請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70489完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 闕志鴻 | |
| dc.contributor.author | Ka-Hou Leong | en |
| dc.contributor.author | 梁家豪 | zh_TW |
| dc.date.accessioned | 2021-06-17T04:29:19Z | - |
| dc.date.available | 2019-08-18 | |
| dc.date.copyright | 2018-08-18 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2018-08-13 | |
| dc.identifier.citation | [1] E. Armengaud, N. Palanque-Delabrouille, C. Yèche, D. J. E. Marsh, and J. Baur. Constraining the mass of light bosonic dark matter using SDSS Lyman-alpha forest. MNRAS, 471:4606–4614, Nov. 2017.
[2] G. D. Becker, J. S. Bolton, M. G. Haehnelt, and W. L. W. Sargent. Detection of extended He II reionization in the temperature evolution of the intergalactic medium. MNRAS, 410:1096–1112, Jan. 2011. [3] G. D. Becker, P. C. Hewett, G. Worseck, and J. X. Prochaska. A refined measurement of the mean transmitted flux in the Ly forest over 2 < z < 5 using composite quasar spectra. MNRAS, 430:2067–2081, Apr. 2013. [4] G. M. Bernstein, A. E. Athey, R. Bernstein, S. M. Gunnels, D. O. Richstone, and S. A. Shectman. Volume-phase holographic spectrograph for the Magellan telescopes. In A. M. Larar and M. G. Mlynczak, editors, Optical Spectroscopic Techniques, Remote Sensing, and Instrumentation for Atmospheric and Space Research IV, volume 4485 of Proc. SPIE, pages 453–459, Jan. 2002. [5] J. S. Bolton, E. Puchwein, D. Sijacki, M. G. Haehnelt, T.-S. Kim, A. Meiksin, J. A. Regan, and M. Viel. The Sherwood simulation suite: overview and data comparisons with the Lyman-alpha forest at redshifts 2 < z < 5. MNRAS, 464:897–914, Jan. 2017. [6] A. Borde, N. Palanque-Delabrouille, G. Rossi, M. Viel, J. S. Bolton, C. Yèche, J.-M. LeGoff, and J. Rich. New approach for precise computation of Lyman-alpha forest power spectrum with hydrodynamical simulations. J. Cosmology Astropart. Phys., 7:005, July 2014. [7] M. Boylan-Kolchin, J. S. Bullock, and M. Kaplinghat. Too big to fail? The puzzling darkness of massive Milky Way subhaloes. MNRAS, 415:L40–L44, July 2011. [8] J. H. H. Chan, H.-Y. Schive, T.-P. Woo, and T. Chiueh. How do stars affect DM haloes? MNRAS, 478:2686–2699, Aug. 2018. [9] S.-R. Chen, H.-Y. Schive, and T. Chiueh. Jeans analysis for dwarf spheroidal galaxies in wave dark matter. MNRAS, 468:1338–1348, June 2017. [10] D. J. Eisenstein, H.-J. Seo, E. Sirko, and D. N. Spergel. Improving Cosmological Distance Measurements by Reconstruction of the Baryon Acoustic Peak. ApJ, 664:675–679, Aug. 2007. [11] F. Haardt and P. Madau. Radiative Transfer in a Clumpy Universe. IV. New Synthesis Models of the Cosmic UV/X-Ray Background. ApJ, 746:125, Feb. 2012. [12] O. Hahn and T. Abel. Multi-scale initial conditions for cosmological simulations. MNRAS, 415:2101–2121, Aug. 2011. [13] R. Hložek, D. J. E. Marsh, D. Grin, R. Allison, J. Dunkley, and E. Calabrese. Future CMB tests of dark matter: Ultralight axions and massive neutrinos. Phys. Rev. D, 95(12):123511, June 2017. [14] P. F. Hopkins. A new class of accurate, mesh-free hydrodynamic simulation methods. MNRAS, 450:53–110, June 2015. [15] W. Hu, R. Barkana, and A. Gruzinov. Fuzzy Cold Dark Matter: The Wave Properties of Ultralight Particles. Physical Review Letters, 85:1158–1161, Aug. 2000. [16] V. Iršič, M. Viel, T. A. M. Berg, V. D’Odorico, M. G. Haehnelt, S. Cristiani, G. Cupani, T.-S. Kim, S. López, S. Ellison, G. D. Becker, L. Christensen, K. D. Denney, G. Worseck, and J. S. Bolton. The Lyman-alpha forest power spectrum from the XQ-100 Legacy Survey. MNRAS, 466:4332–4345, Apr. 2017. [17] V. Iršič, M. Viel, M. G. Haehnelt, J. S. Bolton, and G. D. Becker. First Constraints on Fuzzy Dark Matter from Lyman-alpha Forest Data and Hydrodynamical Simulations. Physical Review Letters, 119(3):031302, July 2017. [18] V. Iršič, M. Viel, M. G. Haehnelt, J. S. Bolton, S. Cristiani, G. D. Becker, V. D’Odorico, G. Cupani, T.-S. Kim, T. A. M. Berg, S. López, S. Ellison, L. Christensen, K. D. Denney, and G. Worseck. New constraints on the free-streaming of warm dark matter from intermediate and small scale Lyman-alpha forest data. Phys. Rev. D, 96(2):023522, July 2017. [19] A. Klypin, A. V. Kravtsov, O. Valenzuela, and F. Prada. Where Are the Missing Galactic Satellites? ApJ, 522:82–92, Sept. 1999. [20] P. La Plante, H. Trac, R. Croft, and R. Cen. Helium Reionization Simulations. III. The Helium Lyman-alpha Forest. ArXiv e-prints, Oct. 2017. [21] A. Lewis and S. Bridle. Cosmological parameters from CMB and other data: A Monte Carlo approach. Phys. Rev. D, 66:103511, 2002. [22] Z. Lukić, C. W. Stark, P. Nugent, M. White, A. A. Meiksin, and A. Almgren. The Lyman-alpha forest in optically thin hydrodynamical simulations. MNRAS, 446:3697– 3724, Feb. 2015. [23] P. McDonald. Toward a Measurement of the Cosmological Geometry at z ˜ 2: Predicting Ly Forest Correlation in Three Dimensions and the Potential of Future Data Sets. ApJ, 585:34–51, Mar. 2003. [24] P. McDonald, U. Seljak, S. Burles, D. J. Schlegel, D. H. Weinberg, R. Cen, D. Shih, J. Schaye, D. P. Schneider, N. A. Bahcall, J. W. Briggs, J. Brinkmann, R. J. Brunner, M. Fukugita, J. E. Gunn, Ž. Ivezić, S. Kent, R. H. Lupton, and D. E. Vanden Berk. The Ly Forest Power Spectrum from the Sloan Digital Sky Survey. ApJS, 163:80– 109, Mar. 2006. [25] A. A. Meiksin. The physics of the intergalactic medium. Reviews of Modern Physics, 81:1405–1469, Oct. 2009. [26] B. Moore. Evidence against dissipation-less dark matter from observations of galaxy haloes. Nature, 370:629–631, Aug. 1994. [27] N. Palanque-Delabrouille, C. Yèche, A. Borde, J.-M. Le Goff, G. Rossi, M. Viel, É. Aubourg, S. Bailey, J. Bautista, M. Blomqvist, A. Bolton, J. S. Bolton, N. G. Busca, B. Carithers, R. A. C. Croft, K. S. Dawson, T. Delubac, A. Font-Ribera, S. Ho, D. Kirkby, K.-G. Lee, D. Margala, J. Miralda-Escudé, D. Muna, A. D. Myers, P. Noterdaeme, I. Pâris, P. Petitjean, M. M. Pieri, J. Rich, E. Rollinde, N. P. Ross, D. J. Schlegel, D. P. Schneider, A. Slosar, and D. H. Weinberg. The one-dimensional Ly-alpha forest power spectrum from BOSS. A&A, 559:A85, Nov. 2013. [28] N. Palanque-Delabrouille, C. Yèche, J. Lesgourgues, G. Rossi, A. Borde, M. Viel, E. Aubourg, D. Kirkby, J.-M. LeGoff, J. Rich, N. Roe, N. P. Ross, D. P. Schneider, and D. Weinberg. Constraint on neutrino masses from SDSS-III/BOSS Ly forest and other cosmological probes. J. Cosmology Astropart. Phys., 2:045, Feb. 2015. [29] I. Pâris, P. Petitjean, É. Aubourg, S. Bailey, N. P. Ross, A. D. Myers, M. A. Strauss, S. F. Anderson, E. Arnau, J. Bautista, D. Bizyaev, A. S. Bolton, J. Bovy, W. N. Brandt, H. Brewington, J. R. Browstein, N. Busca, D. Capellupo, W. Carithers, R. A. C. Croft, K. Dawson, T. Delubac, G. Ebelke, D. J. Eisenstein, P. Engelke, X. Fan, N. Filiz Ak, H. Finley, A. Font-Ribera, J. Ge, R. R. Gibson, P. B. Hall, F. Hamann, J. F. Hennawi, S. Ho, D. W. Hogg, Ž. Ivezić, L. Jiang, A. E. Kimball, D. Kirkby, J. A. Kirkpatrick, K.-G. Lee, J.-M. Le Goff, B. Lundgren, C. L. MacLeod, E. Malanushenko, V. Malanushenko, C. Maraston, I. D. McGreer, R. G. McMahon, J. Miralda-Escudé, D. Muna, P. Noterdaeme, D. Oravetz, N. Palanque-Delabrouille, K. Pan, I. Perez-Fournon, M. M. Pieri, G. T. Richards, E. Rollinde, E. S. Sheldon, D. J. Schlegel, D. P. Schneider, A. Slosar, A. Shelden, Y. Shen, A. Simmons, S. Snedden, N. Suzuki, J. Tinker, M. Viel, B. A. Weaver, D. H. Weinberg, M. White, W. M. Wood-Vasey, and C. Yèche. The Sloan Digital Sky Survey quasar catalog: ninth data release. A&A, 548:A66, Dec. 2012. [30] S. Perlmutter, G. Aldering, G. Goldhaber, R. A. Knop, P. Nugent, P. G. Castro, S. Deustua, S. Fabbro, A. Goobar, D. E. Groom, I. M. Hook, A. G. Kim, M. Y. Kim, J. C. Lee, N. J. Nunes, R. Pain, C. R. Pennypacker, R. Quimby, C. Lidman, R. S. Ellis, M. Irwin, R. G. McMahon, P. Ruiz-Lapuente, N. Walton, B. Schaefer, B. J. Boyle, A. V. Filippenko, T. Matheson, A. S. Fruchter, N. Panagia, H. J. M. Newberg, W. J. Couch, and T. S. C. Project. Measurements of Ω and from 42 High-Redshift Supernovae. ApJ, 517:565–586, June 1999. [31] Planck Collaboration, P. A. R. Ade, N. Aghanim, M. Arnaud, M. Ashdown, J. Aumont, C. Baccigalupi, A. J. Banday, R. B. Barreiro, J. G. Bartlett, and et al. Planck 2015 results. XIII. Cosmological parameters. A&A, 594:A13, Sept. 2016. [32] E. Puchwein, J. S. Bolton, M. G. Haehnelt, P. Madau, G. D. Becker, and F. Haardt. The photoheating of the intergalactic medium in synthesis models of the UV background. MNRAS, 450:4081–4097, July 2015. [33] A. G. Riess, A. V. Filippenko, P. Challis, A. Clocchiatti, A. Diercks, P. M. Garnavich, R. L. Gilliland, C. J. Hogan, S. Jha, R. P. Kirshner, B. Leibundgut, M. M. Phillips, D. Reiss, B. P. Schmidt, R. A. Schommer, R. C. Smith, J. Spyromilio, C. Stubbs, N. B. Suntzeff, and J. Tonry. Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant. AJ, 116:1009–1038, Sept. 1998. [34] H.-Y. Schive and T. Chiueh. Halo abundance and assembly history with extremeaxion wave dark matter at z 4. MNRAS, 473:L36–L40, Jan. 2018. [35] H.-Y. Schive, T. Chiueh, and T. Broadhurst. Cosmic structure as the quantum interference of a coherent dark wave. Nature Physics, 10:496–499, July 2014. [36] H.-Y. Schive, T. Chiueh, T. Broadhurst, and K.-W. Huang. Contrasting Galaxy Formation from Quantum Wave Dark Matter, DM, with CDM, using Planck and Hubble Data. ApJ, 818:89, Feb. 2016. [37] H.-Y. Schive, M.-H. Liao, T.-P. Woo, S.-K. Wong, T. Chiueh, T. Broadhurst, and W.- Y. P. Hwang. Understanding the Core-Halo Relation of Quantum Wave Dark Matter from 3D Simulations. Physical Review Letters, 113(26):261302, Dec. 2014. [38] B. D. Smith, G. L. Bryan, S. C. O. Glover, N. J. Goldbaum, M. J. Turk, J. Regan, J. H. Wise, H.-Y. Schive, T. Abel, A. Emerick, B. W. O’Shea, P. Anninos, C. B. Hummels, and S. Khochfar. GRACKLE: a chemistry and cooling library for astrophysics. MNRAS, 466:2217–2234, Apr. 2017. [39] D. Syphers and J. M. Shull. Hubble Space Telescope/Cosmic Origins Spectrograph Observations of the Quasar Q0302-003: Probing the He II Reionization Epoch and QSO Proximity Effects. ApJ, 784:42, Mar. 2014. [40] T. Tepper-García. Voigt profile fitting to quasar absorption lines: an analytic approximation to the Voigt-Hjerting function. MNRAS, 369:2025–2035, July 2006. [41] T. Theuns, A. Leonard, G. Efstathiou, F. R. Pearce, and P. A. Thomas. Pˆ3M-SPH simulations of the Lyalpha forest. MNRAS, 301:478–502, Dec. 1998. [42] J. Veltmaat and J. C. Niemeyer. Cosmological particle-in-cell simulations with ultralight axion dark matter. Phys. Rev. D, 94(12):123523, Dec. 2016. [43] J. Veltmaat, J. C. Niemeyer, and B. Schwabe. Formation and structure of ultralight bosonic dark matter halos. ArXiv e-prints, Apr. 2018. [44] M. Viel, M. G. Haehnelt, and V. Springel. Inferring the dark matter power spectrum from the Lyman-alpha forest in high-resolution QSO absorption spectra. MNRAS, 354:684–694, Nov. 2004. [45] M. Viel, M. G. Haehnelt, and V. Springel. The effect of neutrinos on the matter distribution as probed by the intergalactic medium. J. Cosmology Astropart. Phys., 6:015, June 2010. [46] M. Viel, J. Schaye, and C. M. Booth. The impact of feedback from galaxy formation on the Lyman-alpha transmitted flux. MNRAS, 429:1734–1746, Feb. 2013. [47] S. S. Vogt, S. L. Allen, B. C. Bigelow, L. Bresee, B. Brown, T. Cantrall, A. Conrad, M. Couture, C. Delaney, H. W. Epps, D. Hilyard, D. F. Hilyard, E. Horn, N. Jern, D. Kanto, M. J. Keane, R. I. Kibrick, J. W. Lewis, J. Osborne, G. H. Pardeilhan, T. Pfister, T. Ricketts, L. B. Robinson, R. J. Stover, D. Tucker, J. Ward, and M. Z. Wei. HIRES: the high-resolution echelle spectrometer on the Keck 10-m Telescope. In D. L. Crawford and E. R. Craine, editors, Instrumentation in Astronomy VIII, volume 2198 of Proc. SPIE, page 362, June 1994. [48] T.-P. Woo and T. Chiueh. High-Resolution Simulation on Structure Formation with Extremely Light Bosonic Dark Matter. ApJ, 697:850–861, May 2009. [49] G. Worseck, J. X. Prochaska, M. McQuinn, A. Dall’Aglio, C. Fechner, J. F. Hennawi, D. Reimers, P. Richter, and L. Wisotzki. The End of Helium Reionization at z ˜= 2.7 Inferred from Cosmic Variance in HST/COS He II Ly Absorption Spectra. ApJ, 733:L24, June 2011. [50] U.-H. Zhang and T. Chiueh. Cosmological perturbations of extreme axion in the radiation era. Phys. Rev. D, 96(6):063522, Sept. 2017. [51] U.-H. Zhang and T. Chiueh. Evolution of linear wave dark matter perturbations in the radiation-dominated era. Phys. Rev. D, 96(2):023507, July 2017. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70489 | - |
| dc.description.abstract | 我們利用帶有均衡紫外光背景的字宙學流體模型去模擬不同類型
暗物質模型所預測的萊曼-阿爾法森林現象,其中包括冷暗物質、波動 暗物質以及不同軸子角度的極端軸子暗物質。以極端軸子暗物質的玻 色子質量為1.1X 10^-22 電子伏的前提下,我們發現極端軸子暗物質所 預測的萊曼-阿爾法森林現象比起冷暗物質所預測的結果更能符合重 子振蕩光譜巡天計畫得到的結果,這是與[17, 1] 所預測的結果大為不 同–冷暗物質的萊曼-阿爾法森林現象較為符合觀測事實。因此,我們 的研究為暗物質是由超低質量粒子所組成的猜想帶來新的證據。 | zh_TW |
| dc.description.abstract | Using cosmological particle hydrodynamical simulations and uniform ultraviolet background, we test Lyman-alpha forest flux spectra predicted by the conventional cold dark matter (CDM) model, the free-particle wave dark matter (FPpsiDM) model and extreme-axion wave dark matter (EApsiDM) models
of different initial axion field angles against the BOSS Lyman-alpha forest absorption spectra. The boson mass mb of all DM models is fixed to mb ~ 10^-22eV. We recover the results reported previously [17, 1] that the CDM model agrees better with the BOSS data than the FPpsiDM model by a large margin, where the difference of total chi-square is 19 for 420 data bins. These previous results demand a larger boson mass by a factor > 10 and are in tension with the favoured value. However, we find this tension can be alleviated as a range of EA DM models predict Lyman- flux spectra agree better with the BOSS data than the CDM prediction by an even larger margin; the difference of total chi-square can be as large as 24. This finding is perhaps not surprising since EA DM models can have a unique spectral bump in excess of the power of CDM near the more extended spectral cutoff in the initial matter power spectrum [51, 50]. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T04:29:19Z (GMT). No. of bitstreams: 1 ntu-107-R03222072-1.pdf: 809028 bytes, checksum: 1c87d4e2dcfce49f1e3a5fea36159a88 (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | 口試委員會審定書 ii
摘要 iii Abstract v 1 Introduction 1 2 Methodology 5 2.1 Power spectra 5 2.2 Hydrodynamical simulations 7 2.3 Mock Lyman-alpha forest spectra 9 2.4 Fitting parameters 10 3 Result 13 3.1 Matter power spectrum 13 3.2 Comparison simulated Lyman-alpha flux power spectrum with BOSS data 14 4 Discussion and Conclusion 21 4.1 Discussion 21 4.2 Conclusion 22 Acknowledgements 25 Bibliography 27 | |
| dc.language.iso | zh-TW | |
| dc.subject | 星系際物質 | zh_TW |
| dc.subject | 宇宙學 | zh_TW |
| dc.subject | 暗物質 | zh_TW |
| dc.subject | cosmology | en |
| dc.subject | dark matter | en |
| dc.subject | intergalactic medium | en |
| dc.title | 利用萊曼-阿爾法吸收光譜探討極端軸子暗物質模型 | zh_TW |
| dc.title | Testing Extreme Axion Dark Matter Using BOSS Lyman
Alpha Forest Data | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 奧村哲平(Teppei Okumura),梅津敬一(keiichi umetsu),蔡岳霖 | |
| dc.subject.keyword | 宇宙學,暗物質,星系際物質, | zh_TW |
| dc.subject.keyword | cosmology,dark matter,intergalactic medium, | en |
| dc.relation.page | 33 | |
| dc.identifier.doi | 10.6342/NTU201802839 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2018-08-13 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 物理學研究所 | zh_TW |
| 顯示於系所單位: | 物理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-1.pdf 未授權公開取用 | 790.07 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
