M., Bhattacharya, S., Gaudin, C., and Bienen, B. (2014). “Centrifuge study on the cyclic performance of caissons in sand.” International Journal of Physical Modelling in Geotechnics, 14(4), 99-115.
17. Dassault Systèmes Simulia Corp. (2009). “Abaqus Analysis User’s Manual Version 6.9.”
18. Ding, H. Y., Liu, Y. G., Zhang, P. Y., and Le, C. H. (2015). “Model tests on the bearing capacity of wide-shallow composite bucket foundations for wind turbines in clay.” Ocean Engineering, 103, 114-122.
19. Gerolymos, N. and Gazetas, G. (2006). “Development of Winkler model for static and dynamic response of caisson foundations with soil and interface nonlinearities.” Soil Dynamics and Earthquake Engineering, 26, 363-376.
20. Gerolymos, N. and Gazetas, G. (2006). “Static and dynamic response of massive caisson foundations with soil and interface nonlinearities-validation and results.” Soil Dynamics and Earthquake Engineering, 26, 377-394.
21. Gerolymos, N. and Gazetas, G. (2006). “Winkler model for lateral response of rigid caisson foundations in linear soil.” Soil Dynamics and Earthquake Engineering, 26, 347-361.
22. Japan Road Association (JRA) (1990). Specifications for Highway Bridges. (in Japanese)
23. Japan Road Association (JRA) (2012). Specifications for Highway Bridges. (in Japanese)
24. Karapiperis, K. and Gerolymos, N. (2014). “Combined loading of caisson foundations in cohesive soil: finite element versus Winkler modeling.” Computers and Geotechnics, 56, 100-120.
25. Kelly, R. B., Houlsby, G. T. and Byrne, B. W. (2006). “A comparison of field and laboratory tests of caisson foundations in sand and clay.” Geotechnique, 56(9), 617-626.
26. Kumar, N. D., and Rao, S. N. (2010). “Earth pressures on caissons in marine clay under lateral loads-a laboratory study.” Applied Ocean Research, 32, 58-70.
27. Mayne, P. W., Kulhawy, F. H. and Trautmann, C.H. (1995). “Laboratory modeling of laterally-loaded drilled shafts in clay.” Journal of Geotechnical Engineering, 121(12), 827-835.
28. Nicolai, G. and Ibsen, L. B. (2014). “Small-scale testing of cyclic laterally loaded monopoles in dense saturated sand.” Journal of Ocean and Wind Energy, Vol. 1, No. 4, 240-245.
29. OpenSees (2005). Open System for Earthquake Engineering Simulation, Pacific Earthquake Engineering Research Center, University of California, Berkeley, http://www.opensees.berkeley.edu.
30. Reese, L. C., Cox, W. R., and Koop, F. D. (1974). “Analysis of laterally loaded piles in sand.” Proc., 6th Offshore Technol. Conf., Offshore Technology Conference, Richardson, TX, 473-483.
31. Scott, A. A. and Juirnarongrit, T. (2003). “Evaluation of pile diameter effect on initial modulus of subgrade reaction.” Journal of Geotechnical and Geoenvironmental Engineering, 129(3), 234-242.
32. Takeda, T., Sozen, M.A., and Nielsen, N.N. (1970). “Reinforced concrete response to simulated earthquakes.” Journal of the Structural Division, 96(12), 2557-2573.
33. Winkler, E. (1867). Die Lehre Von Elasticitaet Und Festigkeit, 1st Ed., H. Dominicus, Prague, Czech Republic.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70500-
dc.description.abstract本研究針對三個於礫石地盤之橋梁沉箱基礎現地側向載重試驗進行模擬分析。三個試驗不同之處在於側向載重施力點位置與基礎裸露深度。分析模型以梁元素模擬橋柱與基礎結構,採用分布塑鉸模型模擬其撓曲非線性反應,並使用六參數土壤彈簧模式模擬沉箱周邊土壤之受力變形行為。分析結果顯示分析模型可以有效模擬橋柱與基礎受側向載重作用下之反應,且沉箱基礎之勁度會顯著地受到載重施加高度與基礎裸露深度的影響。
根據參數研究之分析結果,雖然沉箱基礎埋置於礫石層中,但仍須考量其基礎柔度之影響:相較於固定基盤的情況,在相同側力作用下,基礎柔度會使上部結構因基礎變位產生額外變位,當基礎裸露的深度愈大,基礎柔度的影響會愈顯著。當基礎裸露深度過大時,除其柔度效應顯著外,基礎甚至無法提供足夠之勁度與強度來承載上部結構。此外,對於受側向荷載之沉箱,其前後方土壤正向反力係最主要的土壤側向阻抗來源。
另一方面,在工程結構分析上常以水平位移彈簧、垂直位移彈簧與旋轉之非耦合等效彈簧取代完整之基礎模型,有時甚至以固定基底忽略基礎柔度之影響以簡化基礎行為,本研究亦透過參數分析探討這些簡化方法的合適性。
zh_TW
dc.description.abstractIn this study, three in situ laterally loaded tests of caisson foundations in gravels were analyzed. The differences of these tests were the application position of lateral loads and the exposed length of the foundations. The analysis models used beam elements with plastic hinges to simulate the column and a six-component Winkler beam model to simulate the foundation. Analysis results showed that the proposed analysis models could reasonably predict the behaviors of the caisson and the column. The lateral stiffness of foundation was significantly influenced by the application height of lateral loads and the exposed length of the foundations.
According to the results of parameter analyses, although the foundations were situated in a gravel stratum, the caisson with a large exposed length underwent significant foundation flexibility and nonlinearity. A large exposed length may cause a reduction in the lateral stiffness and strength of the foundation. The horizontal soil reactions in front of the foundation provided major resistances to lateral loading.
On the other hand, in engineering practice, in order to simplify the complexity of the foundation modeling in structural analysis, a set of uncoupled horizontal spring, vertical spring and rotational spring are often used to replace the complete foundation model, or even the fixed base condition is assumed. In this study, the appropriateness of those simplified methods were investigated.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T04:29:35Z (GMT). No. of bitstreams: 1
ntu-107-R05521134-1.pdf: 9903708 bytes, checksum: a3f86081bfe91eb2d2912b76a7bc3eaa (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents摘要 I
Abstract II
目錄 III
圖目錄 V
表目錄 XII
第一章 緒論 1-1
1.1 研究背景及目的 1-1
1.2 研究方法 1-1
1.3 研究內容 1-2
第二章 文獻回顧 2-1
2.1 沉箱基礎相關之側推試驗 2-1
2.2 沉箱基礎相關分析方法 2-5
2.3 小結 2-10
第三章 牛鬥橋側推試驗簡介 3-1
3.1 橋梁介紹與側推試驗規劃 3-1
3.2 現地大地試驗成果 3-2
3.3 橋柱及基礎側推試驗結果 3-3
3.4 舊牛鬥橋側推試驗相關研究 3-4
第四章 牛鬥橋橋柱側推試驗分析 4-1
4.1 分析模型之建立 4-1
4.2 模擬結果 4-5
4.3 橋柱與基礎荷載-位移曲線及剪力、彎矩、變位圖比較 4-7
4.4 土壤反力貢獻機制 4-8
4.5 反覆載重行為模擬 4-9
第五章 參數研究 5-1
5.1 參數分析模型介紹及側推分析曲線 5-1
5.2 基礎柔度效應 5-2
5.3 基礎非線性反應之貢獻 5-4
5.4 基礎柔度對上部結構斷面彎矩之影響 5-6
5.5 簡化彈簧基礎模型之檢核 5-7
5.6 基礎矩陣模型之可行性 5-8
第六章 結論與建議 6-1
6.1 結論 6-1
6.2 建議 6-2
參考文獻 R-1
dc.language.isozh-TW
dc.title橋梁沉箱基礎側推試驗之模擬分析zh_TW
dc.titleAnalysis of Lateral Load Tests of Bridge Caisson
Foundations
en
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.oralexamcommittee翁孟嘉(Meng-Chia Weng),柯永彥(Yung-Yen Ko)
dc.subject.keyword沉箱基礎,溫克模型,現地試驗,側向載重,礫石層,zh_TW
dc.subject.keywordCaisson foundations,Winkler model,in situ tests,lateral loads,gravel,en
dc.relation.page129
dc.identifier.doi10.6342/NTU201803054
dc.rights.note有償授權
dc.date.accepted2018-08-13
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept土木工程學研究所zh_TW
顯示於系所單位:土木工程學系

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  目前未授權公開取用
9.67 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved