Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 分子與細胞生物學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70471
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳俊任(Chun-Jen Chen)
dc.contributor.authorYang-Chia Linen
dc.contributor.author林揚家zh_TW
dc.date.accessioned2021-06-17T04:28:55Z-
dc.date.available2018-08-16
dc.date.copyright2018-08-16
dc.date.issued2018
dc.date.submitted2018-08-13
dc.identifier.citation1. Boh, B., et al., Ganoderma lucidum and its pharmaceutically active compounds, in Biotechnol Annu Rev, M.R. El-Gewely, Editor. 2007, Elsevier. p. 265-301.
2. Bhagwan, S.S., et al., Ganoderma lucidum: A Potent Pharmacological Macrofungus. Curr Pharm Biotechnol, 2009. 10(8): p. 717-742.
3. Sasaki, T., et al., Antitumor polysaccharides from some polyporaceae, Ganoderma applanatum (Pers.) Pat and Phellinus linteus (Berk. et Curt) Aoshima. Chem Pharm Bull (Tokyo), 1971. 19(4): p. 821-6.
4. Li, L.-F., et al., Comprehensive comparison of polysaccharides from Ganoderma lucidum and G. sinense: chemical, antitumor, immunomodulating and gut-microbiota modulatory properties. Sci. Rep, 2018. 8(1): p. 6172.
5. Zeng, Q., et al., Ganoderma lucidum polysaccharides protect fibroblasts against UVB-induced photoaging. Mol Med Rep, 2017. 15(1): p. 111-116.
6. Sun, L.-X., et al., The improvement of M1 polarization in macrophages by glycopeptide derived from Ganoderma lucidum. Immunol Res, 2017. 65(3): p. 658-665.
7. Wang, H., et al., Polysaccharide purified from Ganoderma atrum induced activation and maturation of murine myeloid-derived dendritic cells. Food Chem Toxicol, 2017. 108: p. 478-485.
8. Liu, Z., et al., Ganoderma lucidum polysaccharides encapsulated in liposome as an adjuvant to promote Th1-bias immune response. Carbohydr Polym, 2016. 142: p. 141-148.
9. Wang, C.-L., et al., Activation of antitumor immune responses by Ganoderma formosanum polysaccharides in tumor-bearing mice. Appl Microbiol Biotechnol, 2014. 98(22): p. 9389-9398.
10. Pi, C.-C., et al., Polysaccharides from Ganoderma formosanum function as a Th1 adjuvant and stimulate cytotoxic T cell response in vivo. Vaccine, 2014. 32(3): p. 401-408.
11. Wang, C.L., et al., Extracellular polysaccharides produced by Ganoderma formosanum stimulate macrophage activation via multiple pattern-recognition receptors. BMC Complement Altern Med, 2012. 12: p. 119.
12. Wang, C.-L., et al., Polysaccharides purified from the submerged culture of Ganoderma formosanum stimulate macrophage activation and protect mice against Listeria monocytogenes infection. Biotechnol Lett, 2011. 33(11): p. 2271.
13. Oberic, L., et al., Docetaxel- and 5-FU-concurrent radiotherapy in patients presenting unresectable locally advanced pancreatic cancer: a FNCLCC-ACCORD/0201 randomized phase II trial's pre-planned analysis and case report of a 5.5-year disease-free survival. Radiat Oncol, 2011. 6: p. 124.
14. Pinedo, H.M. and G.F. Peters, Fluorouracil: biochemistry and pharmacology. J Clin Oncol, 1988. 6(10): p. 1653-1664.
15. Longley, D.B., D.P. Harkin, and P.G. Johnston, 5-Fluorouracil: mechanisms of action and clinical strategies. Nat Rev Cancer, 2003. 3: p. 330.
16. Milano, G. and M.C. Etienne, Dihydropyrimidine dehydrogenase (DPD) and clinical pharmacology of 5-fluorouracil (review). Anticancer Res, 1994. 14(6a): p. 2295-7.
17. PAPANASTASOPOULOS, P. and J. STEBBING, Molecular Basis of 5-Fluorouracil-related Toxicity: Lessons from Clinical Practice. Anticancer Res, 2014. 34(4): p. 1531-1535.
18. Lizée, G., et al., Harnessing the Power of the Immune System to Target Cancer. Annu Rev Med, 2013. 64(1): p. 71-90.
19. Dougan, M. and G. Dranoff, Immune Therapy for Cancer. Annu Rev Immunol, 2009. 27(1): p. 83-117.
20. Weiner, G.J., Building better monoclonal antibody-based therapeutics. Nat Rev Cancer, 2015. 15(6): p. 361-70.
21. Melero, I., et al., Evolving synergistic combinations of targeted immunotherapies to combat cancer. Nat Rev Cancer, 2015. 15: p. 457.
22. Derer, A., et al., Immune-modulating properties of ionizing radiation: rationale for the treatment of cancer by combination radiotherapy and immune checkpoint inhibitors. Cancer Immunol Immunother, 2016. 65(7): p. 779-786.
23. Ritz, U., et al., Deficient expression of components of the MHC class I antigen processing machinery in human cervical carcinoma. Int J Oncol, 2001. 19(6): p. 1211-20.
24. Dranoff, G., Cytokines in cancer pathogenesis and cancer therapy. Nat Rev Cancer, 2004. 4: p. 11.
25. Kessenbrock, K., V. Plaks, and Z. Werb, Matrix Metalloproteinases: Regulators of the Tumor Microenvironment. Cell, 2010. 141(1): p. 52-67.
26. Yang, L., et al., Expansion of myeloid immune suppressor Gr+CD11b+ cells in tumor-bearing host directly promotes tumor angiogenesis. Cancer Cell, 2004. 6(4): p. 409-421.
27. Sinha, P., et al., Cross-talk between myeloid-derived suppressor cells and macrophages subverts tumor immunity toward a type 2 response. J Immunol, 2007. 179(2): p. 977-83.
28. Hestdal, K., et al., Characterization and regulation of RB6-8C5 antigen expression on murine bone marrow cells. J Immunol, 1991. 147(1): p. 22-8.
29. Youn, J.I., et al., Subsets of myeloid-derived suppressor cells in tumor-bearing mice. J Immunol, 2008. 181(8): p. 5791-802.
30. Noonan, K.A., et al., Targeting immune suppression with PDE5 inhibition in end-stage multiple myeloma. Cancer Immunol Res, 2014. 2(8): p. 725-31.
31. Crittenden, M.R., et al., Expression of arginase I in myeloid cells limits control of residual disease after radiation therapy of tumors in mice. Radiat Res, 2014. 182(2): p. 182-90.
32. Srivastava, M.K., et al., Myeloid-derived suppressor cells inhibit T-cell activation by depleting cystine and cysteine. Cancer Res, 2010. 70(1): p. 68-77.
33. Huang, B., et al., Gr-1+CD115+ immature myeloid suppressor cells mediate the development of tumor-induced T regulatory cells and T-cell anergy in tumor-bearing host Cancer Res, 2006. 66(2): p. 1123-1131.
34. Serafini, P., et al., Myeloid-derived suppressor cells promote cross-tolerance in B-cell lymphoma by expanding regulatory T cells. Cancer Res, 2008. 68(13): p. 5439-49.
35. Martinez, F.O. and S. Gordon, The M1 and M2 paradigm of macrophage activation: time for reassessment. F1000Prime Rep, 2014. 6.
36. Sica, A. and A. Mantovani, Macrophage plasticity and polarization: in vivo veritas. J Clin Invest, 2012. 122(3): p. 787-95.
37. Mosser, D.M. and J.P. Edwards, Exploring the full spectrum of macrophage activation. Nat Rev Immunol, 2008. 8: p. 958.
38. Qian, B.Z. and J.W. Pollard, Macrophage diversity enhances tumor progression and metastasis. Cell, 2010. 141(1): p. 39-51.
39. Ding, L., et al., IL-10 inhibits macrophage costimulatory activity by selectively inhibiting the up-regulation of B7 expression. J Immunol, 1993. 151(3): p. 1224-34.
40. Kuang, D.M., et al., Activated monocytes in peritumoral stroma of hepatocellular carcinoma foster immune privilege and disease progression through PD-L1. J Exp Med, 2009. 206(6): p. 1327-37.
41. Pollard, J.W., Tumour-educated macrophages promote tumour progression and metastasis. Nat Rev Cancer, 2004. 4(1): p. 71-8.
42. Adeegbe, D. and H. Nishikawa, Natural and Induced T Regulatory Cells in Cancer. Front Immunol, 2013. 4(190).
43. Liston, A. and D.H. Gray, Homeostatic control of regulatory T cell diversity. Nat Rev Immunol, 2014. 14(3): p. 154-65.
44. Liu, C., C.J. Workman, and D.A. Vignali, Targeting regulatory T cells in tumors. Febs j, 2016. 283(14): p. 2731-48.
45. Curiel, T.J., et al., Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med, 2004. 10(9): p. 942-9.
46. Plitas, G., et al., Regulatory T Cells Exhibit Distinct Features in Human Breast Cancer. Immunity, 2016. 45(5): p. 1122-1134.
47. Curiel, T.J., Regulatory T cells and treatment of cancer. Curr Opin Immunol, 2008. 20(2): p. 241-6.
48. Petersen, R.P., et al., Tumor infiltrating Foxp3+ regulatory T-cells are associated with recurrence in pathologic stage I NSCLC patients. Cancer, 2006. 107(12): p. 2866-72.
49. Oleinika, K., et al., Suppression, subversion and escape: the role of regulatory T cells in cancer progression. Clin Exp Immunol, 2013. 171(1): p. 36-45.
50. Cao, X., et al., Granzyme B and perforin are important for regulatory T cell-mediated suppression of tumor clearance. Immunity, 2007. 27(4): p. 635-46.
51. Sojka, D.K., A. Hughson, and D.J. Fowell, CTLA-4 is required by CD4+CD25+ Treg to control CD4+ T-cell lymphopenia-induced proliferation. Eur J Immunol, 2009. 39(6): p. 1544-51.
52. Jain, N., et al., Dual function of CTLA-4 in regulatory T cells and conventional T cells to prevent multiorgan autoimmunity. Proc Natl Acad Sci U S A, 2010. 107(4): p. 1524-8.
53. Dubois, M., et al., A Colorimetric Method for the Determination of Sugars. Nature, 1951. 168: p. 167.
54. Wang, C.L., et al., Activation of antitumor immune responses by Ganoderma formosanum polysaccharides in tumor-bearing mice. Appl Microbiol Biotechnol, 2014. 98(22): p. 9389-98.
55. Dart, A., Cell genesis. Nat Rev Cancer, 2018. 18(6): p. 339-339.
56. Zhu, J., et al., Resistance to cancer immunotherapy mediated by apoptosis of tumor-infiltrating lymphocytes. Nat Commun, 2017. 8(1): p. 1404.
57. Zhao, M., et al., MHC class II transactivator (CIITA) expression is upregulated in multiple myeloma cells by IFN-gamma. Mol Immunol, 2007. 44(11): p. 2923-32.
58. Haabeth, O.A.W., et al., Inflammation driven by tumour-specific Th1 cells protects against B-cell cancer. Nat Commun, 2011. 2: p. 240.
59. Kim, H.J. and H. Cantor, CD4 T-cell subsets and tumor immunity: the helpful and the not-so-helpful. Cancer Immunol Res, 2014. 2(2): p. 91-8.
60. Yang, L., et al., Expansion of myeloid immune suppressor Gr+CD11b+ cells in tumor-bearing host directly promotes tumor angiogenesis. Cancer Cell, 2004. 6(4): p. 409-21.
61. Bronte, V., et al., Recommendations for myeloid-derived suppressor cell nomenclature and characterization standards. Nat Commun, 2016. 7: p. 12150.
62. Ostrand-Rosenberg, S., et al., Cross-talk between myeloid-derived suppressor cells (MDSC), macrophages, and dendritic cells enhances tumor-induced immune suppression. Semin Cancer Biol, 2012. 22(4): p. 275-281.
63. Wu, J. and L.L. Lanier, Natural killer cells and cancer. Adv Cancer Res, 2003. 90: p. 127-56.
64. Santoni, M., et al., Emerging role of tumor-associated macrophages as therapeutic targets in patients with metastatic renal cell carcinoma. Cancer Immunol Immunother, 2013. 62(12): p. 1757-68.
65. Tracey, K.J. and A. Cerami, Tumor necrosis factor: a pleiotropic cytokine and therapeutic target. Annu Rev Med, 1994. 45: p. 491-503.
66. Kohase, M., et al., Induction of beta 2-interferon by tumor necrosis factor: a homeostatic mechanism in the control of cell proliferation. Cell, 1986. 45(5): p. 659-66.
67. Alleva, D.G., C.J. Burger, and K.D. Elgert, Tumor-induced regulation of suppressor macrophage nitric oxide and TNF-alpha production. Role of tumor-derived IL-10, TGF-beta, and prostaglandin E2. J Immunol, 1994. 153(4): p. 1674-86.
68. Rosenberg, S.A., P. Spiess, and R. Lafreniere, A new approach to the adoptive immunotherapy of cancer with tumor-infiltrating lymphocytes. Science, 1986. 233(4770): p. 1318-21.
69. Nencioni, A. and P. Brossart, Cellular immunotherapy with dendritic cells in cancer: current status. Stem Cells, 2004. 22(4): p. 501-13.
70. Rosenberg, S.A., J.C. Yang, and N.P. Restifo, Cancer immunotherapy: moving beyond current vaccines. Nat Med, 2004. 10(9): p. 909-15.
71. Xu, Z., et al., Ganoderma lucidum Polysaccharides: Immunomodulation and Potential Anti-Tumor Activities. Am J Chin Med, 2011. 39(01): p. 15-27.
72. Chen, Y., et al., Purification, composition analysis and antioxidant activity of a polysaccharide from the fruiting bodies of Ganoderma atrum. Food Chem, 2008. 107(1): p. 231-241.
73. Lee, S.Y. and H.M. Rhee, Cardiovascular effects of mycelium extract of Ganoderma lucidum: inhibition of sympathetic outflow as a mechanism of its hypotensive action. Chem Pharm Bull (Tokyo), 1990. 38(5): p. 1359-64.
74. Liu, G.T., et al., [Some pharmacological actions of Ganoderma lucidum and G. japonicum (FR) Llyod on mouse liver (author's transl)]. Yao Xue Xue Bao, 1979. 14(5): p. 284-7.
75. Van Cutsem, E. and J. Arends, The causes and consequences of cancer-associated malnutrition. Eur J Oncol Nurs, 2005. 9: p. S51-S63.
76. Cao, Z., et al., Antitumor and immunomodulatory effects of low-dose 5-FU on hepatoma 22 tumor-bearing mice. Oncol Lett, Vol. 7. 2014. 1260-1264.
77. Peter, M.E., et al., The role of CD95 and CD95 ligand in cancer. Cell Death Differ, 2015. 22(4): p. 549-59.
78. Mitra, R., S. Singh, and A. Khar, Antitumour immune responses. Expert Rev Mol Med, Vol. 5. 2003. 1-19.
79. Zhao, Q., et al., IFN-γ mediates graft-versus-breast cancer effects via enhancing cytotoxic T lymphocyte activity. Exp Ther Med, 2014. 8(2): p. 347-54.
80. Wu, J. and L.L. Lanier, Natural Killer Cells and Cancer, in Advances in Cancer Research. 2003, Academic Press. p. 127-156.
81. Wang, J., et al., 5-Fluorouracil targets thymidylate synthase in the selective suppression of TH17 cell differentiation. Oncotarget, 2016. 7(15): p. 19312-26.
82. Diaz-Montero, C.M., et al., Increased circulating myeloid-derived suppressor cells correlate with clinical cancer stage, metastatic tumor burden, and doxorubicin-cyclophosphamide chemotherapy. Cancer Immunol Immunother, 2009. 58(1): p. 49-59.
83. Gabrilovich, D.I. and S. Nagaraj, Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol, 2009. 9(3): p. 162-74.
84. Vatner, R.E. and S.C. Formenti, Myeloid-Derived Cells in Tumors: Effects of Radiation. Semin Radiat Oncol, 2015. 25(1): p. 18-27.
85. Ugel, S., et al., Tumor-induced myeloid deviation: when myeloid-derived suppressor cells meet tumor-associated macrophages. J Clin Invest, 2015. 125(9): p. 3365-76.
86. Wu, H., et al., Polysaccharide from Lentinus edodes Inhibits the Immunosuppressive Function of Myeloid-Derived Suppressor Cells. PLOS ONE, 2012. 7(12): p. e51751.
87. Melero, I., et al., Evolving synergistic combinations of targeted immunotherapies to combat cancer. Nat Rev Cancer, 2015. 15(8): p. 457-72.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70471-
dc.description.abstract台灣紫芝 (Ganoderma formosanum) 為台灣特有的靈芝品種。本實驗室利用液態深層發酵培養來取得胞外靈芝多醣,並且經過膠體過濾法進行純化,得到三個主要分劃PS-F1、PS-F2、PS-F3。本實驗室先前研究已經證實PS-F2對於已形成C26腫瘤的小鼠具有抗癌效果。本篇研究主要探討當PS-F2結合化療藥物5-fluorouracil (5-FU)是否對於抗癌效果有協同性的加乘。研究結果顯示口服PS-F2對於已形成C26腫瘤的小鼠便已有抑制腫瘤的效果,且PS-F2合併5-FU對於抑制腫瘤的生長有加乘性的效果。在脾臟中,單獨給予PS-F2或5-FU可顯著增加胞殺性T細胞,而合併治療組有更佳卓越的效果。另一方面,多核型骨髓衍生抑制細胞和調節型T細胞再單獨給予的組別就已有顯著性的下降,而合併治療組則有更顯著抑制效果。在浸潤淋巴結中,合併治療組胞殺性T細胞、輔助T細胞、自然殺手細胞則有較明顯上升的現象,另一方面在單獨治療組調節型T細胞比例皆有下降的情形,而合併治療組則有更進一步的下降。腫瘤微環境中,合併治療組其胞殺性T細胞有顯著性的上升,並且多核型骨髓衍生抑制細胞、調節型T細胞腫瘤相關巨噬細胞則有顯著性的下降。另外在單核型骨髓衍生抑制細胞上,我們也發現到給予PS-F2可促進其往巨噬細胞方向成熟,在腫瘤組織中,也偵測到TNF-α、IFN-β、IL-1β、IL-12和iNOS等促發炎相關基因表現有上升的趨勢,而抑制發炎arginase-1基因表現則有下降的趨勢。綜合上述結果,我們的實驗證明PS-F2不但可以活化體內的胞殺性T細胞並削弱免疫抑制型的細胞,而在合併治療上有加乘性的效果,因此PS-F2具有作為免疫療法藥物或者化療藥物佐劑的潛力。zh_TW
dc.description.abstractGanoderma formosanum is a native species of Ganoderma isolated in Taiwan. We have used submerged mycelial culture to produce G. formosanum polysaccharides, and three polysaccharide fractions (PS-F1, PS-F2 and PS-F3) were purified by gel filtration chromatography. Our previous study showed that PS-F2 had antitumor effect in C26 colorectal tumor-bearing mice. In this study, we investigated whether combined treatment with PS-F2 and the chemotherapeutic agent 5-fluorouracil (5-FU) had a synergistic effect against C26 tumor growth in mice. Our data showed that PS-F2 treatment alone by oral gavage could suppress the growth of established tumor, and combined treatment with PS-F2 and 5-FU could further suppress tumor growth synergistically. In the spleen, PS-F2 and 5-FU monotherapies significantly enhanced the population of cytotoxic T lymphocytes (CTL), which was further augmented by the combined treatment. Conversely, the accumulation of immunosuppressive polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs) and regulatory T (Treg) cells were significantly reduced by PS-F2 and 5-FU monotherapies, and the effect was further augmented in the combination therapy. In the draining lymph nodes, the combination therapy also resulted in significant increases in interferon (IFN)-γ-producing CD4+ and CD8+ T cells. In the tumor microenvironment, combination therapy of PS-F2 and 5-FU significantly increased the CTL population and reduced the accumulation of PMN-MDSCs, Treg cells and tumor associated macrophages (TAMs). The combined therapy also promoted the maturation of monocytic myeloid-derived suppressor cells (M-MDSCs) in the spleen and the tumor. In addition, the combined treatment induced the expression of proinflammatory genes TNF-α, IFN-β, IL-1β, IL-12 and iNOS, and reduced the expression of arginase-1. Overall, our data demonstrate that of PS-F2 exerts its antitumor function by activating CTLs while downregulating immunosuppressive cells, and these effects can be further enhanced when PS-F2 is administered in combination with 5-FU, indicating that PS-F2 has the potential to be used in adjuvant immunotherapy alone or in combination with chemotherapy for the treatment of cancer.en
dc.description.provenanceMade available in DSpace on 2021-06-17T04:28:55Z (GMT). No. of bitstreams: 1
ntu-107-R05b43025-1.pdf: 5099383 bytes, checksum: fdf522764980a9a6407bb1272ec3885b (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents目錄
中文摘要..........................................................I
Abstract .........................................................II
縮寫表............................................................IV
目錄..............................................................VI
表目錄............................................................IX
圖目錄............................................................X
一、緒論...........................................................1
1. 靈芝簡介.....................................................1
2. 靈芝多醣體...................................................2
3. 腫瘤治療.....................................................2
4. 腫瘤微環境...................................................3
4.1 骨髓衍生抑制型細胞.........................................4
4.2 腫瘤相關巨噬細胞...........................................5
4.3 調節型T細胞........................................... ...5
二、研究動機.......................................................7
三、材料與方法.....................................................8
1. 實驗動物、細胞株和菌株.......................................8
2. 培養基配置...................................................8
3. 台灣紫芝培養.................................................9
4. 台灣紫芝胞外多醣PS-F2之回收與純化...........................9
5. 測定醣濃度..................................................10
6. PS-F2結合化療藥物5-FU之抗腫瘤活性評估......................10
7. 脾臟細胞製備................................................11
8. 浸潤淋巴結細胞製備..........................................11
9. 腫瘤細胞製備...............................................11
10. 細胞外染...................................................12
11. 細胞內染...................................................13
12. 腫瘤組織RNA的萃取並轉cDNA..............................14
13. Real-time Quantitative PCR (QPCR).............................15
14. 統計與繪圖軟體之分析.......................................15
四、實驗結果.....................................................16
1.靈芝胞外多醣體PS-F2合併化療藥物5-FU對於已形成腫瘤之抗腫瘤效果.16
2. PS-F2合併5-FU治療對於肝腎指數以及飲食的影響................17
3. PS-F2合併5-FU治療對於脾臟effector Th1細胞的影響..............17
4. PS-F2合併5-FU治療對於脾臟effector CTLs的影響..................17
5. PS-F2合併5-FU治療對於脾臟MDSCs的影響.....................18
6. PS-F2合併5-FU治療對於脾臟M-MDSC成熟與分化的影響.........18
7. PS-F2合併5-FU治療對於脾臟調節型T細胞的影響................19
8. PS-F2合併5-FU治療對於脾臟NK cells的影響....................19
9. PS-F2合併5-FU治療對於浸潤淋巴結effector Th1細胞的影響.......20
10. PS-F2合併5-FU治療對於浸潤淋巴結effector CTLs的影響.........20
11. PS-F2合併5-FU治療對於浸潤淋巴結調節型T細胞的影響.........20
12. PS-F2合併5-FU治療對於浸潤淋巴NK cells的影響................20
13. PS-F2合併5-FU治療對於腫瘤組織effector CTLs細胞的影響........20
14. PS-F2合併5-FU治療對於腫瘤MDSCs的影響.....................21
15. PS-F2合併5-FU治療對於腫瘤M-MDSC成熟與分化的影響.........21
16. PS-F2合併5-FU治療對於腫瘤調節型T細胞的影響................22
17. PS-F2合併5-FU治療對於腫瘤相關巨噬細胞 (TAM) 的影響.........22
18. PS-F2合併5-FU治療對於已生成腫瘤小鼠之生存曲線. .............22
20. PS-F2合併5-FU治療對於腫瘤組織發炎相關因子的影響............22
五、討論..........................................................24
六、圖表..........................................................27
七、參考文獻......................................................56
dc.language.isozh-TW
dc.subject台灣紫芝zh_TW
dc.subject多醣體zh_TW
dc.subject免疫治療zh_TW
dc.subject骨髓衍生抑制細胞zh_TW
dc.subjectT細胞zh_TW
dc.subject腫瘤相關巨噬細胞zh_TW
dc.subjectMDSCsen
dc.subjectimmunotherapyen
dc.subjectGanoderma formosanumen
dc.subjectTAMsen
dc.subjectextracellular polysaccharideen
dc.subjectT cellsen
dc.title台灣紫芝多醣體合併化療藥物之抗腫瘤效果zh_TW
dc.titleCombination antitumor therapy with Ganoderma formosanum polysaccharides and chemotherapyen
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.coadvisor周子賓(Tze-Bin Chou)
dc.contributor.oralexamcommittee陳念榮(Nien-Jung Chen),江皓森(Hao-Sen Chiang)
dc.subject.keyword台灣紫芝,多醣體,免疫治療,骨髓衍生抑制細胞,T細胞,腫瘤相關巨噬細胞,zh_TW
dc.subject.keywordGanoderma formosanum,immunotherapy,extracellular polysaccharide,MDSCs,T cells,TAMs,en
dc.relation.page61
dc.identifier.doi10.6342/NTU201802985
dc.rights.note有償授權
dc.date.accepted2018-08-13
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept分子與細胞生物學研究所zh_TW
顯示於系所單位:分子與細胞生物學研究所

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  未授權公開取用
4.98 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved