Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生化科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70474
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor冀宏源
dc.contributor.authorChih-Ying Leeen
dc.contributor.author李致瑩zh_TW
dc.date.accessioned2021-06-17T04:28:59Z-
dc.date.available2023-08-21
dc.date.copyright2018-08-21
dc.date.issued2018
dc.date.submitted2018-08-13
dc.identifier.citation1. Alexandrov, L.B., Nik-Zainal, S., Siu, H.C., Leung, S.Y., and Stratton, M.R. (2015). A mutational signature in gastric cancer suggests therapeutic strategies. Nat Commun 6, 8683.
2. Atkins, J.F., Lewis, J.B., Anderson, C.W., and Gesteland, R.F. (1975). Enhanced differential synthesis of proteins in a mammalian cell-free system by addition of polyamines. J Biol Chem 250, 5688-5695.
3. Bello-Fernandez, C., Packham, G., and Cleveland, J.L. (1993). The ornithine decarboxylase gene is a transcriptional target of c-Myc. Proc Natl Acad Sci USA 90, 7804-7808.
4. Bennardo, N., Cheng, A., Huang, N., and Stark, J.M. (2008). Alternative-NHEJ is a mechanistically distinct pathway of mammalian chromosome break repair. PLoS Genet 4, e1000110.
5. Bugreev, D.V., and Mazin, A.V. (2004). Ca2+ activates human homologous recombination protein Rad51 by modulating its ATPase activity. Proc Natl Acad Sci USA 101, 9988-9993.
6. Celano, P., Baylin, S.B., and Casero, R.A. (1989). Polyamines differentially modulate the transcription of growth-associated genes in human colon carcinoma cells. J Biol Chem 264, 8922-8927.
7. Chi, P., San Filippo, J., Sehorn, M.G., Petukhova, G.V., and Sung, P. (2007). Bipartite stimulatory action of the Hop2–Mnd1 complex on the Rad51 recombinase. Genes Dev 21, 1747-1757.
8. Chi, P., Van Komen, S., Sehorn, M.G., Sigurdsson, S., and Sung, P. (2006). Roles of ATP binding and ATP hydrolysis in human Rad51 recombinase function. DNA Repair (Amst) 5, 381-391.
9. Cohen, S.S. (1998). A Guide to the Polyamines (Oxford University Press, New York, USA).
10. Dorr, R.T., Liddil, J.D., and Gerner, E.W. (1986). Modulation of etoposide cytotoxicity and DNA strand scission in L1210 and 8226 cells by polyamines. Cancer Res 46, 3891-3895.
11. Escribano-Díaz, C., Orthwein, A., Fradet-Turcotte, A., Xing, M., Young, Jordan T.F., Tkáč, J., Cook, Michael A., Rosebrock, Adam P., Munro, M., Canny, Marella D., et al. (2013). A cell cycle-dependent regulatory circuit composed of 53BP1-RIF1 and BRCA1-CtIP controls DNA repair pathway choice. Mol Cell 49, 872-883.
12. Feng, W., and Jasin, M. (2018). Homologous recombination and replication fork protection: BRCA2 and more! Cold Spring Harb Symp Quant Biol.
13. Forget, A.L., Dombrowski, C.C., Amitani, I., and Kowalczykowski, S.C. (2013). Exploring protein-DNA interactions in 3D using in situ construction, manipulation and visualization of individual DNA dumbbells with optical traps, microfluidics and fluorescence microscopy. Nat Protocols 8, 525-538.
14. Forget, A.L., and Kowalczykowski, S.C. (2012). Single-molecule imaging of DNA pairing by RecA reveals a three-dimensional homology search. Nature 482, 423-427.
15. Gerner, E.W., and Mamont, P.S. (1986). Restoration of the polyamine contents in rat hepatoma tissue-culture cells after inhibition of polyamine biosynthesis. Eur J Biochem 156, 31-35.
16. Gerner, E.W., and Meyskens, F.L. (2004). Polyamines and cancer: old molecules, new understanding. Nat Rev Cancer 4, 781-792.
17. Gerner, E.W., Tome, M.E., Fry, S.E., and Bowden, G.T. (1988). Inhibition of ionizing radiation recovery processes in polyamine-depleted chinese hamster cells. Cancer Res 48, 4881-4885.
18. Greene, E.C. (2016). DNA sequence alignment during homologous recombination. J Biol Chem 291, 11572-11580.
19. Ha, H.C., Sirisoma, N.S., Kuppusamy, P., Zweier, J.L., Woster, P.M., and Casero, R.A. (1998). The natural polyamine spermine functions directly as a free radical scavenger. Proc Natl Acad Sci USA 95, 11140-11145.
20. Henricksen, L.A., Umbricht, C.B., and Wold, M.S. (1994). Recombinant replication protein A: expression, complex formation, and functional characterization. J Biol Chem 269, 11121-11132.
21. Heyer, W.-D. (2015). Regulation of recombination and genomic maintenance. Cold Spring Harbor Perspect Biol 7.
22. Heyer, W.D., Ehmsen, K.T., and Liu, J. (2010). Regulation of homologous recombination in eukaryotes. Annu Rev Genet 44, 113-139.
23. Hobbs, C.A., Paul, B.A., and Gilmour, S.K. (2002). Deregulation of polyamine biosynthesis alters intrinsic histone acetyltransferase and deacetylase activities in murine skin and tumors. Cancer Res 62, 67-74.
24. Huang, W.-Y., Lai, S.-F., Chiu, H.-Y., Chang, M., Plikus, M., Chan, C.-C., Chen, Y.-T., Tsao, P.-N., Yang, T.-L., Lee, H.-S., et al. (2017). Mobilizing transit-amplifying cell-derived ectopic progenitors prevents hair loss from chemotherapy or radiation therapy. Cancer Res 77, 6083-6096.
25. Igarashi, K., and Kashiwagi, K. (2000). Polyamines: mysterious modulators of cellular functions. Biochem Biophys Res Commun 271, 559-564.
26. Igarashi, K., and Kashiwagi, K. (2010). Modulation of cellular function by polyamines. Int J Biochem Cell Biol 42, 39-51.
27. Ignatenko, N.A., Babbar, N., Mehta, D., Casero, R.A., and Gerner, E.W. (2004). Suppression of polyamine catabolism by activated Ki-ras in human colon cancer cells. Mol Carcinog 39, 91-102.
28. Jackson, S.P., and Bartek, J. (2009). The DNA-damage response in human biology and disease. Nature 461, 1071-1078.
29. Jensen, R.B., Carreira, A., and Kowalczykowski, S.C. (2010). Purified human BRCA2 stimulates RAD51-mediated recombination. Nature 467, 678-683.
30. Lee, D.-Y., and Chang, G.-D. (2014). Methylglyoxal in cells elicits a negative feedback loop entailing transglutaminase 2 and glyoxalase 1. Redox Biol 2, 196-205.
31. Levin, V.A., Hess, K.R., Choucair, A., Flynn, P.J., Jaeckle, K.A., Kyritsis, A.P., Yung, W.K.A., Prados, M.D., Bruner, J.M., Ictech, S., et al. (2003). Phase III randomized study of postradiotherapy chemotherapy with combination α-difluoromethylornithine-PCV versus PCV for anaplastic gliomas. Clin Cancer Res 9, 981-990.
32. Lieber, M.R. (2010). The mechanism of double-strand DNA break repair by the nonhomologous DNA end joining pathway. Annu Rev Biochem 79, 181-211.
33. Linder, S.J., and Mostoslavsky, R. (2017). Put your mark where your damage is: acetyl-CoA production by ACLY promotes DNA repair. Mol Cell 67, 165-167.
34. Lorand, L., and Graham, R.M. (2003). Transglutaminases: crosslinking enzymes with pleiotropic functions. Nat Rev Mol Cell Biol 4, 140-156.
35. Megosh, L., Gilmour, S.K., Rosson, D., Soler, A.P., Blessing, M., Sawicki, J.A., and O'Brien, T.G. (1995). Increased frequency of spontaneous skin tumors in transgenic mice which overexpress ornithine decarboxylase. Cancer Res 55, 4205-4209.
36. Mehta, A., and Haber, J.E. (2014). Sources of DNA double-strand breaks and models of recombinational DNA repair. Cold Spring Harb Perspect Biol 6.
37. Miyamoto, S., Kashiwagi, K., Ito, K., Watanabe, S., and Igarashi, K. (1993). Estimation of polyamine distribution and polyamine stimulation of protein synthesis in Escherichia coli. Arch Biochem Biophys 300, 63-68.
38. Mohan, R.R., Challa, A., Gupta, S., Bostwick, D.G., Ahmad, N., Agarwal, R., Marengo, S.R., Amini, S.B., Paras, F., MacLennan, G.T., et al. (1999). Overexpression of ornithine decarboxylase in prostate cancer and prostatic fluid in humans. Clin Cancer Res 5, 143-147.
39. Nik-Zainal, S., Davies, H., Staaf, J., Ramakrishna, M., Glodzik, D., Zou, X., Martincorena, I., Alexandrov, L.B., Martin, S., Wedge, D.C., et al. (2016). Landscape of somatic mutations in 560 breast cancer whole genome sequences. Nature 534, 47-54.
40. Nowotarski, S.L., Woster, P.M., and Casero, R.A. (2013). Polyamines and cancer: implications for chemotherapy and chemoprevention. Expert Rev Mol Med 15, e3.
41. O'Brien, T.G., Simsiman, R.C., and Boutwell, R.K. (1975). Induction of the polyamine-biosynthetic enzymes in mouse epidermis by tumor-promoting agents. Cancer Res 35, 1662-1670.
42. Ouameur, A.A., and Tajmir-Riahi, H.-A. (2004). Structural analysis of DNA interactions with biogenic polyamines and cobalt(III)hexamine studied by fourier transform infrared and capillary electrophoresis. J Biol Chem 279, 42041-42054.
43. Paus, R., and Cotsarelis, G. (1999). The biology of hair follicles. N Engl J Med 341, 491-497.
44. Pegg, A.E. (2006). Regulation of ornithine decarboxylase. J Biol Chem 281, 14529-14532.
45. Pendeville, H., Carpino, N., Marine, J.-C., Takahashi, Y., Muller, M., Martial, J.A., and Cleveland, J.L. (2001). The ornithine decarboxylase gene is essential for cell survival during early murine development. Mol Cell Biol 21, 6549-6558.
46. Petermann, E., and Helleday, T. (2010). Pathways of mammalian replication fork restart. Nat Rev Mol Cell Biol 11, 683-687.
47. Pierce, A.J., Johnson, R.D., Thompson, L.H., and Jasin, M. (1999). XRCC3 promotes homology-directed repair of DNA damage in mammalian cells. Genes Dev 13, 2633-2638.
48. Poulin, R., Lu, L., Ackermann, B., Bey, P., and Pegg, A.E. (1992). Mechanism of the irreversible inactivation of mouse ornithine decarboxylase by alpha-difluoromethylornithine. Characterization of sequences at the inhibitor and coenzyme binding sites. J Biol Chem 267, 150-158.
49. Raina, A., Jänne, J., and Siimes, M. (1966). Stimulation of polyamine synthesis in relation to nucleic acids in regenerating rat liver. Biochimica et Biophysica Acta (BBA) - Nucleic Acids and Protein Synthesis 123, 197-201.
50. Roch, A.M., Nicolas, M.T., and Quash, G. (1997). Ultrastructural immunolocalization of polyamines in HeLa cells subjected to fast-freezing fixation and freeze substitution. Histochem Cell Biol 107, 303-312.
51. Ruiz-Chica, J., Medina, M.A., Sánchez-Jiménez, F., and Ramírez, F.J. (2001). Fourier transform Raman study of the structural specificities on the interaction between DNA and biogenic polyamines. Biophys J 80, 443-454.
52. Russell, D., and Snyder, S.H. (1968). Amine synthesis in rapidly growing tissues: ornithine decarboxylase activity in regenerating rat liver, chick embryo, and various tumors. Proc Natl Acad Sci USA 60, 1420-1427.
53. Saminathan, M., Antony, T., Shirahata, A., Sigal, L.H., Thomas, T., and Thomas, T.J. (1999). Ionic and structural specificity effects of natural and synthetic polyamines on the aggregation and resolubilization of single-, double-, and triple-stranded DNA. Biochemistry 38, 3821-3830.
54. San Filippo, J., Sung, P., and Klein, H. (2008). Mechanism of eukaryotic homologous recombination. Annu Rev Biochem 77, 229-257.
55. Sebesta, M., Burkovics, P., Juhasz, S., Zhang, S., Szabo, J.E., Lee, M.Y.W.T., Haracska, L., and Krejci, L. (2013). Role of PCNA and TLS polymerases in D-loop extension during homologous recombination in humans. DNA Repair (Amst) 12, 691-698.
56. Sivanand, S., Rhoades, S., Jiang, Q., Lee, J.V., Benci, J., Zhang, J., Yuan, S., Viney, I., Zhao, S., Carrer, A., et al. (2017). Nuclear acetyl-CoA production by ACLY promotes homologous recombination. Mol Cell 67, 252-265.e256.
57. Snyder, R.D. (1989). Inhibition of X-ray-induced DNA strand break repair in polyamine-depleted HeLa cells. Int J Radiat Biol 55, 773-782.
58. Snyder, R.D., and Sunkara, P.S. (1990). Effect of polyamine depletion on DNA damage and repair following UV irradiation of HeLa cells. Photochem Photobiol 52, 525-532.
59. Sung, P., and Klein, H. (2006). Mechanism of homologous recombination: mediators and helicases take on regulatory functions. Nat Rev Mol Cell Biol 7, 739-750.
60. Symington, L.S., and Gautier, J. (2011). Double-strand break end resection and repair pathway choice. Annu Rev Genet 45, 247-271.
61. Tsai, S.-P., Su, G.-C., Lin, S.-W., Chung, C.-I., Xue, X., Dunlop, M.H., Akamatsu, Y., Jasin, M., Sung, P., and Chi, P. (2012). Rad51 presynaptic filament stabilization function of the mouse Swi5–Sfr1 heterodimeric complex. Nucleic Acids Res 40, 6558-6569.
62. Wallace, H.M., and Caslake, R. (2001). Polyamines and colon cancer. Eur J Gastroenterol Hepatol 13, 1033-1039.
63. Wallace, H.M., Fraser, A.V., and Hughes, A. (2003). A perspective of polyamine metabolism. Biochem J 376, 1-14.
64. Watanabe, S., Kusama-Eguchi, K., Kobayashi, H., and Igarashi, K. (1991). Estimation of polyamine binding to macromolecules and ATP in bovine lymphocytes and rat liver. J Biol Chem 266, 20803-20809.
65. Yoo, J., Kim, H., Aksimentiev, A., and Ha, T. (2016). Direct evidence for sequence-dependent attraction between double-stranded DNA controlled by methylation. Nat Commun 7, 11045.
66. Yoshida, M., Kashiwagi, K., Kawai, G., Ishihama, A., and Igarashi, K. (2002). Polyamines enhance synthesis of the RNA polymerase ς38 subunit by suppression of an amber termination codon in the open reading frame. J Biol Chem 277, 37139-37146.
67. Yoshida, M., Meksuriyen, D., Kashiwagi, K., Kawai, G., and Igarashi, K. (1999). Polyamine stimulation of the synthesis of oligopeptide-binding protein (OppA): Involvement of a structural change of the Shine-Dalgarno sequence and the initiation codon aug in oppa mRNA. J Biol Chem 274, 22723-22728.
68. Zhao, W., Steinfeld, J.B., Liang, F., Chen, X., Maranon, D.G., Jian Ma, C., Kwon, Y., Rao, T., Wang, W., Sheng, C., et al. (2017). BRCA1–BARD1 promotes RAD51-mediated homologous DNA pairing. Nature 550, 360-365.
69. Zhao, W., Vaithiyalingam, S., San Filippo, J., Maranon, David G., Jimenez-Sainz, J., Fontenay, Gerald V., Kwon, Y., Leung, Stanley G., Lu, L., Jensen, Ryan B., et al. (2015). Promotion of BRCA2-dependent homologous recombination by DSS1 via RPA targeting and DNA mimicry. Mol Cell 59, 176-187.
70. Zimmermann, M., and de Lange, T. (2014). 53BP1: pro choice in DNA repair. Trends Cell Biol 24, 108-117.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70474-
dc.description.abstract存在細胞中的小分子是如何影響DNA基因體的完整性,一直是研究癌症生物學裡很有趣的課題。和正常細胞相比,多胺小分子在許多種類的癌細胞裡會被大量製造,來維持癌細胞的存活及快速增生,使得多胺小分子被認為影響腫瘤發展的過程。在此博士論文裡,我們團隊證明了多胺尚未被研究發現的新穎功能:參與雙股DNA斷裂修補機制。並且我們的研究結果顯示,多胺只會專一性的促進同源重組反應(homologous recombination)所催化的DNA雙股斷裂修補,而不影響DNA雙股斷裂修補中的另一種修補機制:非同源重組端接合(non-homologous DNA end-joining)。藉由生化特性分析,證明了多胺可大幅刺激同源重組酶(recombinase) RAD51蛋白的DNA股交換活性,更進一步研究顯示,此刺激機轉源自於多胺分子可提高同源重組酶RAD51蛋白在進行同源搜尋(homology search)尋找同源的修補模板DNA時,增加其捕獲雙股DNA的碰撞反應,而利用了動物實驗分析,我們也證明了多胺分子在活體細胞內對於DNA雙股斷裂的修補扮演著重要的角色。我們的研究經由深入探討後提供了一重要的發現:多胺分子可利用調控同源重組修補反應來維持基因體的穩定性。zh_TW
dc.description.abstractHow naturally occurring cellular small chemicals impact upon genome integrity is of great interests in cancer biology. Many cancers synthesize elevated levels of polyamines to sustain cell growth and proliferation, thus implicating these compounds in tumorigenesis. Here, we document a novel function of polyamines in DNA double-strand break (DSB) repair. Specifically, we show that polyamines facilitate homologous recombination-mediated DSB repair without affecting non-homologous DNA end-joining. Biochemical reconstitution and functional analyses demonstrate that polyamines significantly enhance the DNA strand exchange activity of RAD51. The stimulatory effect of polyamines by RAD51 stems from the enhancement of duplex DNA capture in the DNA homology search process. We also reveal the importance of polyamines to DSB repair in an animal model. Our findings thus furnish valuable insights into the role of polyamines in genome maintenance via homology-directed DNA repair.en
dc.description.provenanceMade available in DSpace on 2021-06-17T04:28:59Z (GMT). No. of bitstreams: 1
ntu-107-F01b46001-1.pdf: 4391344 bytes, checksum: fd9d5b275a4a5b9c0564cd7d8fd81fc1 (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents論文口試委員會審訂書 1
誌謝 2
中文摘要 3
ABSTRACT 4
CHAPTER 1: INTRODUCTION 8
1-1 Role of polyamines in cells 8
1-2 Polyamines and cancer 9
1-3 DNA double-strand break repair 10
1-4 Homologous recombination 11
1-5 Aim of the study 13
CHAPTER 2: MATERIALS AND METHODS 14
2-1 Cell culture and reagents 14
2-2 Plasmids 14
2-3 Plasmid and siRNA transfection 15
2-4 Comet assay 15
2-5 Cell-cycle analysis 16
2-6 Measurement of intracellular polyamines 16
2-7 Homologous recombination assay 18
2-8 Non-homologous end-joining assay 19
2-9 Antibodies 19
2-10 Immunoblotting analysis 20
2-11 Immunofluorescence staining 21
2-12 Cell viability Assay 22
2-13 DNA substrates 22
2-14 Recombinant proteins 24
2-15 DNA stand exchange assay 24
2-16 D-loop assay 25
2-17 Exonuclease I protection assay 25
2-18 Duplex DNA capture assay 26
2-19 Synaptic complex assay 27
2-20 Animals 28
2-21 Statistics 29
CHAPTER 3: RESULTS 30
3-1 DSB repair requires polyamines 30
3-2 Polyamines regulate HR efficiency 30
3-3 Polyamines influence RAD51 activity 32
3-4 Polyamines enhance DNA strand exchange 32
3-5 Polyamines promote dsDNA capture by RAD51 33
3-6 Synthetic polyamine analogs lack activity 36
3-7 Implication for polyamines function in DSB repair in vivo 36
CHAPTER 4: DISCUSSION 38
4-1 Conclusion 38
4-2 The role of polyamines in DNA damage response 39
4-3 The distinct function of polyamines from BRCA2 40
4-4 Polyamines facilitate duplex DNA capture and homology search during homologous recombination 42
4-5 The specific action of polyamines in DNA repair 43
4-6 Future directions 44
FIGURES 46
REFERENCE 69
dc.language.isoen
dc.title多胺參與DNA雙股斷裂修復中的作用機制zh_TW
dc.titleThe mechanistic role of polyamines in DNA double-strand break repairen
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree博士
dc.contributor.oralexamcommittee張智芬,詹迺立,林頌然,郭靜穎
dc.subject.keyword同源重組,DNA 雙股斷裂修補,多胺,同源搜尋,zh_TW
dc.subject.keywordHomologous recombination,DNA double-strand break repair,Polyamines,Homology search,en
dc.relation.page74
dc.identifier.doi10.6342/NTU201803192
dc.rights.note有償授權
dc.date.accepted2018-08-13
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生化科學研究所zh_TW
顯示於系所單位:生化科學研究所

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  目前未授權公開取用
4.29 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved