Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物環境系統工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70475
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor劉振宇(Chen-Wuing Liu)
dc.contributor.authorBo-Cheng Panen
dc.contributor.author潘柏成zh_TW
dc.date.accessioned2021-06-17T04:29:00Z-
dc.date.available2021-08-15
dc.date.copyright2018-08-15
dc.date.issued2018
dc.date.submitted2018-08-13
dc.identifier.citationAhmed, K. M., Bhattacharya, P., Hasan, M. A., Akhter, S. H., Alam, S. M. M., Bhuyian, M. A. H., Imam, M. B., Khan, A. A., Sracek, O., (2004), Applied Geochemistry 19, 181-200.
Berg, M., Tran, H. C., Nguyen, T. C., Pham, H. V., Schertenleib, R., Giger, W., (2001), Arsenic contamination of ground and drinking water in Vietnam: A human health threat. Environmental Science & Technology 35: 2621-2626.
Berg, M., Trang, P. T. K., Stengel, C., Buschmann, J., Viet, P. H., Dan, N. V., Giger. W., Stüben, D., (2008), Hydrological and Sedimentary Controls Leading to Arsenic Contamination of Groundwater in the Hanoi Area, Vietnam: The Impact of Iron-Arsenic Ratios, Peat, River Bank Deposits, and Excessive Groundwater Abstraction. Chemical Geology, 249(1–2):91–112.
Bhumbla, D. K., Keefer, R. F., (1994), Arsenic Mobilization and Bioavailability in Soils. In J.O Nriagu (ed.) Arsenic in the Enviroment Part1. Cycling and Characterization, p.51-58 , New York, JohnWiley & Sons Inc.
Chakraborty, M., Mukherjee, A., Ahmed, K. M., (2015), A Review of Groundwater Arsenic in the Bengal Basin, Bangladesh and India: from Source to Sink, Springer International Publishing AG 2015.
Chiang, W. H., Kinzelbach, W., (1993), Processing Modflow (PM), Pre and postprocessors for the simulation of flow and contaminants transport in groundwater system with MODFLOW, MODPATH and MT3D.
Chiang, W. H., Kinzelbach, W., (1998). Processing Modflow for Windows (PMWIN), A Simulation System for Modeling Groundwater Flow and Pollution.
Chiang, W. H., Kinzelbach, W., (2001), 3D-Groundwater Modeling with PMWIN: A Simulation System for Modeling Groundwater Flow and Pollution Springer-Verlag ,346 page.
Cho, S., Mostaghimi, S., Kang, M. S., (2009), Development and application of a modeling approach for surface water and groundwater interaction. Department of Rural Systems Engineering, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, 151-742, Republic of Korea.
Don, N. C., Hang, N. T. M., Araki, H., Yamanishi, H., Koga, K., (2006), Groundwater resources and management for paddy field irrigation and associated environmental problems in an alluvial coastal lowland plain. Agricultural Water Management 84 (3), 295-304.
Erban, L. E., Gorelicka, S. M., Zebkerb, H. A., Fendorfa, S., (2013), Release of arsenic to deep groundwater in the Mekong Delta, Vietnam, linked to pumping-induced land subsidence. Proceedings of the National Academy of Sciences, 110(34), 13751-13756.
Erban, L. E., Gorelick, S. M., Fendorf, S., (2014). Arsenic in the multi-aquifer system of the Mekong delta, Vietnam: Analysis of large-scale spatial trends and controlling factors. Environmental Science & Technology, 48(11), 6081-6088.
Ferrecio, C., González, C., Milosavjlevic, V., Marshall, G., Sancha, A. M., Smith, A. H., (2000), Lung cancer and arsenic concentrations in drinking water in Chile. Epidemiology 11 (6),673-9.
Galloway, D. L., Hoffmann, J., (2007), The application of satellite differential SAR interferometry-derived ground displacements in hydrogeology. Hydrogeology Journal 15 (1), 133-154.
Galloway, D. L., Sneed, M., (2013), Analysis and simulation of regional subsidence accompanying groundwater abstraction and compaction of susceptible aquifer system in the USA. Boletín de la Sociedad Geológica Mexicana 65 (1), 123-136.
Gelhar, L.W., Welty, C., Rehfeldt, K. R., (1992), A critical review of data on field-scale dispersion in aquifers. Water Resources Research 28 (7), 1955-1974.
Guerra, D. L., Airoldi, C., Viana, R. R., (2010), Performance of natural and modified smectite-kinetic and thermodynamics involving arsenic (Ⅴ) adsorption. Cerâmica 56, 49–56.
Harbaugh, A.W., McDonald, M. G., (1996), Programmer's documentation for MODFLOW-96, an update to the U.S. Geological Survey modular finite-difference ground-water flow model: U.S. Geological Survey Open-File Report 96-486, 220 page.
Hoffmann, J., Galloway, D. L., Zebker, H. A., (2003), Inverse modeling of interbed storage parameters using land subsidence observations, Antelope Valley, California, Water Resources Research, 39 (2), 1031.
Hunt, A. J., Howard, J., Gittes, F., (1994), The force exerted by a single kinesin molecule against a viscous load. Biophysical journal 67 (2), 766-81.
Jean, J. S., Bundschuh, J., Chen, C. J., Guo, H. R., Liu, C. W., Lin, T. F., Chen, Y. H., (2010), The Taiwan Crisis: a showcase of the global arsenic problem (Arsenic in the environment). CRC Press. 224 page.
Kumar, M., Kumar, P, Ramanathan, A. L., Bhattacharya, P., Thunvik, R., Singh, U. K., Tsujimura, M., Sracek, O., (2010), Arsenic enrichment in groundwater in the middle Gangetic Plain of Ghazipur District in Uttar Pradesh, India. J. Geochem. Explor.,105(3): 83–94.
Kumar, M., Das, N., Sarma, K. P., (2017) Tracing the Significance of River for Arsenic Enrichment and Mobilization. Book. Trends In Asian Water Environmental Chapter12 :139-149.
Kuroda, K., Hayashi, T., Funabiki, A., Do, A. T., Canh, V. D., Nga, T. T. V., Takizawa, S., (2017), Holocene estuarine sediments as a source of arsenic in Pleistocene groundwater in suburbs of Hanoi, Vietnam. Hydrogeology Journal (2017) 25:1137–1152.
Larson, K, J., Başaǧaoǧlu, H., Mariño, M, A., (2001), Prediction of optimal safe ground water yield and land subsidence in the Los Banos-Kettleman City area, California, using a calibrated numerical simulation model. Journal of Hydrology.Volume 242, Issues 1–2, 15 February 2001, Pages 79-102
Leake, S. A., (1990), Interbed storage changes and compaction in models of regional groundwater flow. Water Resources Research 26 (9), 1939-1950.
Leake, S. A., Prudic, D. E., (1988), Documentation of a computer program to simulate aquifer-system compaction using the modular finite-difference ground-water flow model. USGS Open-File Report , 88-482.
Lee, J. J., Jang, C. S., Liu, C. W., Liang, C. P., Wang, S. W. (2009). Determining the probability of arsenic in groundwater using a parsimonious model. Environmental Science & Technology, 43(17), 6662-6668.
Lee, J., Robinson, C., Couture, R. M., (2014), Effect of Groundwater−Lake Interactions on Arsenic Enrichment in Freshwater Beach Aquifers. Department of Civil and Environmental Engineering, Western University, London, Ontario N6A 5B9, Canada.
Liu, C. W., Lin, K. H., Chen, S. Z., Jang, C. S., (2003), Aquifer salinization in the Yun-Lin Coastal area, Taiwan, Journal of The American Water Resources Association Vol. 39, No. 4, August 2003.
Liu, C. W., Wang, S. W., Jang, C. S., Lin, K. H. (2006), Occurrence of arsenic in ground water in the Choushui River alluvial fan, Taiwan. Journal of Environmental Quality, 35(1), 68-75.
Mahmoudpour, M., Khamehchiyan, M., Nikudel, M. R., Ghassemi, M. R., (2016), Numerical simulation and prediction of regional land subsidence caused by groundwater exploitation in the southwest plain of Tehran, Iran. Department of Engineering Geology, Faculty of Basic Science, Tarbiat Modares University, Tehran, Iran.
Mandal, B., Suzuki, K., (2002), Arsenic round the World: A Review. Talanta, 58, 201-235.
McDonald, M. G., Harbaugh, A. W., (1988), A modular three-dimensional finite-difference ground-water flow model, U.S. Techniques of Water-Resources Investigations of the United States Geological Survey, Book 6 Chapter A1.
Meyer, W. R., Carr, J. E., (1979), A digital model for simulation of ground-water hydrology in the Houston area, Texas. Texas, Prepared in cooperation with the Texas Department of Water Resources and the City of Houston, Limited Printing Report 103.
Muhammad, A. M., Zhonghua, T., Sissou, Z., Mohamadi, B., Ehsan, M., (2016), Analysis of geological structure and anthropological factors affecting arsenic distribution in the Lahore aquifer, Pakistan, Hydrogeology Journal (2016) 24:1891-1904.
Nickson, R. T., McArthur, J. M., Burgess, W. G., Ahmed, K. M., Ravenscroft, P., Rahman, M., (1998), Arsenic poisoning of Bangladesh groundwater. Nature 395, 338.
Park, J. M., Lee, J. S., Lee, J. U., Chon, H. T., Jung, M. C., (2006), Microbial effects on geochemical behavior of arsenic in As-contaminated sediments. Geochemical Exploration, Volume 88, Issue 1-3, Pages 134-138.
Peters, S. C., Blum, J. D., Klaue, B., Karagas, M. R., (1999), Arsenic occurrence in New Hampshire drinking water. Environmental Science & Technology 33, 1328–1333.
Poeter, E. P., Hill, M. C., (1998), Documentation of UCODE, A Computer Code for Universal Inverese Modeling. U.S.Geological Survey Water Resources Investigations Report 98-4080.
Poland, J. F., ed., (1984), Guidebook to studies of land subsidence due to ground-water :United Nations Educational, Scientific and Cultural Organization, Pairs, hydrology 40, 305.
Polya, D. A., Gault, A. G., Diebe, N., Feldman, P., Rosenboom, J. W., Gilligan, E., Fredericks, D., Milton, A. H., Sampson, M., Rowland, H. A. L., Lythgoe, P. R., Jones, J. C., Middleton, C., Cooke, D. A, (2005), Arsenic hazard in shallow Cambodian groundwaters. Mineralogical Magazine 69: 807-823.
Rasmussen, L., Anderson, K. J., (2002), Environmental health and human exposure assessment. In: Arsenic in drinking water. WHO series. IWA Publishing, London.
Redman, A. D., Macalady, D. L., Ahmann, D., (2002), Natural organic matter affects arsenic speciation and sorption onto hematite. Environmental Science & Technology, 36(13):2889-96.
Robertson, F. N., (1989), Arsenic in ground-water under oxidizing conditions, southwest United States. Environmental Geochemistry and Health 11(3-4):171-85.
Shah, B.A., (2010), Arsenic contaminated groundwater in Holocene sediments from parts of Middle Ganga Plain, Uttar Pradesh. Current Science 98(10): 1359–1365.
Sikdar, P. K., Chakraborty, S., (2017), Numerical modelling of groundwater flow to understand the impacts of pumping on arsenic migration in the aquifer of North Bengal Plain. Department of Environment Management, Indian Institute of Social Welfare and Business Management, Kolkata, India. Journal of Earth System Science (2017) 126: 29.
Smedley, P. L., Kinniburgh, D. G., (2002), A review of the source, behaviour and distribution of arsenic in natural waters. Applied Geochemistry 17 (5), Pages 517-568.
Smith, A. H., Goycolea, M., Haque, R., Biggs, M. L., (1998), Marked Increase in Bladder and Lung Cancer Mortality in a Region of Northern Chile Due to Arsenic in Drinking Water. American Journal of Epidemiology 147(7), Pages 660–669.
Stumn, W., Morgan, J. J., (1996), Aquatic Chemistry : Chemical Equilibria and Rates in Natural Waters, 3rd Edition, John Wiley & Sons, Inc.
Terzaghi, K., (1925), Erdbaumechanik Auf Bodenphysikalischer Grundlage, Franz Deuticke, Leipzig-Wien.
Tseng, W, P., Chen , W. Y., Sung, J. L., Chen , J. S., (1961), A clinical study of blackfoot disease in Taiwan, an endemic peripheral vascular disease. Mem. College Med. Natl. Taiwan Univ., 7 (1961), pp. 1-18.
Wang, S. W., Lin, K. H., Hsueh, Y. M., Liu, C. W. (2007). Arsenic distribution in a tilapia (Oreochromis mossambicus) water-sediment aquacul tural ecosystem in black foot disease hyperendemic areas. Bulletin of Environmental Contamination and Toxicology, 78(2), 147-151.
Williamson, A. K., Purdic, D. E., Swain, L. A., (1989), Ground-water flow in the Central Valley, California, U.S. Geological Survey professional paper. 1401-D, p.127.
Zahid, A., Hassan, M. Q., Ahmed, K. M. U., (2014), Simulation of flowpaths and travel time of groundwater through arsenic-contaminated zone in the multi-layered aquifer system of Bengal Basin, Environmental Earth Sciences (2015) 73:979–991.
Zheng, C., (1990), MT3D, A modular three-dimensional transport model. S. S. Papadopulos &Associates, Inc. Bethesda, Maryland.
Zheng, C., Wang, P. P., (1998). MT3DMS, A modular three-dimensional multispecies transportmodel for simulation of advection, dispersion and chemical reactions of contaminants ingroundwater systems. Documentation and user's guide. Departments of Geology andMathematics, University of Alabama.
王聖瑋,(2007),台灣西南沿海地區地層環境中砷之來源與釋出機制,國立臺灣大學生物環境系統工程學研究所博士論文。
李心惟,(2014),結合HEC-RAS與MODFLOW於濁水溪沖積扇地下水與地層下陷模擬,國立成功大學資源工程學系碩博班碩士論文。
李昭順,劉振宇,(2012),台灣西部河川上游經濟穩定的伏流水開發,臺灣水利,60(1),29-36。
林文勝,(2001),膨潤石脫水對地層下陷之影響,國立臺灣大學物環境系統工程學研究所博士論文。
林文輝,(2003),石化場址地下污染流體堵截之研究,國立高雄第一科技大學環境與安全衛生工程所碩士論文。
林時猷,(2004),以地下水位之區位相關性輔注濁水溪沖積扇地下水模擬之參數決定,逢甲大學土木及水利工程所碩士論文。
林聖婷,(2012),濁水溪沖積扇補注量與抽水量空間分佈模式建立,國立臺灣大學土木工程學研究所碩士論文。
姚又瑜,(2013),應用重力模擬與地下水數值模式於比流出量推估-以濁水溪沖積扇為例,國立交通大學土木工程系所碩士論文。
翁士民,(2003),雲林縣地下水流況受高鐵開發之影響研究,國立雲林科技大學環境與安全工程系碩士班碩士論文。
高雨瑄,(2011),沿海地區砷在鹽化地下水之生地化循環: 硫同位素之研析,國立台灣大學生物環境系統工程學研究所博士論文。陳文福,呂學諭,劉聰桂,(2010),臺灣地下水之氧化還原狀態與砷濃度,農業工程學報,第56卷,第2期,57-70。
陳忠偉,(2002),濁水溪沖積扇合適水位與海水入侵之研究,國立成功大學學資源工程學系碩博班碩士論文。
陳昀萱,(2014),屏東平原沿海地區鹽化問題之模擬及整治策略研究,國立成功大學水利及海洋工程學系碩士論文。
陳肇夏、何信昌、謝凱旋、羅偉、林偉雄、張徽正、黃鑑水、林啟文、陳政恆、楊昭男、李元希,(2000),經濟部中央地質調查台灣地質圖。
許昊,(2010),地下水補注量推估之研究-以濁水溪沖積扇為例,國立臺灣大學生物環境系統工程學研究所碩士論文。
張祉凱,(2017),發展複合型地下水數值模式評析地下水資源開發及海水入侵,國立臺灣大學生物環境系統工程學研究所碩士論文。
張誠信,(1996),雲林地區地下水流之三維數值模擬,國立臺灣大學生物環境系統工程學研究所碩士論文。
黃士綸,(2014),含氯有機物地下水污染範圍劃定及健康風險評估:以桃園某污染場址為例,輔英科技大學環境工程與科學系碩士論文。
楊亞欣,(2013),濁水溪沖積扇地下水與地層下陷聯合運用模擬與分析,國立成功大學資源工程學系碩博班碩士論文。
莊家豐,(2017),台78線與高鐵交會處之地陷監測與沉積砂土壓縮試驗,國立雲林科技大學土木工程學類營建工程系碩班碩士論文。
劉志純,(1996),雲林地區抽水行為對地層下陷的影響,國立臺灣大學生物環境系統工程學研究所碩士論文。
蔡清研,(2007),濁水溪沖積扇整合模式下之MODFLOW地下水模擬研究,國立中正大學地震研究所暨應用地球物理研究所碩士論文。
中央氣象局,(1968–2009),台灣中部亞熱帶季風型氣候調查。
經濟部中央調查所,(1986),臺灣西南海域天然氣水合物賦存區地質調查研究:海域地質調查與地球化學探勘(2/4)。
經濟部中央地質調查所,(1999),台灣地區地下水觀測網第一期計畫濁水溪沖積扇水文地質調查研究總報告,經濟部水資源局委託計畫。
經濟部水利署,(2014),地下水補注地質敏感區劃定計畫書。
經濟部水利署,(2016),地層下陷防治服務團101年度執行計畫。
經濟部水利署湖山水庫主題網。
經濟部水利署成功大學地層下陷防治服務團。
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70475-
dc.description.abstract含砷地下水,一直為全球所關注的環保議題,於東南亞地區由於冰河時期海近海退,其地質多為沉積岩,先前研究發現天然沉積岩中砷含量高,所以該地區地層先天富有高含量的砷,大量抽取含砷地下水不僅危害人體健康,同時造成地層下陷,壓密作用可能造成黏土層或難透水層中之含高砷層間水釋出,更加惡化地下水水質,而砷釋出之物理過程及傳輸進入水體之機制,至今未有完善之研究,僅Erban et al. (2013)在東南亞地層下陷嚴重之越南湄公河三角洲,於原本砷含量較低之深水井,發現其監測井砷濃度隨井深度而增加,推測可能因地層壓縮釋出高砷層間水所致。台灣濁水溪沖積扇南翼地下水豐沛,在連續數十年密集抽水下造成嚴重之地層下陷以及水質惡化,故政府投入大量經費設置地下水及地層下陷觀測和監測站網,提供完整的地層下陷與地下水砷濃度之時空變化數據,故本研究將先彙整既有的數據,量化分析濁水溪沖積扇南翼雲林地區之地層下陷變化與該區地下水砷之時空變化趨勢及相關性,然後應用耦合三維地下水模式MODFLOW,搭配壓密模式軟體INTERBED(IBS1)及溶質傳輸模式(MT3D),模擬探討雲林地區抽水導致地層下陷,造成含水層中砷濃度增加,來確立地層下陷與砷濃度之耦合機制,以利後續地下水及水質監測管理之參考。
研究結果於含水層一顯示砷濃度釋出區域隨著主要下陷區域增加而增加,而含水層二略為增加較不明顯,但抽水導致下陷確實造成砷濃度於含水層的增加,透過情境分析進一步討論。
情境分析一:若阻水層與含水層砷濃度相近時,模擬之結果於含水層一及含水層二,皆無太大變化,證實阻水層含高砷濃度之黏土層或不透水層於物理釋出機制中扮演著穩定砷來源提供者的角色。
情境分析二:增減15%及30%全區抽水量之模擬結果,於增抽及減抽模擬中,下陷面積的改變,影響砷釋出之影響面積,證實下陷壓密阻水層中富含高砷之黏土層及不透水層,有直接影響,且抽水量作為此為此釋出機制之驅動力,當抽水量增加造成更大面積的下陷,砷釋出到被察覺時間將可能更短於Erban et al. (2013)所提出之十年。
情境分析三:透過更接近大氣變遷之情形做為假設,假設由於大氣變遷影響,夏季及秋季梅雨季節遲到或變短,造成湖山水庫蓄水量已不足供給民生所需,進而需透過抽取地下水做為補足地表水之用水,並將抽水決策分為全區增抽60%及扇頂增抽60%做比較,結果顯示增抽於扇頂,更有效於減緩主要下陷區之下陷量,砷釋出之面積及濃度亦同時受到抑制,本研究提出適合東南亞國家及本國之地下水用水策略之抽水管理決策,抽水之區位選取黏土層較少之阻水層區域進行,如砂質等,將可有效減緩下陷及砷濃度的釋出。
zh_TW
dc.description.abstractGroundwater containing arsenic has always been one of the most important environmental issues in the world, In Southeast Asia, due to the marine transgression and regression during the ice age, sedimentary formations were found with high arsenic content in previous studies. A large amount of groundwater extraction containing arsenic not only endangers human health and environment, but also causes land subsidence. Consolidation causes inter-layer water containing high arsenic released from clay or impermeable layer further worsening the groundwater quality. The mechanism of arsenic release and the transport process of arsenic to the groundwater have not been well studied. Erban et al. (2013) explored the land subsidence in the Southeast Asia, Mekong delta, Vietnam and found that the arsenic concentrations in wells may increase with the depth in deep groundwater, which was originally low in arsenic content. They speculated that high arsenic interlayer water may be expelled to the lower aquifer caused by land subsidence. Groundwater in the southern Choushi River Alluvial Fan of Taiwan is abundant. Due to intensive pumping over decades, severe subsidence and deterioration of groundwater quality were found. Government invested a large fund to set up groundwater/subsidence monitoring stations, which may provide valuable spatiotemporal data of subsidence and groundwater arsenic concentration. This study first analyzes the correlation of the land subsidence and groundwater arsenic changes in the Choushi River Alluvial Fan of Yunlin area. Secondly, a three-dimensional groundwater model MODFLOW coupled with the compaction mode software complex process of INTERBED (IBSI) and solute transport mode (MT3D) was developed to simulate the groundwater flow, land subsidence and arsenic transport in Yunlin. The simulation results demonstrate that the intensive pumping leads to subsidence and the increase of arsenic concentration in the deep groundwater aquifer. The inter-related processes among groundwater pumping, subsidence and increase of arsenic concentration identified herein may be useful to the management of groundwater resource in the Yunlin area and other Southeast Asian countries.
The results of the study also show that the arsenic concentration in the aquifer one significantly increases in the major subsidence area, while the aquifer two only with less noticeable increase. The implication of the developed model can further explore the consequences of subsidence caused by groundwater pumping and an increase the arsenic concentration in the deep aquifer using Scenario Analysis.
Scenario Analysis One: If arsenic concentration level is similar in both aquifer and aquitard, the results of the arsenic concentration do not vary much in the aquifer one and the aquifer two after intensive pumping and land subsidence. Scenario One confirmed that the clay or the impermeable layer containing high arsenic concentration plays an important role to furnish stable arsenic sources to lower aquifer after compaction.
Scenario Analysis Two: Increase or decrease the total pumping volume of 15% and 30%. In the results of increase or decrease pumping affects the subsidence area and arsenic concentration, which confirmed the physical process of arsenic release from aquitard to the lower aquifer was attributed to subsidence. Also, intensive pumping causes an expanding of subsidence area which is the driving force of arsenic release. The affecting time of arsenic to lower aquifer may be shorter than 10 years proposed by Erban et al. (2013).
Scenario Analysis Three: The climate changes may delay or shorten the rainy season causing insufficient domestic water supply by the Hushan Reservoir in Yunlin. The groundwater is considered as a supplement water resource. Two pumping schemes are proposed, one is by placing the 60% increase of total pumpage in mid-fan and distal-fan, the other is by placing the 60% increase of total pumpage in proximal-fan. The result shows increasing pumping in proximal-fan is most effective in reducing subsidence and arsenic concentration in the main subsidence area. This study proposes a sound groundwater pumping strategy in Taiwan and other Southeast Asian countries is to select the pumping area with free or loss aquitard layer, which can effectively reduce the subsidence and arsenic release and warrant the safe use of groundwater.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T04:29:00Z (GMT). No. of bitstreams: 1
ntu-107-R05622009-1.pdf: 14490363 bytes, checksum: b38c7a576dc15db76a570312f31d1e46 (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents口委審定書 I
謝誌 II
摘要 III
Abstract V
目錄 VIII
表目錄 XI
圖目錄 XII
第一章 前言 1
1.1 研究動機 1
1.2 研究目的 4
1.3 研究模式架構及串聯 5
第二章 文獻回顧 7
2.1地質化學環境中砷特徵與釋出機制 7
2.2 MODFLOW 地下水流模式 8
2.3 地層下陷數值模式 10
2.4 溶質傳輸模式 11
2.5 東南亞國家砷釋出機制之研究 14
第三章 研究區域 17
3.1 雲林地形、水文概況與水系水庫 17
3.2 雲林下陷及砷濃度狀況 19
3.2.1 雲林地層下陷近況 19
3.2.2 地下水層砷濃度情況 22
3.2.3 地下水層及阻水層架構 27
第四章 統計量化分析及模式建模 30
4.1 地層下陷資料及監測井砷濃度之量化分析 30
4.1.1 地層下陷資料及監測井砷濃度之量化空間分析 30
4.1.2 地層下陷資料及監測井砷濃度之量化相關性分析 34
4.2地下水三維模式MODFLOW 37
4.2.2 MODFLOW模式建置 39
4.3 INTERBED地層下陷軟體 50
4.3.1 單向度壓密試驗 50
4.3.2 INTERBED模式介紹及推導 50
4.3.3 INTERBED參數假設及輸入 52
4.4 MT3D 溶質傳輸模式 54
4.4.1 MT3D參數輸入 56
第五章 模式校正與預測 60
5.1 雲林地區三維地下水流況模式水位率定 60
5.2 雲林地區地層下陷模式模擬及校正 68
5.3 雲林地區溶質傳輸模式校正與預測 71
5.3.1 溶質傳輸模式校正 71
5.3.2 溶質傳輸模擬預測 71
5.3.3 預測結果討論 73
第六章 情境分析與綜合討論 81
6.1 情境分析一:阻水層與含水層地下水砷濃度相近 81
6.2 情境分析二:增減15%及30%全區抽水量之模擬結果 85
6.3 情境分析三:湖山水庫供水不足,增抽60%於扇尾與扇央及扇頂 93
6.4 綜合討論 104
第七章 結論及建議 111
7.1 結論 111
7.2 建議 113
7.2.1 決策管理 113
7.2.2 模式發展 114
參考文獻 115
附錄 A 122
dc.language.isozh-TW
dc.subject砷zh_TW
dc.subject情境分析zh_TW
dc.subject地下水zh_TW
dc.subject數值模擬zh_TW
dc.subject地層下陷zh_TW
dc.subjectnumerical simulationen
dc.subjectarsenicen
dc.subjectgroundwateren
dc.subjectland subsidenceen
dc.subjectscenario analysisen
dc.title抽水引致地層下陷造成砷釋出至地下水層之數值模擬與情境分析zh_TW
dc.titleScenario Analysis and Numerical Simulation of pumping induced land subsidence causing the arsenic release to groundwater aquiferen
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.oralexamcommittee張誠信(Cheng-Shin Jang),江漢全(Hann-Chyuan Chiang),林文勝(Wen-Sheng Lin)
dc.subject.keyword地下水,砷,地層下陷,數值模擬,情境分析,zh_TW
dc.subject.keywordgroundwater,arsenic,land subsidence,numerical simulation,scenario analysis,en
dc.relation.page128
dc.identifier.doi10.6342/NTU201803127
dc.rights.note有償授權
dc.date.accepted2018-08-13
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept生物環境系統工程學研究所zh_TW
顯示於系所單位:生物環境系統工程學系

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  未授權公開取用
14.15 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved