請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7047完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 阮麗蓉 | |
| dc.contributor.author | Chi-Shuen Chu | en |
| dc.contributor.author | 朱祁舜 | zh_TW |
| dc.date.accessioned | 2021-05-17T10:18:02Z | - |
| dc.date.available | 2012-03-02 | |
| dc.date.available | 2021-05-17T10:18:02Z | - |
| dc.date.copyright | 2012-03-02 | |
| dc.date.issued | 2011 | |
| dc.date.submitted | 2011-12-28 | |
| dc.identifier.citation | Agarwala, K. L., Kokame, K., Kato, H., and Miyata, T. (2000). Phosphorylation of RTP, an ER stress-responsive cytoplasmic protein. Biochem Biophys Res Commun 272, 641-647.
Ajiro, K., Scoltock, A. B., Smith, L. K., Ashasima, M., and Cidlowski, J. A. (2010). Reciprocal epigenetic modification of histone H2B occurs in chromatin during apoptosis in vitro and in vivo. Cell Death Differ 17, 984-993. Alami, R., Fan, Y., Pack, S., Sonbuchner, T. M., Besse, A., Lin, Q., Greally, J. M., Skoultchi, A. I., and Bouhassira, E. E. (2003). Mammalian linker-histone subtypes differentially affect gene expression in vivo. Proc Natl Acad Sci U S A 100, 5920-5925. Albig, W., Drabent, B., Kunz, J., Kalff-Suske, M., Grzeschik, K. H., and Doenecke, D. (1993). All known human H1 histone genes except the H1(0) gene are clustered on chromosome 6. Genomics 16, 649-654. Alexandrow, M. G., and Hamlin, J. L. (2005). Chromatin decondensation in S-phase involves recruitment of Cdk2 by Cdc45 and histone H1 phosphorylation. J Cell Biol 168, 875-886. Alfthan, K., Heiska, L., Gronholm, M., Renkema, G. H., and Carpen, O. (2004). Cyclic AMP-dependent protein kinase phosphorylates merlin at serine 518 independently of p21-activated kinase and promotes merlin-ezrin heterodimerization. J Biol Chem 279, 18559-18566. Attwood, P. V., Ludwig, K., Bergander, K., Besant, P. G., Adina-Zada, A., Krieglstein, J., and Klumpp, S. (2010). Chemical phosphorylation of histidine-containing peptides based on the sequence of histone H4 and their dephosphorylation by protein histidine phosphatase. Biochim Biophys Acta 1804, 199-205. Baatout, S., and Derradji, H. (2006). About histone H1 phosphorylation during mitosis. Cell Biochem Funct 24, 93-94. Baker, S. P., Phillips, J., Anderson, S., Qiu, Q., Shabanowitz, J., Smith, M. M., Yates, J. R., 3rd, Hunt, D. F., and Grant, P. A. (2010). Histone H3 Thr 45 phosphorylation is a replication-associated post-translational modification in S. cerevisiae. Nat Cell Biol 12, 294-298. Barber, C. M., Turner, F. B., Wang, Y., Hagstrom, K., Taverna, S. D., Mollah, S., Ueberheide, B., Meyer, B. J., Hunt, D. F., Cheung, P., and Allis, C. D. (2004). The enhancement of histone H4 and H2A serine 1 phosphorylation during mitosis and S-phase is evolutionarily conserved. Chromosoma 112, 360-371. Beebe, S. J. (1994). The cAMP-dependent protein kinases and cAMP signal transduction. Semin Cancer Biol 5, 285-294. Bernstein, E., Muratore-Schroeder, T. L., Diaz, R. L., Chow, J. C., Changolkar, L. N., Shabanowitz, J., Heard, E., Pehrson, J. R., Hunt, D. F., and Allis, C. D. (2008). A phosphorylated subpopulation of the histone variant macroH2A1 is excluded from the inactive X chromosome and enriched during mitosis. Proc Natl Acad Sci U S A 105, 1533-1538. Buttinelli, M., Panetta, G., Rhodes, D., and Travers, A. (1999). The role of histone H1 in chromatin condensation and transcriptional repression. Genetica 106, 117-124. Cheung, W. L., Turner, F. B., Krishnamoorthy, T., Wolner, B., Ahn, S. H., Foley, M., Dorsey, J. A., Peterson, C. L., Berger, S. L., and Allis, C. D. (2005). Phosphorylation of histone H4 serine 1 during DNA damage requires casein kinase II in S. cerevisiae. Curr Biol 15, 656-660. Chu, C. S., Hsu, P. H., Lo, P. W., Scheer, E., Tora, L., Tsai, H. J., Tsai, M. D., and Juan, L. J. (2011). Protein Kinase A-mediated Serine 35 Phosphorylation Dissociates Histone H1.4 from Mitotic Chromosome. J Biol Chem 286, 35843-35851. Chu, F., Nusinow, D. A., Chalkley, R. J., Plath, K., Panning, B., and Burlingame, A. L. (2006). Mapping post-translational modifications of the histone variant MacroH2A1 using tandem mass spectrometry. Mol Cell Proteomics 5, 194-203. Contreras, A., Hale, T. K., Stenoien, D. L., Rosen, J. M., Mancini, M. A., and Herrera, R. E. (2003). The dynamic mobility of histone H1 is regulated by cyclin/CDK phosphorylation. Mol Cell Biol 23, 8626-8636. Cook, P. J., Ju, B. G., Telese, F., Wang, X., Glass, C. K., and Rosenfeld, M. G. (2009). Tyrosine dephosphorylation of H2AX modulates apoptosis and survival decisions. Nature 458, 591-596. Costanzo, V., Avvedimento, E. V., Gottesman, M. E., Gautier, J., and Grieco, D. (1999). Protein kinase A is required for chromosomal DNA replication. Curr Biol 9, 903-906. Crosio, C., Fimia, G. M., Loury, R., Kimura, M., Okano, Y., Zhou, H., Sen, S., Allis, C. D., and Sassone-Corsi, P. (2002). Mitotic phosphorylation of histone H3: spatio-temporal regulation by mammalian Aurora kinases. Mol Cell Biol 22, 874-885. Dai, J., Sultan, S., Taylor, S. S., and Higgins, J. M. (2005). The kinase haspin is required for mitotic histone H3 Thr 3 phosphorylation and normal metaphase chromosome alignment. Genes Dev 19, 472-488. Daujat, S., Zeissler, U., Waldmann, T., Happel, N., and Schneider, R. (2005). HP1 binds specifically to Lys26-methylated histone H1.4, whereas simultaneous Ser27 phosphorylation blocks HP1 binding. J Biol Chem 280, 38090-38095. Davare, M. A., Horne, M. C., and Hell, J. W. (2000). Protein phosphatase 2A is associated with class C L-type calcium channels (Cav1.2) and antagonizes channel phosphorylation by cAMP-dependent protein kinase. J Biol Chem 275, 39710-39717. Dawson, M. A., Bannister, A. J., Gottgens, B., Foster, S. D., Bartke, T., Green, A. R., and Kouzarides, T. (2009). JAK2 phosphorylates histone H3Y41 and excludes HP1alpha from chromatin. Nature 461, 819-822. Deterding, L. J., Bunger, M. K., Banks, G. C., Tomer, K. B., and Archer, T. K. (2008). Global changes in and characterization of specific sites of phosphorylation in mouse and human histone H1 Isoforms upon CDK inhibitor treatment using mass spectrometry. J Proteome Res 7, 2368-2379. Diviani, D., Langeberg, L. K., Doxsey, S. J., and Scott, J. D. (2000). Pericentrin anchors protein kinase A at the centrosome through a newly identified RII-binding domain. Curr Biol 10, 417-420. Djouder, N., Tuerk, R. D., Suter, M., Salvioni, P., Thali, R. F., Scholz, R., Vaahtomeri, K., Auchli, Y., Rechsteiner, H., Brunisholz, R. A., et al. (2010). PKA phosphorylates and inactivates AMPKalpha to promote efficient lipolysis. Embo J 29, 469-481. Dong, J. M., Leung, T., Manser, E., and Lim, L. (1998). cAMP-induced morphological changes are counteracted by the activated RhoA small GTPase and the Rho kinase ROKalpha. J Biol Chem 273, 22554-22562. Dou, Y., Mizzen, C. A., Abrams, M., Allis, C. D., and Gorovsky, M. A. (1999). Phosphorylation of linker histone H1 regulates gene expression in vivo by mimicking H1 removal. Mol Cell 4, 641-647. Doxsey, S., McCollum, D., and Theurkauf, W. (2005). Centrosomes in cellular regulation. Annu Rev Cell Dev Biol 21, 411-434. Drobic, B., Perez-Cadahia, B., Yu, J., Kung, S. K., and Davie, J. R. (2010). Promoter chromatin remodeling of immediate-early genes is mediated through H3 phosphorylation at either serine 28 or 10 by the MSK1 multi-protein complex. Nucleic Acids Res 38, 3196-3208. Duncan, F. E., Moss, S. B., and Williams, C. J. (2006). Knockdown of the cAMP-dependent protein kinase (PKA) Type Ialpha regulatory subunit in mouse oocytes disrupts meiotic arrest and results in meiotic spindle defects. Dev Dyn 235, 2961-2968. Endo, S., Zhou, X., Connor, J., Wang, B., and Shenolikar, S. (1996). Multiple structural elements define the specificity of recombinant human inhibitor-1 as a protein phosphatase-1 inhibitor. Biochemistry 35, 5220-5228. Erard, M. S., Belenguer, P., Caizergues-Ferrer, M., Pantaloni, A., and Amalric, F. (1988). A major nucleolar protein, nucleolin, induces chromatin decondensation by binding to histone H1. Eur J Biochem 175, 525-530. Fan, Y., Nikitina, T., Zhao, J., Fleury, T. J., Bhattacharyya, R., Bouhassira, E. E., Stein, A., Woodcock, C. L., and Skoultchi, A. I. (2005). Histone H1 depletion in mammals alters global chromatin structure but causes specific changes in gene regulation. Cell 123, 1199-1212. Fassati, A., Gorlich, D., Harrison, I., Zaytseva, L., and Mingot, J. M. (2003). Nuclear import of HIV-1 intracellular reverse transcription complexes is mediated by importin 7. Embo J 22, 3675-3685. Finn, R. M., Browne, K., Hodgson, K. C., and Ausio, J. (2008). sNASP, a histone H1-specific eukaryotic chaperone dimer that facilitates chromatin assembly. Biophys J 95, 1314-1325. Flickinger, R. A. (2006). Somatic H1 histone accumulation and germ layer determination in amphibian embryos. Dev Growth Differ 48, 473-476. Francis, S. H., and Corbin, J. D. (1994). Structure and function of cyclic nucleotide-dependent protein kinases. Annu Rev Physiol 56, 237-272. Freedman, B. S., and Heald, R. (2010). Functional comparison of H1 histones in Xenopus reveals isoform-specific regulation by Cdk1 and RanGTP. Curr Biol 20, 1048-1052. Fu, J., Bian, M., Jiang, Q., and Zhang, C. (2007). Roles of Aurora kinases in mitosis and tumorigenesis. Mol Cancer Res 5, 1-10. Garcia, B. A., Busby, S. A., Barber, C. M., Shabanowitz, J., Allis, C. D., and Hunt, D. F. (2004). Characterization of phosphorylation sites on histone H1 isoforms by tandem mass spectrometry. J Proteome Res 3, 1219-1227. Gerlach, A. C., Gangopadhyay, N. N., and Devor, D. C. (2000). Kinase-dependent regulation of the intermediate conductance, calcium-dependent potassium channel, hIK1. J Biol Chem 275, 585-598. Giampuzzi, M., Oleggini, R., and Di Donato, A. (2003). Demonstration of in vitro interaction between tumor suppressor lysyl oxidase and histones H1 and H2: definition of the regions involved. Biochim Biophys Acta 1647, 245-251. Giet, R., and Prigent, C. (1999). Aurora/Ipl1p-related kinases, a new oncogenic family of mitotic serine-threonine kinases. J Cell Sci 112 ( Pt 21), 3591-3601. Glover, D. M., Hagan, I. M., and Tavares, A. A. (1998). Polo-like kinases: a team that plays throughout mitosis. Genes Dev 12, 3777-3787. Gorovsky, M. A., Keevert, J. B., and Pleger, G. L. (1974). Histone F1 of Tetrahymena macronuclei: unique electrophoretic properties and phosphorylation of F1 in an amitotic nucleus. J Cell Biol 61, 134-145. Goto, H., Tomono, Y., Ajiro, K., Kosako, H., Fujita, M., Sakurai, M., Okawa, K., Iwamatsu, A., Okigaki, T., Takahashi, T., and Inagaki, M. (1999). Identification of a novel phosphorylation site on histone H3 coupled with mitotic chromosome condensation. J Biol Chem 274, 25543-25549. Govin, J., Schug, J., Krishnamoorthy, T., Dorsey, J., Khochbin, S., and Berger, S. L. (2010). Genome-wide mapping of histone H4 serine-1 phosphorylation during sporulation in Saccharomyces cerevisiae. Nucleic Acids Res 38, 4599-4606. Gradin, H. M., Larsson, N., Marklund, U., and Gullberg, M. (1998). Regulation of microtubule dynamics by extracellular signals: cAMP-dependent protein kinase switches off the activity of oncoprotein 18 in intact cells. J Cell Biol 140, 131-141. Gutierrez, J. L., Chandy, M., Carrozza, M. J., and Workman, J. L. (2007). Activation domains drive nucleosome eviction by SWI/SNF. Embo J 26, 730-740. Hale, T. K., Contreras, A., Morrison, A. J., and Herrera, R. E. (2006). Phosphorylation of the linker histone H1 by CDK regulates its binding to HP1alpha. Mol Cell 22, 693-699. Han, S. J., and Conti, M. (2006). New pathways from PKA to the Cdc2/cyclin B complex in oocytes: Wee1B as a potential PKA substrate. Cell Cycle 5, 227-231. Hanoune, J., and Defer, N. (2001). Regulation and role of adenylyl cyclase isoforms. Annu Rev Pharmacol Toxicol 41, 145-174. Happel, N., and Doenecke, D. (2009). Histone H1 and its isoforms: contribution to chromatin structure and function. Gene 431, 1-12. Happel, N., Stoldt, S., Schmidt, B., and Doenecke, D. (2009). M phase-specific phosphorylation of histone H1.5 at threonine 10 by GSK-3. J Mol Biol 386, 339-350. Harper, M., Tillit, J., Kress, M., and Ernoult-Lange, M. (2009). Phosphorylation-dependent binding of human transcription factor MOK2 to lamin A/C. Febs J 276, 3137-3147. Hashimoto, H., Takami, Y., Sonoda, E., Iwasaki, T., Iwano, H., Tachibana, M., Takeda, S., Nakayama, T., Kimura, H., and Shinkai, Y. (2010). Histone H1 null vertebrate cells exhibit altered nucleosome architecture. Nucleic Acids Res 38, 3533-3545. Hendzel, M. J., Wei, Y., Mancini, M. A., Van Hooser, A., Ranalli, T., Brinkley, B. R., Bazett-Jones, D. P., and Allis, C. D. (1997). Mitosis-specific phosphorylation of histone H3 initiates primarily within pericentromeric heterochromatin during G2 and spreads in an ordered fashion coincident with mitotic chromosome condensation. Chromosoma 106, 348-360. Hergeth, S. P., Dundr, M., Tropberger, P., Zee, B. M., Garcia, B. A., Daujat, S., and Schneider, R. (2011). Isoform-specific phosphorylation of human linker histone H1.4 in mitosis by the kinase Aurora B. J Cell Sci 124, 1623-1628. Herrera, R. E., Chen, F., and Weinberg, R. A. (1996). Increased histone H1 phosphorylation and relaxed chromatin structure in Rb-deficient fibroblasts. Proc Natl Acad Sci U S A 93, 11510-11515. Hill, C. S., Rimmer, J. M., Green, B. N., Finch, J. T., and Thomas, J. O. (1990). Histone-DNA interactions and their modulation by phosphorylation of -Ser-Pro-X-Lys/Arg- motifs. Embo J 10, 1939-1948. Hill, D. A. (2001). Influence of linker histone H1 on chromatin remodeling. Biochem Cell Biol 79, 317-324. Hjerrild, M., Stensballe, A., Jensen, O. N., Gammeltoft, S., and Rasmussen, T. E. (2004). Protein kinase A phosphorylates serine 267 in the homeodomain of engrailed-2 leading to decreased DNA binding. FEBS Lett 568, 55-59. Horn, P. J., Carruthers, L. M., Logie, C., Hill, D. A., Solomon, M. J., Wade, P. A., Imbalzano, A. N., Hansen, J. C., and Peterson, C. L. (2002). Phosphorylation of linker histones regulates ATP-dependent chromatin remodeling enzymes. Nat Struct Biol 9, 263-267. Horner, T. J., Osawa, S., Schaller, M. D., and Weiss, E. R. (2005). Phosphorylation of GRK1 and GRK7 by cAMP-dependent protein kinase attenuates their enzymatic activities. J Biol Chem 280, 28241-28250. Houben, A., Demidov, D., Rutten, T., and Scheidtmann, K. H. (2005). Novel phosphorylation of histone H3 at threonine 11 that temporally correlates with condensation of mitotic and meiotic chromosomes in plant cells. Cytogenet Genome Res 109, 148-155. Howell, B., Larsson, N., Gullberg, M., and Cassimeris, L. (1999). Dissociation of the tubulin-sequestering and microtubule catastrophe-promoting activities of oncoprotein 18/stathmin. Mol Biol Cell 10, 105-118. Hsu, C. H., Chang, M. D., Tai, K. Y., Yang, Y. T., Wang, P. S., Chen, C. J., Wang, Y. H., Lee, S. C., Wu, C. W., and Juan, L. J. (2004). HCMV IE2-mediated inhibition of HAT activity downregulates p53 function. Embo J 23, 2269-2280. Hubbard, M. J., and Cohen, P. (1989). Regulation of protein phosphatase-1G from rabbit skeletal muscle. 1. Phosphorylation by cAMP-dependent protein kinase at site 2 releases catalytic subunit from the glycogen-bound holoenzyme. Eur J Biochem 186, 701-709. Hurd, P. J., Bannister, A. J., Halls, K., Dawson, M. A., Vermeulen, M., Olsen, J. V., Ismail, H., Somers, J., Mann, M., Owen-Hughes, T., et al. (2009). Phosphorylation of histone H3 Thr-45 is linked to apoptosis. J Biol Chem 284, 16575-16583. Imaizumi-Scherrer, T., Faust, D. M., Barradeau, S., Hellio, R., and Weiss, M. C. (2001). Type I protein kinase a is localized to interphase microtubules and strongly associated with the mitotic spindle. Exp Cell Res 264, 250-265. Izzo, A., Kamieniarz, K., and Schneider, R. (2008). The histone H1 family: specific members, specific functions? Biol Chem 389, 333-343. Jackman, J., and O'Connor, P. M. (2001). Methods for synchronizing cells at specific stages of the cell cycle. Curr Protoc Cell Biol Chapter 8, Unit 8 3. Juan, L. J., Utley, R. T., Adams, C. C., Vettese-Dadey, M., and Workman, J. L. (1994). Differential repression of transcription factor binding by histone H1 is regulated by the core histone amino termini. Embo J 13, 6031-6040. Kang, B., Pu, M., Hu, G., Wen, W., Dong, Z., Zhao, K., Stillman, B., and Zhang, Z. (2011). Phosphorylation of H4 Ser 47 promotes HIRA-mediated nucleosome assembly. Genes Dev 25, 1359-1364. Karetsou, Z., Sandaltzopoulos, R., Frangou-Lazaridis, M., Lai, C. Y., Tsolas, O., Becker, P. B., and Papamarcaki, T. (1998). Prothymosin alpha modulates the interaction of histone H1 with chromatin. Nucleic Acids Res 26, 3111-3118. Keller, P., Semenza, G., and Shaltiel, S. (1995). Disposition of the carboxy-terminus tail of rabbit lactase-phlorizin hydrolase elucidated by phosphorylation with protein kinase A in vitro and in tissue culture. FEBS Lett 368, 563-567. Kim, K., Choi, J., Heo, K., Kim, H., Levens, D., Kohno, K., Johnson, E. M., Brock, H. W., and An, W. (2008). Isolation and characterization of a novel H1.2 complex that acts as a repressor of p53-mediated transcription. J Biol Chem 283, 9113-9126. Kinyamu, H. K., and Archer, T. K. (2004). Modifying chromatin to permit steroid hormone receptor-dependent transcription. Biochim Biophys Acta 1677, 30-45. Kohlstaedt, L. A., and Cole, R. D. (1994). Specific interaction between H1 histone and high mobility protein HMG1. Biochemistry 33, 570-575. Konesky, K. L., Nyborg, J. K., and Laybourn, P. J. (2006). Tax abolishes histone H1 repression of p300 acetyltransferase activity at the human T-cell leukemia virus type 1 promoter. J Virol 80, 10542-10553. Kotani, S., Tugendreich, S., Fujii, M., Jorgensen, P. M., Watanabe, N., Hoog, C., Hieter, P., and Todokoro, K. (1998). PKA and MPF-activated polo-like kinase regulate anaphase-promoting complex activity and mitosis progression. Mol Cell 1, 371-380. Kraus, W. L. (2008). Transcriptional control by PARP-1: chromatin modulation, enhancer-binding, coregulation, and insulation. Curr Opin Cell Biol 20, 294-302. Kuzmichev, A., Jenuwein, T., Tempst, P., and Reinberg, D. (2004). Different EZH2-containing complexes target methylation of histone H1 or nucleosomal histone H3. Mol Cell 14, 183-193. Larsson, N., Marklund, U., Gradin, H. M., Brattsand, G., and Gullberg, M. (1997). Control of microtubule dynamics by oncoprotein 18: dissection of the regulatory role of multisite phosphorylation during mitosis. Mol Cell Biol 17, 5530-5539. Lau, A. T., Lee, S. Y., Xu, Y. M., Zheng, D., Cho, Y. Y., Zhu, F., Kim, H. G., Li, S. Q., Zhang, Z., Bode, A. M., and Dong, Z. (2011). Phosphorylation of histone H2B serine 32 is linked to cell transformation. J Biol Chem 286, 26628-26637. Lee, C. F., Ou, D. S., Lee, S. B., Chang, L. H., Lin, R. K., Li, Y. S., Upadhyay, A. K., Cheng, X., Wang, Y. C., Hsu, H. S., et al. (2010). hNaa10p contributes to tumorigenesis by facilitating DNMT1-mediated tumor suppressor gene silencing. J Clin Invest 120, 2920-2930. Lee, H., Habas, R., and Abate-Shen, C. (2004). MSX1 cooperates with histone H1b for inhibition of transcription and myogenesis. Science 304, 1675-1678. Lee, H. L., and Archer, T. K. (1998). Prolonged glucocorticoid exposure dephosphorylates histone H1 and inactivates the MMTV promoter. Embo J 17, 1454-1466. Lee, J. H., and Skalnik, D. G. (2002). CpG-binding protein is a nuclear matrix- and euchromatin-associated protein localized to nuclear speckles containing human trithorax. Identification of nuclear matrix targeting signals. J Biol Chem 277, 42259-42267. Lerosey, I., Pizon, V., Tavitian, A., and de Gunzburg, J. (1991). The cAMP-dependent protein kinase phosphorylates the rap1 protein in vitro as well as in intact fibroblasts, but not the closely related rap2 protein. Biochem Biophys Res Commun 175, 430-436. Lesner, A., Kartvelishvili, A., Lesniak, J., Nikolov, D., Kartvelishvili, M., Trillo-Pazos, G., Zablotna, E., and Simm, M. (2004). Monoubiquitinated histone H1B is required for antiviral protection in CD4(+)T cells resistant to HIV-1. Biochemistry 43, 16203-16211. Li, Z., Ajdic, J., Eigenthaler, M., and Du, X. (2003). A predominant role for cAMP-dependent protein kinase in the cGMP-induced phosphorylation of vasodilator-stimulated phosphoprotein and platelet inhibition in humans. Blood 101, 4423-4429. Liu, X., Zou, H., Widlak, P., Garrard, W., and Wang, X. (1999). Activation of the apoptotic endonuclease DFF40 (caspase-activated DNase or nuclease). Oligomerization and direct interaction with histone H1. J Biol Chem 274, 13836-13840. Lonart, G., Schoch, S., Kaeser, P. S., Larkin, C. J., Sudhof, T. C., and Linden, D. J. (2003). Phosphorylation of RIM1alpha by PKA triggers presynaptic long-term potentiation at cerebellar parallel fiber synapses. Cell 115, 49-60. Lu, A., Zougman, A., Pudelko, M., Bebenek, M., Ziolkowski, P., Mann, M., and Wisniewski, J. R. (2009). Mapping of lysine monomethylation of linker histones in human breast and its cancer. J Proteome Res 8, 4207-4215. Luo, M., Jones, S. M., Phare, S. M., Coffey, M. J., Peters-Golden, M., and Brock, T. G. (2004). Protein kinase A inhibits leukotriene synthesis by phosphorylation of 5-lipoxygenase on serine 523. J Biol Chem 279, 41512-41520. Lutz, W., Lingle, W. L., McCormick, D., Greenwood, T. M., and Salisbury, J. L. (2001). Phosphorylation of centrin during the cell cycle and its role in centriole separation preceding centrosome duplication. J Biol Chem 276, 20774-20780. Madaule, P., Eda, M., Watanabe, N., Fujisawa, K., Matsuoka, T., Bito, H., Ishizaki, T., and Narumiya, S. (1998). Role of citron kinase as a target of the small GTPase Rho in cytokinesis. Nature 394, 491-494. Mahoney, N. M., Goshima, G., Douglass, A. D., and Vale, R. D. (2006). Making microtubules and mitotic spindles in cells without functional centrosomes. Curr Biol 16, 564-569. Maresca, T. J., and Heald, R. (2006). The long and the short of it: linker histone H1 is required for metaphase chromosome compaction. Cell Cycle 5, 589-591. Martin, C., Cao, R., and Zhang, Y. (2006). Substrate preferences of the EZH2 histone methyltransferase complex. J Biol Chem 281, 8365-8370. Matafora, V., D'Amato, A., Mori, S., Blasi, F., and Bachi, A. (2009). Proteomics analysis of nucleolar SUMO-1 target proteins upon proteasome inhibition. Mol Cell Proteomics 8, 2243-2255. Mayr, B., and Montminy, M. (2001). Transcriptional regulation by the phosphorylation-dependent factor CREB. Nat Rev Mol Cell Biol 2, 599-609. McBryant, S. J., Lu, X., and Hansen, J. C. (2010). Multifunctionality of the linker histones: an emerging role for protein-protein interactions. Cell Res 20, 519-528. McManus, K. J., and Hendzel, M. J. (2005). ATM-dependent DNA damage-independent mitotic phosphorylation of H2AX in normally growing mammalian cells. Mol Biol Cell 16, 5013-5025. Mecklenbrauker, I., Kalled, S. L., Leitges, M., Mackay, F., and Tarakhovsky, A. (2004). Regulation of B-cell survival by BAFF-dependent PKCdelta-mediated nuclear signalling. Nature 431, 456-461. Meetei, A. R., Ullas, K. S., Vasupradha, V., and Rao, M. R. (2002). Involvement of protein kinase A in the phosphorylation of spermatidal protein TP2 and its effect on DNA condensation. Biochemistry 41, 185-195. Metzger, E., Imhof, A., Patel, D., Kahl, P., Hoffmeyer, K., Friedrichs, N., Muller, J. M., Greschik, H., Kirfel, J., Ji, S., et al. (2010). Phosphorylation of histone H3T6 by PKCbeta(I) controls demethylation at histone H3K4. Nature 464, 792-796. Metzger, E., Yin, N., Wissmann, M., Kunowska, N., Fischer, K., Friedrichs, N., Patnaik, D., Higgins, J. M., Potier, N., Scheidtmann, K. H., et al. (2008). Phosphorylation of histone H3 at threonine 11 establishes a novel chromatin mark for transcriptional regulation. Nat Cell Biol 10, 53-60. Mohamed, A. S., Dignam, J. D., and Schlender, K. K. (1998). Cardiac myosin-binding protein C (MyBP-C): identification of protein kinase A and protein kinase C phosphorylation sites. Arch Biochem Biophys 358, 313-319. Montes de Oca, R., Lee, K. K., and Wilson, K. L. (2005). Binding of barrier to autointegration factor (BAF) to histone H3 and selected linker histones including H1.1. J Biol Chem 280, 42252-42262. Montminy, M. R., and Bilezikjian, L. M. (1987). Binding of a nuclear protein to the cyclic-AMP response element of the somatostatin gene. Nature 328, 175-178. Ni, J. Q., Liu, L. P., Hess, D., Rietdorf, J., and Sun, F. L. (2006). Drosophila ribosomal proteins are associated with linker histone H1 and suppress gene transcription. Genes Dev 20, 1959-1973. Nielsen, A. L., Oulad-Abdelghani, M., Ortiz, J. A., Remboutsika, E., Chambon, P., and Losson, R. (2001). Heterochromatin formation in mammalian cells: interaction between histones and HP1 proteins. Mol Cell 7, 729-739. Noll, M., and Kornberg, R. D. (1977). Action of micrococcal nuclease on chromatin and the location of histone H1. J Mol Biol 109, 393-404. North, J. A., Javaid, S., Ferdinand, M. B., Chatterjee, N., Picking, J. W., Shoffner, M., Nakkula, R. J., Bartholomew, B., Ottesen, J. J., Fishel, R., and Poirier, M. G. (2011). Phosphorylation of histone H3(T118) alters nucleosome dynamics and remodeling. Nucleic Acids Res 39, 6465-6474. O'Brien, S. K., Cao, H., Nathans, R., Ali, A., and Rana, T. M. (2010). P-TEFb kinase complex phosphorylates histone H1 to regulate expression of cellular and HIV-1 genes. J Biol Chem 285, 29713-29720. Ohe, Y., Hayashi, H., and Iwai, K. (1986). Human spleen histone H1. Isolation and amino acid sequence of a main variant, H1b. J Biochem 100, 359-368. Ohe, Y., Hayashi, H., and Iwai, K. (1989). Human spleen histone H1. Isolation and amino acid sequences of three minor variants, H1a, H1c, and H1d. J Biochem 106, 844-857. Otaegui, P. J., O'Neill, G. T., Campbell, K. H., and Wilmut, I. (1994). Transfer of nuclei from 8-cell stage mouse embryos following use of nocodazole to control the cell cycle. Mol Reprod Dev 39, 147-152. Ou, D. S., Lee, S. B., Chu, C. S., Chang, L. H., Chung, B. C., and Juan, L. J. (2011). Transcriptional activation of endoplasmic reticulum chaperone GRP78 by HCMV IE1-72 protein. Cell Res 21: 642-653. Padilla-Nash, H. M., Wu, K., Just, H., Ried, T., and Thestrup-Pedersen, K. (2007). Spectral karyotyping demonstrates genetically unstable skin-homing T lymphocytes in cutaneous T-cell lymphoma. Exp Dermatol 16, 98-103. Papamarcaki, T., and Tsolas, O. (1994). Prothymosin alpha binds to histone H1 in vitro. FEBS Lett 345, 71-75. Perez-Cadahia, B., Drobic, B., Khan, P., Shivashankar, C. C., and Davie, J. R. (2010). Current understanding and importance of histone phosphorylation in regulating chromatin biology. Curr Opin Drug Discov Devel 13, 613-622. Pham, A. D., and Sauer, F. (2000). Ubiquitin-activating/conjugating activity of TAFII250, a mediator of activation of gene expression in Drosophila. Science 289, 2357-2360. Pochron, S. F., and Baserga, R. (1979). Histone H1 phosphorylation in cell cycle-specific temperature-sensitive mutants of mammalian cells. J Biol Chem 254, 6352-6356. Prymakowska-Bosak, M., Misteli, T., Herrera, J. E., Shirakawa, H., Birger, Y., Garfield, S., and Bustin, M. (2001). Mitotic phosphorylation prevents the binding of HMGN proteins to chromatin. Mol Cell Biol 21, 5169-5178. Qian, J., Lesage, B., Beullens, M., Van Eynde, A., and Bollen, M. (2011). PP1/Repo-man dephosphorylates mitotic histone H3 at T3 and regulates chromosomal aurora B targeting. Curr Biol 21, 766-773. Ramakrishnan, V., Finch, J. T., Graziano, V., Lee, P. L., and Sweet, R. M. (1993). Crystal structure of globular domain of histone H5 and its implications for nucleosome binding. Nature 362, 219-223. Rasmussen, C., and Garen, C. (1993). Activation of calmodulin-dependent enzymes can be selectively inhibited by histone H1. J Biol Chem 268, 23788-23791. Reig, J. A., Yu, L., and Klein, D. C. (1990). Pineal transduction. Adrenergic----cyclic AMP-dependent phosphorylation of cytoplasmic 33-kDa protein (MEKA) which binds beta gamma-complex of transducin. J Biol Chem 265, 5816-5824. Roth, S. Y., and Allis, C. D. (1992). Chromatin condensation: does histone H1 dephosphorylation play a role? Trends Biochem Sci 17, 93-98. Rupp, R. A., and Becker, P. B. (2005). Gene regulation by histone H1: new links to DNA methylation. Cell 123, 1178-1179. Sancho, M., Diani, E., Beato, M., and Jordan, A. (2008). Depletion of human histone H1 variants uncovers specific roles in gene expression and cell growth. PLoS Genet 4, e1000227. Sarg, B., Chwatal, S., Talasz, H., and Lindner, H. H. (2009). Testis-specific linker histone H1t is multiply phosphorylated during spermatogenesis. Identification of phosphorylation sites. J Biol Chem 284, 3610-3618. Sarg, B., Helliger, W., Talasz, H., Forg, B., and Lindner, H. H. (2006). Histone H1 phosphorylation occurs site-specifically during interphase and mitosis: identification of a novel phosphorylation site on histone H1. J Biol Chem 281, 6573-6580. Schmidt, P. H., Dransfield, D. T., Claudio, J. O., Hawley, R. G., Trotter, K. W., Milgram, S. L., and Goldenring, J. R. (1999). AKAP350, a multiply spliced protein kinase A-anchoring protein associated with centrosomes. J Biol Chem 274, 3055-3066. Schneider, A., Biernat, J., von Bergen, M., Mandelkow, E., and Mandelkow, E. M. (1999). Phosphorylation that detaches tau protein from microtubules (Ser262, Ser214) also protects it against aggregation into Alzheimer paired helical filaments. Biochemistry 38, 3549-3558. Sedelnikova, O. A., Pilch, D. R., Redon, C., and Bonner, W. M. (2003). Histone H2AX in DNA damage and repair. Cancer Biol Ther 2, 233-235. Shabb, J. B. (2001). Physiological substrates of cAMP-dependent protein kinase. Chem Rev 101, 2381-2411. Shechter, D., Dormann, H. L., Allis, C. D., and Hake, S. B. (2007). Extraction, purification and analysis of histones. Nat Protoc 2, 1445-1457. Shimada, M., Haruta, M., Niida, H., Sawamoto, K., and Nakanishi, M. (2010). Protein phosphatase 1gamma is responsible for dephosphorylation of histone H3 at Thr 11 after DNA damage. EMBO Rep 11, 883-889. Shimada, M., Niida, H., Zineldeen, D. H., Tagami, H., Tanaka, M., Saito, H., and Nakanishi, M. (2008). Chk1 is a histone H3 threonine 11 kinase that regulates DNA damage-induced transcriptional repression. Cell 132, 221-232. Stork, P. J., and Schmitt, J. M. (2002). Crosstalk between cAMP and MAP kinase signaling in the regulation of cell proliferation. Trends Cell Biol 12, 258-266. Su, S. T., Ying, H. Y., Chiu, Y. K., Lin, F. R., Chen, M. Y., and Lin, K. I. (2009). Involvement of histone demethylase LSD1 in Blimp-1-mediated gene repression during plasma cell differentiation. Mol Cell Biol 29, 1421-1431. Suganuma, T., Gutierrez, J. L., Li, B., Florens, L., Swanson, S. K., Washburn, M. P., Abmayr, S. M., and Workman, J. L. (2008). ATAC is a double histone acetyltransferase complex that stimulates nucleosome sliding. Nat Struct Mol Biol 15, 364-372. Swindle, C. S., and Engler, J. A. (1998). Association of the human papillomavirus type 11 E1 protein with histone H1. J Virol 72, 1994-2001. Talasz, H., Sarg, B., and Lindner, H. H. (2009). Site-specifically phosphorylated forms of H1.5 and H1.2 localized at distinct regions of the nucleus are related to different processes during the cell cycle. Chromosoma 118, 693-709. Tan, Y., Demeter, M. R., Ruan, H., and Comb, M. J. (2000). BAD Ser-155 phosphorylation regulates BAD/Bcl-XL interaction and cell survival. J Biol Chem 275, 25865-25869. Tasken, K., Skalhegg, B. S., Solberg, R., Andersson, K. B., Taylor, S. S., Lea, T., Blomhoff, H. K., Jahnsen, T., and Hansson, V. (1993). Novel isozymes of cAMP-dependent protein kinase exist in human cells due to formation of RI alpha-RI beta heterodimeric complexes. J Biol Chem 268, 21276-21283. Tasken, K., Skalhegg, B. S., Tasken, K. A., Solberg, R., Knutsen, H. K., Levy, F. O., Sandberg, M., Orstavik, S., Larsen, T., Johansen, A. K., et al. (1997). Structure, function, and regulation of human cAMP-dependent protein kinases. Adv Second Messenger Phosphoprotein Res 31, 191-204. Terrell, J., Shih, S., Dunn, R., and Hicke, L. (1998). A function for monoubiquitination in the internalization of a G protein-coupled rece | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7047 | - |
| dc.description.abstract | 真核細胞之DNA由核心組蛋白(Core histones)及連結組蛋白(Linker histone)纏繞成Nucleosomes。組蛋白之轉譯後修飾(Posttranslational modification)構成組蛋白密碼(Histone code),可調控細胞基因轉錄(Gene transcription) 。相對於核心組蛋白,連結組蛋白之轉譯後修飾及其生理意義並不清楚。本實驗室利用質譜儀鑑定蛋白質轉譯後修飾的策略鑑定出許多在連結組蛋白H1.4上尚未被鑑定的蛋白質轉譯後修飾,其中,我們發現其N端第35個思氨酸 (serine 35)上具有一磷酸化位置,此磷酸化在有絲分裂時候會累積。進一步研究發現蛋白質磷酸激脢A (PKA)為其主要的磷酸化酵素。思氨酸35磷酸化後的H1.4會減低原本H1.4和染色質連結的能力。我們進一步發現此氨基酸對於抑制H1.4基因表現後引發的有絲分裂缺陷是重要的。在抑制PKA活性的實驗中,我們亦發現PKA對於染色質在有絲分裂下的濃縮扮演相當的角色,而這樣的角色有部分是跟H1.4有關的。我們同時發現在思氨酸35鄰近區域有一離氨酸 (lysine 33)會被進行甲基化,SET7,一個組蛋白H3上第四個離氨酸的甲基脢亦會對H1.4進行甲基化。並且,此兩個鄰近的蛋白質轉譯後修飾具有互相調控的機制存在。在此篇研究中,我們闡述了此一H1.4之N端serine 35 磷酸化在細胞分裂的重要性,在發現其鄰近的離氨酸33之甲基化的同時也發現了此兩修飾相互調控的可能。因此,此篇研究提供了更進一步的訊息,作為將來明瞭連結組蛋白密碼之複雜功能之用。 | zh_TW |
| dc.description.abstract | Global histone H1 phosphorylation correlates with cell cycle progression. However, the function of site-specific H1 variant phosphorylation remains unclear. Our mass spectrometry analysis revealed several new modifications on H1. Among them, a novel N-terminal phosphorylation of the major H1 variant H1.4 at serine 35 (H1.4S35ph) was found to accumulate at mitosis. Protein kinase A (PKA) was found to be a kinase for H1.4S35. Importantly, S35-phosphorylated H1.4 contains weaker binding affinity to mitotic chromatin. Moreover, H1.4S35A substitution mutant cannot efficiently rescue the mitotic defect following H1.4 depletion and inhibition of PKA activity increases the mitotic chromatin compaction depending on H1.4. In addition, an adjacent methylation on lysine 33 was also identified. We further demonstrated that SET7, a histone H3K4 methyltransferase, can methylate H1.4K33 both in vivo and in vitro. Finally, a crosstalk between H1.4S35ph and H1.4K33me was characterized. Our results not only indicate that PKA-mediated H1.4S35 phosphorylation interferes H1.4 binding affinity to mitotic chromatin, but also suggest that this phosphorylation is necessary for specific mitotic functions. Our data suggest that the adjacent H1.4K33me might be involved in this regulation. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-17T10:18:02Z (GMT). No. of bitstreams: 1 ntu-100-D95448005-1.pdf: 3534783 bytes, checksum: a4d691ebb454161b5d4ab474aaf9e9ae (MD5) Previous issue date: 2011 | en |
| dc.description.tableofcontents | Content
Content page Abstract and keywords in Chinese i Abstract and keywords ii Introduction 1 I. Linker histone H1 family 2 II. Structure of histone H1 and DNA binding 2 III. The biological role of linker histone H1 3 IV. Posttranslational modifications on linker histone H1 4 V. Protein kinase A (PKA) 11 Aims 15 Materials and Methods 17 1. Cell culture and synchronization 18 2. Antibodies, inhibitors and drugs 18 3. Generation of PTM-specific antibodies 19 4. Plasmids 20 5. Mass spectrometry 21 6. Knockdown experiments by siRNA transfection or lentivirus transduction 21 7. Western blotting, histone extraction, and fractionation 21 8. In vitro kinase assay 22 9. Immunofluorescence 23 10. Propidium iodide staining 23 11. Micrococcal nuclease (MNase) sensitivity assay 24 12. Generation of biotin-labeled probe, purification of oligonucleosomes from HeLa cells, and nucleosome reconstitution 24 13. Electrophoresis mobility shift assay (EMSA) 25 14. Metaphase spread 26 15. Quantitative real-time reverse-transcription polymerase chain reaction (RT-qPCR) 26 16. Histone methylation assay 26 17. In vivo methylation labeling 27 Results 28 1. Mass spectrometry analysis identified many novel PTMs on H1 29 2. H1.4 is phosphorylated at serine 35 during mitosis 30 3. Parallel accumulation of H1.4S35 phosphorylation and H3S10 phosphorylation during mitosis 32 4. PKA phosphorylates H1.4 at S35 in vivo 33 5. PKA directly phosphorylates H1.4 at S35 in vitro 34 6. S35-phosphorylated H1.4 decreases the binding affinity of H1.4 to mitotic chromatin 35 7. H1.4S35A substitution mutant cannot efficiently rescue the mitotic defect caused by H1.4 depletion 36 8. Inhibition of PKA activity increases the mitotic chromatin compaction In a H1.4-dependent manner 38 9. H1.4 is methylated at lysine 33 39 10. SET7 directly methylates H1.4K33me1 in vivo and in vitro 39 11. Loss of H1.4K33me1 enhances H1.4S35ph accumulation 40 Discussion 42 Abbreviations 50 References 52 Tables 76 Table 1 77 Table 2 78 Table 3 79 Table 4 80 Table 5 81 Table 6 82 Table 7 83 Table 8 84 Table 9 85 Figures 86 Figure 1 87 Figure 2 90 Figure 3 91 Figure 4 93 Figure 5 94 Figure 6 96 Figure 7 97 Figure 8 98 Figure 9 99 Figure 10 101 Figure 11 103 Supplementary Figures 104 Supplementary Figure 1 105 Supplementary Figure 2 106 Supplementary Figure 3 107 Supplementary Figure 4 108 Supplementary Figure 5 109 Supplementary Figure 6 110 Supplementary Figure 7 111 Supplementary Figure 8 112 Supplementary Figure 9 113 Supplementary Figure 10 114 Supplementary Figure 11 115 Supplementary Figure 12 116 Supplementary Figure 13 117 Supplementary Figure 14 118 List of publications 120 | |
| dc.language.iso | en | |
| dc.subject | 蛋白質磷酸激脢A | zh_TW |
| dc.subject | 細胞週期 | zh_TW |
| dc.subject | 有絲分裂 | zh_TW |
| dc.subject | 連結組蛋白 | zh_TW |
| dc.subject | 染色質濃縮 | zh_TW |
| dc.subject | 磷酸化 | zh_TW |
| dc.subject | DNA compaction | en |
| dc.subject | Linker histone | en |
| dc.subject | H1 | en |
| dc.subject | H1.4 | en |
| dc.subject | protein kinase A | en |
| dc.subject | cAMP-dependent protein kinase | en |
| dc.subject | PKA | en |
| dc.subject | Cell cycle | en |
| dc.subject | phosphorylation | en |
| dc.subject | mitosis | en |
| dc.title | 蛋白激脢A媒介之絲氨酸35的磷酸化導致連結組蛋白H1.4從有絲分裂中的染色質上游離之探討 | zh_TW |
| dc.title | Protein Kinase A-Mediated Serine 35 Phosphorylation Dissociates Histone H1.4 from Mitotic Chromosome | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-1 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 呂勝春,施修明,鍾邦柱,沈哲鯤 | |
| dc.subject.keyword | 連結組蛋白,蛋白質磷酸激脢A,細胞週期,磷酸化,有絲分裂,染色質濃縮, | zh_TW |
| dc.subject.keyword | Linker histone,H1,H1.4,protein kinase A,cAMP-dependent protein kinase,PKA,Cell cycle,phosphorylation,mitosis,DNA compaction, | en |
| dc.relation.page | 120 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2011-12-29 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 分子醫學研究所 | zh_TW |
| 顯示於系所單位: | 分子醫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-100-1.pdf | 3.45 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
