Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 牙醫專業學院
  4. 臨床牙醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70496
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor章浩宏(Hao-Hueng Chang)
dc.contributor.authorWei Linen
dc.contributor.author林葳zh_TW
dc.date.accessioned2021-06-17T04:29:30Z-
dc.date.available2021-08-30
dc.date.copyright2018-08-30
dc.date.issued2018
dc.date.submitted2018-08-12
dc.identifier.citation1. Damien, C.J. and J.R. Parsons, Bone graft and bone graft substitutes: a review of current technology and applications. J Appl Biomater, 1991. 2(3): p. 187-208.
2. Pagni, G., et al., Bone repair cells for craniofacial regeneration. Adv Drug Deliv Rev, 2012. 64(12): p. 1310-9.
3. Eke, P.I., et al., Update on Prevalence of Periodontitis in Adults in the United States: NHANES 2009 to 2012. J Periodontol, 2015. 86(5): p. 611-22.
4. Needleman, I.G., et al., Guided tissue regeneration for periodontal infra-bony defects. Cochrane Database Syst Rev, 2006(2): p. CD001724.
5. Hermann, J. and D. Buser, Guided bone regeneration for dental implants. Current opinion in periodontology, 1996. 3: p. 168-177.
6. Aghaloo, T.L. and P.K. Moy, Which hard tissue augmentation techniques are the most successful in furnishing bony support for implant placement? International Journal of Oral & Maxillofacial Implants, 2007. 22(7).
7. Goldberg, V.M., Natural history of autografts and allografts, in Bone implant grafting. 1992, Springer. p. 9-12.
8. Garcia-Gareta, E., M.J. Coathup, and G.W. Blunn, Osteoinduction of bone grafting materials for bone repair and regeneration. Bone, 2015. 81: p. 112-121.
9. Tatum Jr, O., Osseous grafts in intra-oral sites. The Journal of oral implantology, 1996. 22(1): p. 51-52.
10. Liu, J. and D.G. Kerns, Suppl 1: Mechanisms of Guided Bone Regeneration: A Review. The open dentistry journal, 2014. 8: p. 56.
11. Schoepf, C., The Tutoplast® Process: a review of efficacy. Zimmer Dental, 2008. 17: p. 40-50.
12. Mellonig, J.T., G.M. Bowers, and R.C. Bailey, Comparison of bone graft materials: Part I. New bone formation with autografts and allografts determined by strontium-85. Journal of periodontology, 1981. 52(6): p. 291-296.
13. Mellonig, J.T., G.M. Bowers, and W.R. Cotton, Comparison of bone graft materials: Part II. New bone formation with autografts and allografts: a histological evaluation. Journal of periodontology, 1981. 52(6): p. 297-302.
14. Rummelhart, J., et al., A Comparison of Freeze–Dried Bone Allograft and Demineralized Freeze–Dried Bone Allograft in Human Periodontal Osseous Defects. Journal of periodontology, 1989. 60(12): p. 655-663.
15. Yamada, M. and H. Egusa, Current bone substitutes for implant dentistry. J Prosthodont Res, 2017.
16. Steenberghe, D., et al., The clinical use of deproteinized bovine bone mineral on bone regeneration in conjunction with immediate implant installation. Clinical oral implants research, 2000. 11(3): p. 210-216.
17. Wang, H.-L. and L. Boyapati, “PASS” principles for predictable bone regeneration. Implant dentistry, 2006. 15(1): p. 8-17.
18. Li, J. and H.-L. Wang, Common implant-related advanced bone grafting complications: classification, etiology, and management. Implant Dentistry, 2008. 17(4): p. 389-401.
19. Pikos, M.A., Mandibular block autografts for alveolar ridge augmentation. Atlas Oral Maxillofac Surg Clin North Am, 2005. 13(2): p. 91-107.
20. Trombetta, R., et al., 3D Printing of Calcium Phosphate Ceramics for Bone Tissue Engineering and Drug Delivery. Ann Biomed Eng, 2017. 45(1): p. 23-44.
21. Asa'ad, F., et al., 3D-Printed Scaffolds and Biomaterials: Review of Alveolar Bone Augmentation and Periodontal Regeneration Applications. Int J Dent, 2016. 2016: p. 1239842.
22. Lin, Z., H.F. Rios, and D.L. Cochran, Emerging regenerative approaches for periodontal reconstruction: a systematic review from the AAP Regeneration Workshop. J Periodontol, 2015. 86(2 Suppl): p. S134-52.
23. Castillo-Dalí, G., et al., Importance of poly (lactic-co-glycolic acid) in scaffolds for guided bone regeneration: a focused review. Journal of Oral Implantology, 2015. 41(4): p. e152-e157.
24. Wegst, U. and M. Ashby, The mechanical efficiency of natural materials. Philosophical Magazine, 2004. 84(21): p. 2167-2186.
25. Hutmacher, D.W., et al., State of the art and future directions of scaffold-based bone engineering from a biomaterials perspective. J Tissue Eng Regen Med, 2007. 1(4): p. 245-60.
26. Goddard, J.M. and J. Hotchkiss, Polymer surface modification for the attachment of bioactive compounds. Progress in polymer science, 2007. 32(7): p. 698-725.
27. Chen, Q., C. Zhu, and G.A. Thouas, Progress and challenges in biomaterials used for bone tissue engineering: bioactive glasses and elastomeric composites. Progress in Biomaterials, 2012. 1(1): p. 2.
28. Hench, L.L., et al., Bonding mechanisms at the interface of ceramic prosthetic materials. Journal of Biomedical Materials Research Part A, 1971. 5(6): p. 117-141.
29. Schwarz, F., et al., Effects of surface hydrophilicity and microtopography on early stages of soft and hard tissue integration at non-submerged titanium implants: an immunohistochemical study in dogs. Journal of periodontology, 2007. 78(11): p. 2171-2184.
30. Park, C.H., et al., Biomimetic hybrid scaffolds for engineering human tooth-ligament interfaces. Biomaterials, 2010. 31(23): p. 5945-5952.
31. Park, J., et al., Nanosize and vitality: TiO2 nanotube diameter directs cell fate. Nano letters, 2007. 7(6): p. 1686-1691.
32. Webster, T.J. and T.A. Smith, Increased osteoblast function on PLGA composites containing nanophase titania. Journal of Biomedical Materials Research Part A, 2005. 74(4): p. 677-686.
33. Hollister, S.J., R. Maddox, and J.M. Taboas, Optimal design and fabrication of scaffolds to mimic tissue properties and satisfy biological constraints. Biomaterials, 2002. 23(20): p. 4095-4103.
34. Woodard, J.R., et al., The mechanical properties and osteoconductivity of hydroxyapatite bone scaffolds with multi-scale porosity. Biomaterials, 2007. 28(1): p. 45-54.
35. Karageorgiou, V. and D. Kaplan, Porosity of 3D biomaterial scaffolds and osteogenesis. Biomaterials, 2005. 26(27): p. 5474-5491.
36. Will, J., et al., Porous ceramic bone scaffolds for vascularized bone tissue regeneration. Journal of Materials Science: Materials in Medicine, 2008. 19(8): p. 2781-2790.
37. Bose, S., M. Roy, and A. Bandyopadhyay, Recent advances in bone tissue engineering scaffolds. Trends in biotechnology, 2012. 30(10): p. 546-554.
38. Butscher, A., et al., Structural and material approaches to bone tissue engineering in powder-based three-dimensional printing. Acta Biomater, 2011. 7(3): p. 907-20.
39. Mitsak, A.G., et al., Effect of polycaprolactone scaffold permeability on bone regeneration in vivo. Tissue Engineering Part A, 2011. 17(13-14): p. 1831-1839.
40. Yeo, A., et al., The degradation profile of novel, bioresorbable PCL–TCP scaffolds: an in vitro and in vivo study. Journal of biomedical materials research Part A, 2008. 84(1): p. 208-218.
41. Nair, L.S. and C.T. Laurencin, Biodegradable polymers as biomaterials. Progress in polymer science, 2007. 32(8-9): p. 762-798.
42. Raucci, M.G., V. Guarino, and L. Ambrosio, Biomimetic strategies for bone repair and regeneration. Journal of functional biomaterials, 2012. 3(3): p. 688-705.
43. Sun, J. and H. Tan, Alginate-based biomaterials for regenerative medicine applications. Materials, 2013. 6(4): p. 1285-1309.
44. Kane, R.J., et al., Hydroxyapatite reinforced collagen scaffolds with improved architecture and mechanical properties. Acta biomaterialia, 2015. 17: p. 16-25.
45. Dhandayuthapani, B., et al., Polymeric scaffolds in tissue engineering application: a review. International journal of polymer science, 2011. 2011.
46. Lenz, R.W., Biodegradable polymers, in Biopolymers I. 1993, Springer. p. 1-40.
47. Davison, N.L., F. Barrère-de Groot, and D.W. Grijpma, Degradation of biomaterials, in Tissue Engineering (Second Edition). 2015, Elsevier. p. 177-215.
48. Li, S., Hydrolytic degradation characteristics of aliphatic polyesters derived from lactic and glycolic acids. Journal of biomedical materials research, 1999. 48(3): p. 342-353.
49. Nicodemus, G.D. and S.J. Bryant, Cell encapsulation in biodegradable hydrogels for tissue engineering applications. Tissue Engineering Part B: Reviews, 2008. 14(2): p. 149-165.
50. Tamjid, E., et al., Tissue growth into three‐dimensional composite scaffolds with controlled micro‐features and nanotopographical surfaces. Journal of Biomedical Materials Research Part A, 2013. 101(10): p. 2796-2807.
51. Sabir, M.I., X. Xu, and L. Li, A review on biodegradable polymeric materials for bone tissue engineering applications. Journal of materials science, 2009. 44(21): p. 5713-5724.
52. Gong, T., et al., Nanomaterials and bone regeneration. Bone research, 2015. 3: p. 15029.
53. Goh, B.T., et al., Novel 3D polycaprolactone scaffold for ridge preservation–a pilot randomised controlled clinical trial. Clinical oral implants research, 2015. 26(3): p. 271-277.
54. Gough, J., et al., Craniofacial osteoblast responses to polycaprolactone produced using a novel boron polymerisation technique and potassium fluoride post-treatment. Biomaterials, 2003. 24(27): p. 4905-4912.
55. Kim, H.W., et al., Degradation and drug release of phosphate glass/polycaprolactone biological composites for hard‐tissue regeneration. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2005. 75(1): p. 34-41.
56. Zhang, Y. and C. Wu, Bioactive inorganic and organic composite materials for bone regeneration and gene delivery. Advanced Bioactive Inorganic Materials for Bone Regeneration and Drug Delivery, 2013: p. 178-205.
57. Bouler, J.M., et al., Biphasic calcium phosphate ceramics for bone reconstruction: A review of biological response. Acta Biomater, 2017. 53: p. 1-12.
58. Szpalski, C., et al., Cranial bone defects: current and future strategies. Neurosurgical focus, 2010. 29(6): p. E8.
59. Zhao, J., et al., Amorphous calcium phosphate and its application in dentistry. Chemistry Central Journal, 2011. 5(1): p. 40.
60. Johnson, K.D., et al., Porous ceramics as bone graft substitutes in long bone defects: a biomechanical, histological, and radiographic analysis. Journal of orthopaedic research, 1996. 14(3): p. 351-369.
61. Oryan, A., et al., Bone regenerative medicine: classic options, novel strategies, and future directions. Journal of orthopaedic surgery and research, 2014. 9(1): p. 18.
62. Pilipchuk, S.P., et al., Tissue engineering for bone regeneration and osseointegration in the oral cavity. Dental Materials, 2015. 31(4): p. 317-338.
63. Moore, W.R., S.E. Graves, and G.I. Bain, Synthetic bone graft substitutes. ANZ journal of surgery, 2001. 71(6): p. 354-361.
64. Hench, L.L., The story of Bioglass®. Journal of Materials Science: Materials in Medicine, 2006. 17(11): p. 967-978.
65. Bell, W.H., RESORPTION CHARACTERISTICS OF BONE AND BONE SUBSTITUTES. Oral Surg Oral Med Oral Pathol, 1964. 17: p. 650-7.
66. Lee, K.-W., et al., Poly (propylene fumarate) bone tissue engineering scaffold fabrication using stereolithography: effects of resin formulations and laser parameters. Biomacromolecules, 2007. 8(4): p. 1077-1084.
67. Wang, S., et al., Photo-crosslinked poly (ɛ-caprolactone fumarate) networks: roles of crystallinity and crosslinking density in determining mechanical properties. Polymer, 2008. 49(26): p. 5692-5699.
68. Wang, S., et al., Photo-cross-linked hybrid polymer networks consisting of poly (propylene fumarate) and poly (caprolactone fumarate): controlled physical properties and regulated bone and nerve cell responses. Biomacromolecules, 2008. 9(4): p. 1229-1241.
69. Lee, K.-W., et al., Physical properties and cellular responses to crosslinkable poly (propylene fumarate)/hydroxyapatite nanocomposites. Biomaterials, 2008. 29(19): p. 2839-2848.
70. Wang, S., et al., The roles of matrix polymer crystallinity and hydroxyapatite nanoparticles in modulating material properties of photo-crosslinked composites and bone marrow stromal cell responses. Biomaterials, 2009. 30(20): p. 3359-3370.
71. Lee, J.W., et al., Development of nano-and microscale composite 3D scaffolds using PPF/DEF-HA and micro-stereolithography. Microelectronic Engineering, 2009. 86(4-6): p. 1465-1467.
72. Shuai, C., et al., Optimization of TCP/HAP ratio for better properties of calcium phosphate scaffold via selective laser sintering. Materials Characterization, 2013. 77: p. 23-31.
73. Williams, J.M., et al., Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering. Biomaterials, 2005. 26(23): p. 4817-4827.
74. Duan, B., et al., Three-dimensional nanocomposite scaffolds fabricated via selective laser sintering for bone tissue engineering. Acta biomaterialia, 2010. 6(12): p. 4495-4505.
75. Liao, H.T., et al., Osteogenesis of adipose‐derived stem cells on polycaprolactone–β‐tricalcium phosphate scaffold fabricated via selective laser sintering and surface coating with collagen type I. Journal of tissue engineering and regenerative medicine, 2016. 10(10).
76. Shim, J.-H., et al., Three-dimensional printing of rhBMP-2-loaded scaffolds with long-term delivery for enhanced bone regeneration in a rabbit diaphyseal defect. Tissue Engineering Part A, 2014. 20(13-14): p. 1980-1992.
77. Gbureck, U., et al., Resorbable Dicalcium Phosphate Bone Substitutes Prepared by 3D Powder Printing. Advanced Functional Materials, 2007. 17(18): p. 3940-3945.
78. Gbureck, U., et al., Preparation of tricalcium phosphate/calcium pyrophosphate structures via rapid prototyping. J Mater Sci Mater Med, 2008. 19(4): p. 1559-63.
79. Roohani-Esfahani, S.I., P. Newman, and H. Zreiqat, Design and Fabrication of 3D printed Scaffolds with a Mechanical Strength Comparable to Cortical Bone to Repair Large Bone Defects. Sci Rep, 2016. 6: p. 19468.
80. Vella, J.B., et al., Three dimensional printed calcium phosphate and poly(caprolactone) composites with improved mechanical properties and preserved microstructure. J Biomed Mater Res A, 2018. 106(3): p. 663-672.
81. Lam, C.X., et al., Dynamics of in vitro polymer degradation of polycaprolactone-based scaffolds: accelerated versus simulated physiological conditions. Biomed Mater, 2008. 3(3): p. 034108.
82. Lin, Y.H., et al., Bioactive calcium silicate/poly-epsilon-caprolactone composite scaffolds 3D printed under mild conditions for bone tissue engineering. J Mater Sci Mater Med, 2017. 29(1): p. 11.
83. Russias, J., et al., Fabrication and in vitro characterization of three-dimensional organic/inorganic scaffolds by robocasting. J Biomed Mater Res A, 2007. 83(2): p. 434-45.
84. Eqtesadi, S., et al., Robocasting of 45S5 bioactive glass scaffolds for bone tissue engineering. Journal of the European Ceramic Society, 2014. 34(1): p. 107-118.
85. Bose, S., S. Vahabzadeh, and A. Bandyopadhyay, Bone tissue engineering using 3D printing. Materials Today, 2013. 16(12): p. 496-504.
86. Lohfeld, S., et al., Fabrication, mechanical and in vivo performance of polycaprolactone/tricalcium phosphate composite scaffolds. Acta Biomater, 2012. 8(9): p. 3446-56.
87. Shirazi, S.F., et al., A review on powder-based additive manufacturing for tissue engineering: selective laser sintering and inkjet 3D printing. Sci Technol Adv Mater, 2015. 16(3): p. 033502.
88. Shahzad, K., et al., Additive manufacturing of alumina parts by indirect selective laser sintering and post processing. Journal of Materials Processing Technology, 2013. 213(9): p. 1484-1494.
89. Sun, H., et al., The in vivo degradation, absorption and excretion of PCL-based implant. Biomaterials, 2006. 27(9): p. 1735-40.
90. Korpela, J., et al., Biodegradable and bioactive porous scaffold structures prepared using fused deposition modeling. J Biomed Mater Res B Appl Biomater, 2013. 101(4): p. 610-9.
91. Shor, L., et al., Fabrication of three-dimensional polycaprolactone/hydroxyapatite tissue scaffolds and osteoblast-scaffold interactions in vitro. Biomaterials, 2007. 28(35): p. 5291-7.
92. Chiu, Y.C., et al., The Characteristics of Mineral Trioxide Aggregate/Polycaprolactone 3-dimensional Scaffold with Osteogenesis Properties for Tissue Regeneration. J Endod, 2017. 43(6): p. 923-929.
93. Erdemli, O., et al., In vitro and in vivo evaluation of the effects of demineralized bone matrix or calcium sulfate addition to polycaprolactone-bioglass composites. J Mater Sci Mater Med, 2010. 21(1): p. 295-308.
94. Rezwan, K., et al., Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials, 2006. 27(18): p. 3413-31.
95. Lei, Y., et al., In vitro degradation of novel bioactive polycaprolactone—20% tricalcium phosphate composite scaffolds for bone engineering. Materials Science and Engineering: C, 2007. 27(2): p. 293-298.
96. Lam, C.X., et al., Evaluation of polycaprolactone scaffold degradation for 6 months in vitro and in vivo. J Biomed Mater Res A, 2009. 90(3): p. 906-19.
97. Goh, B.T., et al., Novel 3D polycaprolactone scaffold for ridge preservation--a pilot randomised controlled clinical trial. Clin Oral Implants Res, 2015. 26(3): p. 271-7.
98. Woodruff, M.A. and D.W. Hutmacher, The return of a forgotten polymer—Polycaprolactone in the 21st century. Progress in Polymer Science, 2010. 35(10): p. 1217-1256.
99. Thomas, M.V. and D.A. Puleo, Calcium sulfate: Properties and clinical applications. J Biomed Mater Res B Appl Biomater, 2009. 88(2): p. 597-610.
100. Alkhalil, M., A. Smajilagic, and A. Redzic, Human dental pulp mesenchymal stem cells isolation and osteoblast differentiation. Med Glas (Zenica), 2015. 12(1): p. 27-32.
101. Ledesma-Martinez, E., V.M. Mendoza-Nunez, and E. Santiago-Osorio, Mesenchymal Stem Cells Derived from Dental Pulp: A Review. Stem Cells Int, 2016. 2016: p. 4709572.
102. Su, C.C., et al., Regulation of physicochemical properties, osteogenesis activity, and fibroblast growth factor-2 release ability of beta-tricalcium phosphate for bone cement by calcium silicate. Mater Sci Eng C Mater Biol Appl, 2014. 37: p. 156-63.
103. Yamada, Y., et al., Promising cell-based therapy for bone regeneration using stem cells from deciduous teeth, dental pulp, and bone marrow. Cell transplantation, 2011. 20(7): p. 1003-1013.
104. Hing, K.A., Bioceramic bone graft substitutes: influence of porosity and chemistry. International journal of applied ceramic technology, 2005. 2(3): p. 184-199.
105. Lampin, M., et al., Correlation between substratum roughness and wettability, cell adhesion, and cell migration. J Biomed Mater Res, 1997. 36(1): p. 99-108.
106. STEIN, G.S. and J.B. LIAN, Molecular mechanisms mediating developmental and hormone-regulated expression of genes in osteoblasts: an integrated relationship of cell growth and differentiation, in Cellular and molecular biology of bone. 1993, Elsevier. p. 47-95.
107. Kasperk, C., et al., Human bone cell phenotypes differ depending on their skeletal site of origin. J Clin Endocrinol Metab, 1995. 80(8): p. 2511-7.
108. Kastellorizios, M., N. Tipnis, and D.J. Burgess, Foreign Body Reaction to Subcutaneous Implants. Adv Exp Med Biol, 2015. 865: p. 93-108.
109. Anderson, J.M., A. Rodriguez, and D.T. Chang. Foreign body reaction to biomaterials. in Seminars in immunology. 2008. Elsevier.
110. Kuboki, Y., et al., BMP‐induced osteogenesis on the surface of hydroxyapatite with geometrically feasible and nonfeasible structures: topology of osteogenesis. Journal of Biomedical Materials Research: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and the Australian Society for Biomaterials, 1998. 39(2): p. 190-199.
111. Yazdimamaghani, M., et al., Porous magnesium-based scaffolds for tissue engineering. Mater Sci Eng C Mater Biol Appl, 2017. 71: p. 1253-1266.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70496-
dc.description.abstract前言:
齒槽骨缺損重建對於牙醫師一直是嚴峻的挑戰。即令是材料推陳出新及手術觀念的演進,迄今仍有許多不易克服的困難使骨重建充滿不可預期性(unpredictable),例如:不易將骨材堆積成理想外型(ideal contouring)、骨材體積(graft volume)不易維持、或採用自體骨移植時易造成取骨區(donor site)傷口不適等問題。新近三維列印科技的發展,或許能為此等難題帶來可行的解決方式。
氫氧基磷灰石(HA,hydroxyapatite)(Ca10(PO4)6(OH)2)及三鈣磷酸鹽(β-TCP,beta-tricalcium phosphate)(Ca3(PO4)2)是牙科臨床最常使用的合成骨(alloplasts)的主要成分,,其主要組成為磷酸鈣(calcium phosphate) 具有骨引導能力(osteoconductivity)。我們期望以HA及β-TCP為主要材料,就現有數種主流三維列印技術做評估,找出用於骨組織工程的最可行的列印方式與配方,並驗證其物理性質、生物相容性(biocompatibility)、及促進骨生成能力 (osteopromotion)。
材料與方法:
首先進行回顧文獻,市面上的三維列印的原理與材料有許多種,就檢索分析結果而言,噴墨列印(inkjet printing)、機械手臂(robocasting)、雷射燒結(SLS,selective laser sintering)及熱熔擠壓成型(FDM,fused deposition modeling)為可能應用於骨組織工程的列印方式。進一步就這四種方式進行實地列印測試評估後顯示FDM較具有可行性,因此我們以FDM為技術,以磷酸鈣/聚己内酯(PCL,polycaprolactone)為材料,依據HA/β-TCP和PCL不同的組成比例設計以下四個組別:H7T3 (HA:35%,β-TCP:15%,PCL:50%),H5T5 (HA:25%,β-TCP:25%,PCL:50%),H3T7 (HA:15%,β-TCP:35%,PCL:50%)及PCL(PCL:100%)。列印出三維骨支架以進行後續物理化學性質測試,,包含以SEM下分析表面型態(surface topography)和孔洞大小(pore size),以氦氣密度分析儀測試其孔洞性(porosity),以萬用材料試驗機測試其抗壓強度(compressive strength),以傅里葉轉換紅外光譜(FTIR,Fourier-transform infrared spectroscopy)確認其官能基,以X-射線繞射分析(XRD,X-ray diffraction)檢驗其晶格,將支架浸泡於磷酸鹽緩衝生理鹽水溶液(PBS,phosphate buffered saline)以量測其降解速率(degradation rate)。
接著,我們使用人類牙髓細胞(hDPCs,human dental pulp cells)進行三維支架生物相容性(biocompatibility)及促進骨生成能力 (osteopromotion) 的測試。於人類牙髓細胞培養的第1天、第3天、及第7天以阿爾瑪藍細胞活性測試(AlamarBlue cell viability assay)檢驗其生物相容性,並在第7天以掃描式電子顯微鏡(SEM,Scanning electron microscope)下分析細胞附著於支架之情況。同時,以材料萃取液培養hDPCs,在第7天、第14天、及第28天量測鹼性磷酸酶(ALP,Alkaline phosphatase)定性與定量表現、以及Alizarin red S stain分析鈣生成量,以作為成骨能力的探討。最後,我們將支架植入大鼠背部,於第3週、第7週犧牲,將支架及其周圍組織取下後,先以10%福馬林(formaldehyde)固定後,拍攝觀察放射線不透性(radiopacity),接著酒精序列性脫水、石蠟包埋、組織切片、HE染色(hematoxylin and eosin stain),在400倍下觀察其組織反應,並依據ISO 10993-6:2007標準評估其發炎反應。
結果:
噴墨列印和機械手臂難以達成符合我們需求的支架外型與機械強度,雷射燒結則是解析度較差,相較之下熱熔擠壓成型的支架成品強度與解析度均有較好的表現。
以下為FDM列印的磷酸鈣/PCL三維骨支架的物理測試結果。經由SEM觀察及氦氣密度分析儀量測,我們列印的支架具有適合細胞生長的孔洞大小(約450μm),以及孔洞性(50~60%)。其抗壓強度(4~5MPa)接近鬆質骨(cancellous bone)的表現,符合臨床上骨材強度的要求。經由FTIR可確認三維支架的上具有磷酸根和 PCL的官能基。XRD也顯示經由FDM列印的磷酸鈣/PCL 三維支架不會改變HA和β-TCP結晶性和結構。此外,在一個月的降解實驗中沒有發現明顯的重量改變。
在生物相容性的實驗中,AlamarBlue檢驗顯示所有組別相對於度照組均有超過八成的細胞存活率,不論是第1天、第3天、及第7天的細胞存活率均以H3T7表現最佳,其次依序為H5T5及H7T3。SEM下可觀察到細胞伸出偽足貼附於支架之情形,我們發現細胞傾向於攀附於網格交錯之處。而促進骨生成能力的實驗當中,可觀察到在28天的期間內ALP濃度先增加、後減少,所有實驗組別均優於對照組,並以H3T7的表現最佳、並在第14天與對照組達統計上顯著差異(p<0.05)。Alizarin red S stain鈣生成量分析中,同時亦可觀察到H3T7有最多的鈣化物沉積、但未與對找組達統計上顯著差異。動物實驗中,我們可以觀察到PCL慢性發炎時間較長,其淋巴細胞之(lymphocyte)數量在第三週與第七週的觀察點仍居高不下;而H7T3、H5T5、H3T7三組,第三週出現之多型性白血球到第七週便完全消失,lymphocytes也是顯著下降。Fibrosis的現象在所有組別均可觀察到,同時均在第七週明顯增加。
結論:
以FDM列印含磷酸鈣/PCL的三維骨支架,具有良好的物理性質且能符合臨床期待。所有列印的支架當中,以含較高β-TCP濃度的H3T7的組別表現出最佳的生物相容性及促進骨生成能力。大鼠的實驗同時也驗證含磷酸鈣的支架在動物體內生物相容性比純PCL佳。本研究已研發出一種未來在齒槽骨組織工程的應用具有發展潛力與價值的三維列印方式及配方。
zh_TW
dc.description.abstractIntroduction:
The reconstruction of alveolar bone defect has possessed challenges to clinicians. There have been many difficulties such as graft contouring, graft loss, donor site morbidity in spite of the development of materials and techniques. The advancement of 3d printing may be a possible resolution for the bone tissue engineering.
HA(hydroxyapatite) (Ca10(PO4)6(OH)2) and β-TCP(beta-tricalcium phosphate) (Ca3(PO4)2), the most common alloplasts in dentistry, which consist of calcium phosphate, have the capability of osteoconductivity. Our purpose was to find the most feasible formula in bone tissue engineering by HA and β-TCP among the several mainstream 3d printing method, and to evaluate the physical properties, biocompatibility, and osteopromotion of the printed scaffolds.
Materials& Methods:
There are many types of 3d printing in manufacturing process and materials. According to the literature, inkjet printing, robocasting, SLS(selective laser sintering), and FDM(fused deposition modeling) were the possible 3d printing methods in bone tissue engineering. Therefore, we invested and evaluated these four methods.
The initial examination indicated that FDM was the most feasible method; therefore, we decided to print the 3d bone scaffolds from calcium phosphate/(PCL,polycaprolactone) by FDM for the further studies. We designed the following four experiment groups according to different ratio of HA/β-TCP and PCL: H7T3 (HA:35%, β-TCP:15%, PCL:50%), H5T5 (HA:25%, β-TCP:25%, PCL:50%), H3T7 (HA:15%, β-TCP:35%, PCL:50%) and PCL(PCL:100%). 
Physics and chemistry tests were then empolyedon these printed scaffolds. We analyzed the surface topography and pore size by SEM(scanning electron microscope), porosity by gas pycnometer, compressive strength by Instron Universal Testing Systems. Functional groups were detected by FTIR(Fourier-transform infrared spectroscopy), and the crystal structures were examined by XRD( X-ray diffraction). The degradation rate was measured by soaking the scaffolds in PBS(phosphate buffered saline) for 1 month.
Biocompatibility and osteopromotion tests were carried out as well. We cultured hDPCs(human dental pulp cells) on these scaffolds to evaluate the biocompatibility of the scaffolds by AlamarBlue Cell Viability Assay on day 1, day 3, and day 7, and to observe the morphology of the cell attachment to the scaffolds by SEM on day 7. Meanwhile, we assessed the osteopromotion of the scaffold by performing the ALP qualification and quantification tests, and Alizarin red S stain for calcification deposition by scaffold extracts. Finally, we performed subcutaneous implantation into the rat back, and sacrificed after 3 weeks and 7 weeks respectively. These scaffolds with surrounding tissue were removed, fixed in 10% formaldehyde. X ray films were taken to evaluate the ability of conduction of mineralization. Then the samples were routinely processed, dehydrated, embedded in paraffin wax, and stained with haematoxylin and eosin (HE). ISO 10993-6 :2007 for biological evaluation of medical devices was employed for the assessment of the inflammatory response.
Results:
The scaffolds printed by the inkjet printing and robocasting could barely meet our requirement in mechanical strength, while those by SLS were too low-resolution to meet the clinial requirement. The FDM-printed scaffolds achieved a better performance in both mechanical strength and resolution.
The result of the physical experiments of the FDM-printed calcium/PCL 3d scaffolds were as follows: The SEM and gas pycnometer revealed the scaffolds had the pore size of 450μm and porosity between 50%~60%, which were suitable for cell growth. The compressive strength (4~5MPa) which was closed to that of cancellous bone achieved the clinical requirement. The FTIR analysis indicated the presence of peaks ascribed to phosphate and PCL, and the XRD analysis also confirmed that the synthesis process of the CaP/PCL composite scaffolds by FDM did not alter the crystallinity and the structure of HA and β-TCP.Furthermore, all samples recorded no obvious weight changes in degradation test after 1 month.
In biocompatibility study, AlamarBlue exhibited that the cells seeded on to the scaffolds had survival rate higher than 80% compared to that of the control group. H3T7 showed the highest cell survival rate throughout the experimental period, followed by H5T5 and H7T3. The SEM showed the cell spread out on the scaffolds; what’s more, we found the cells were prone to adhere to the pores we designed. In the evaluation of osteoconduction, we could observe the ALP increased and then declined during the period of 28 days. The value of ALP in all the experimental groups were higher than those in the control group, and was found to be highest in H3T7. A significant difference could be observed between H3T7 and the control group on day 14. The Alizarin red S stain also showed the highest calcification deposition in H3T7 but without significant difference compared to the control group. In animal study, we could found the inflammation persisted in PCL, with lymphocyte number remaining high from week 3 to week 7. In the groups of H7T3, H5T5, and H3T3, the leukocytes howed increased on week 3 and dramatic droped on week 7, and the number of lymphocytes also decreased significantly. The phenomenom of fibrosis could be observed in all groups and increased on week 7.
Conclusion:
The CaP/PCL 3d printed scaffold by FDM had good physical properties and met the clinical requirements. H3T7, which had a relatively higher concentration of β-TCP, showed the best biocompatibility and bioactivity, and could effectively induce osteogensis differentiation of hDPCs. The study on rat also proved the biocompatibility was better in the scaffold withs calcium phosphate than with pure PCL. In thie study, we have developedreliable and promsing technique and formula in the field of alveolar bone tissue engineering.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T04:29:30Z (GMT). No. of bitstreams: 1
ntu-107-R05422013-1.pdf: 7721694 bytes, checksum: 613856b90d7b671696e41c5e7a526e66 (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents誌謝 i
中文摘要 iii
ABSTRACT vii
CONTENTS xi
LIST OF FIGURES xvi
LIST OF TABLES xxi
Chapter 1 前言 1
Chapter 2 文獻回顧 3
2.1 齒槽骨缺陷的原因 3
2.2 齒槽骨缺陷造成的影響 3
2.3 齒槽骨缺損的重建方式 3
2.3.1 齒槽骨缺損重建的手術方式 3
2.3.2 齒槽骨缺損重建的骨材選擇 4
2.3.3 當今齒槽骨缺陷重建手術所面臨的困境 5
2.4 三維列印於齒槽骨重建的契機 6
2.5 三維列印骨材支架的基本特性需求 7
2.5.1 骨質的性質 7
2.5.2 骨移植材的材質需求 7
2.6 三維列印於齒槽骨重建的材料選用 9
2.6.1 可降解之天然聚合物(Biodegradable natural polymers) 9
2.6.2 可降解之合成聚合物(Biodegradable synthetic polymers) 10
2.6.3 生醫陶瓷(Bioceramics) 11
2.7 三維列印的種類及原理 13
2.7.1 噴墨列印(Inkjet printing)(Binder jetting) 13
2.7.2 機械手臂(Robocasting) 14
2.7.3 立體平板印刷(SLA,Stereolithography) (Vat Polymerization) 14
2.7.4 雷射燒結(SLS,Selective laser sintering) 15
2.7.5 材料擠製成型(Material extrusion) 16
Chapter 3 動機與目的 17
Chapter 4 材料與方法 19
4.1 不同列印方式可行性評估 19
4.1.1 噴墨列印方式(Inkjet printing) (Binder jetting) 19
4.1.2 機械手臂(Robocasting) 20
4.1.3 雷射燒結(SLS,Selective laser sintering) 22
4.1.4 熱熔擠製成型 (FDM,Fused deposition modeling) 23
4.2 製備三維列印移植骨支架 25
4.2.1 磷酸鈣/PCL材料製備 25
4.2.2 三維支架列印 25
4.3 物理及化學性質測試 26
4.3.1 掃描式電子顯微鏡表面型態分析(SEM) 26
4.3.2 孔洞性測試(Porosity) 27
4.3.3 抗壓強度測試(Compressive strength) 28
4.3.4 傅里葉轉換紅外光譜(FTIR) 29
4.3.5 X射線繞射分析(XRD) 30
4.3.6 生物體外模擬體液浸泡測試 (In Vitro PBS soaking) 31
4.4 生物相容性測試(Biocompatibility) 32
4.4.1 人類牙髓細胞(hDPCs)初級培養 32
4.4.2 三維列印支架之細胞培養 33
4.4.3 阿爾瑪藍細胞活性測試 (AlamarBlue cell viability assay) 34
4.4.4 掃描式電子顯微鏡(SEM)分析細胞附著(adhesion)型態 35
4.5 促進骨生成能力測試(Osteopromotion) 36
4.5.1 材料淬取液製備。 36
4.5.2 以材料萃取液培養細胞 36
4.5.3 硬骨分化液置備 36
4.5.4 鹼性磷酸酶定性分析(ALP) 37
4.5.5 鹼性磷酸酶定量分析(ALP) 38
4.5.6 鈣生成量分析(Alizarin red S stain) 39
4.6 動物實驗 40
4.6.1 動物資料 40
4.6.2 實驗步驟 40
4.6.3 實驗動物觀察 41
4.7 資料分析 43
Chapter 5 實驗結果 44
5.1 物理及化學性質測試 44
5.1.1 掃描式電子顯微鏡表面型態分析(SEM) 44
5.1.2 孔洞性測試(Porosity) 46
5.1.3 抗壓強度測試(Compressive strength) 46
5.1.4 傅里葉轉換紅外光譜(FTIR) 47
5.1.5 X-射線繞射分析(XRD) 51
5.1.6 生物體外模擬體液浸泡測試 (In Vitro SBF soaking) 55
5.2 生物相容性測試(Biocompatibility) 55
5.2.1 阿爾瑪藍細胞活性試驗 (AlamarBlue cell viability assay) 55
5.2.2 掃描式電子顯微鏡(SEM)分析細胞附著(adhesion)型態 58
5.3 促進骨生成能力測試(Osteopromotion) 64
5.3.1 鹼性磷酸酶定性分析(ALP) 64
5.3.2 鹼性磷酸酶定量分析(ALP) 73
5.3.3 鈣生成量分析(Alizarin red S stain) 75
5.4 動物實驗 79
5.4.1 樣本Radiopacity評估 79
5.4.2 組織切片觀察 81
Chapter 6 討論 86
6.1 三維列印技術之評估比較 86
6.1.1 噴墨列印 86
6.1.2 機械手臂 86
6.1.3 雷射燒結 87
6.1.4 熱熔擠製成型 87
6.2 FDM列印材質之選用 88
6.3 FDM列印磷酸鈣/PCL三維骨支架物理性質 89
6.3.1 孔洞性與孔洞大小 89
6.3.2 抗壓強度 89
6.3.3 FTIR 與 XRD 89
6.3.4 降解測試 90
6.4 人類牙髓細胞之培養 92
6.5 FDM列印磷酸鈣/PCL三維骨支架生物相容性 93
6.6 FDM列印磷酸鈣/PCL三維骨支架促進骨生成能力 93
6.7 FDM列印磷酸鈣/PCL三於維骨支架動物實驗反應 94
6.8 HA、β-TCP、PCL生物相容性及成骨能力之討論 95
Chapter 7 結論 96
Chapter 8 未來研究方向 98
Chapter 9 參考資料 99
dc.language.isozh-TW
dc.subject三維列印zh_TW
dc.subject熱熔擠壓成型zh_TW
dc.subject聚己?酯zh_TW
dc.subject磷酸鈣zh_TW
dc.subject氫氧基磷灰石zh_TW
dc.subject三鈣磷酸鹽zh_TW
dc.subject骨組織工程zh_TW
dc.subjectβ-TCPen
dc.subjectbone tissue engineeringen
dc.subject3d printingen
dc.subjectFDMen
dc.subjectPCLen
dc.subjectcalcium phosphateen
dc.subjectHAen
dc.title研發及評估應用於骨組織工程之三維列印複合性生醫陶瓷支架zh_TW
dc.titleDevelopment and assessment of a new three dimensional printed composited bioceramic scaffold for bone tissue engineeringen
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林俊彬,謝明佑,廖運炫,林弘萍
dc.subject.keyword骨組織工程,三維列印,熱熔擠壓成型,聚己?酯,磷酸鈣,氫氧基磷灰石,三鈣磷酸鹽,zh_TW
dc.subject.keywordbone tissue engineering,3d printing,FDM,PCL,calcium phosphate,HA,β-TCP,en
dc.relation.page105
dc.identifier.doi10.6342/NTU201803051
dc.rights.note有償授權
dc.date.accepted2018-08-13
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept臨床牙醫學研究所zh_TW
顯示於系所單位:臨床牙醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  未授權公開取用
7.54 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved