請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70465完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 楊宏智 | |
| dc.contributor.author | Ling-Chia Wu | en |
| dc.contributor.author | 吳翎嘉 | zh_TW |
| dc.date.accessioned | 2021-06-17T04:28:47Z | - |
| dc.date.available | 2023-08-14 | |
| dc.date.copyright | 2018-08-14 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2018-08-13 | |
| dc.identifier.citation | [1] X. Tian, Hewlett-Packard Co., “Cooling Fan Reliability: Failure Criteria, Accelerated Life Testing, Modeling and Qualification.”, Reliability and Maintainability Symposium, pp. 380-384, 2006.
[2] Paresh Girdhar, “Practical Machinery Vibration Analysis and Predictive Maintenance”, Newnes, Amsterdam, 2004. [3] Robert Bond Randall, “Vibration-based Condition Monitoring”, Wiley, 2011. [4] Q. Miao, M. Azarian and M. Pecht, “Cooling Fan Bearing Fault Identification Using Vibration Measurement”, IEEE conference on Prognostics and Health Management, 2011. [5] X. Jin, W. M. Ma, et al., “Health Monitoring of Cooling Fans Based on Mahalanobis Distance with mRMR Feature Selection”, IEEE Transactions on Instrumentation and Measurement, Vol. 61, No. 8, pp.2222-2229, 2012. [6] S.M. Pincus, “ Approximate Entropy as a Measure of System Complexity“, PNAS, 88:2297-2301, 1991. [7] J.S. Richman and J.R. Moorman, “ Physiological time-series analysis using approximate entropy and sample entropy“, Am J Physiol Heart Circ Physiol 278:H2039-H2049, 2000. [8] Costa M., Goldberger A.L., Peng C.-K., “Multiscale Entropy Analysis of Complex Physiologic Time Series”, Phys Rev Lett, 89:062102., 2002. [9] L. Zhang, G. Xiong, H. Liu, et al., “An Intelligent Fault Diagnosis Method Based on Multiscale Entropy SVMs”, Advances in Neural Networks, Springer, pp724-732, 2009. [10] 王嘉, 張復瑜, “利用MSE-M 演算法建立迴轉機械品質即時檢測系統”, 碩士論文, 2010. [11] N. K. Hsieh, W. Y. Lin and H.T. Young, “High-Speed Spindle Fault Diagnosis with the Empirical Mode Decomposition and Multiscale Entropy Method”, Entropy, No. 17, pp. 2170-2183, 2015. [12] 林威延, 楊宏智, “工具機主軸製程管制系統與損壞辨識系統開發”, 博士論文, 2010. [13] X. Jin, Michael H. Azarian, C. Lau, et al., “Physics-of-Failure Analysis of Cooling Fans”, IEEE Prognostics & System Health Management Conference, 2011. [14] Thomas F. Hansen, “Accelerometer Mounting Techniques”, B&K Web Course, June 2007. [15] “Valid Sampling Rates for NI DSA Device”, https://knowledge.ni.com/KnowledgeArticleDetails?id=kA00Z000000P6FrSAK [16] “Measurements Manual”, April 2003 Edition; Part Number 322661B-01, National Instruments, Austin, TX, 2003. [17] Abdullah M. Al-Ghamd, David Mba, “A comparative experimental study on the use of acoustic emission and vibration analysis for bearing defect identification and estimation of defect size”, Mechanical System and Signal Processing, Vol. 20, pp. 1537-1571, 2006. [18] Y. H. Pan, W. Y. Lin, Y. H. Wang and K.T. Lee, “Computing Multiscale Entropy with Orthogonal Range Search”, Journal of Marine Science and Tech., Vol. 19, No.1, pp. 107-113, 2011. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70465 | - |
| dc.description.abstract | 為因應智慧化、自動化製造的趨勢,以及全球製造業普遍缺工的困境,產線及檢測自動化為首要的目標之一。有別於一般風扇製造廠以異音做為檢測之指標,本研究針對冷卻風扇的振動訊號進行分析,除傳統的方均根值、傅立葉轉換外,也使用評估訊號之複雜度的多尺度熵做為訊號處理方式,以找出初期損壞之風扇於振動訊號的特徵。
由於風扇在運轉時會受到流場的影響,將造成其振動型態為循環穩態(Cyclostationary)之訊號,若使用傳統的傅立葉轉換則有其限制,本研究利用多尺度熵將風扇振動訊號進行不同尺度之粗粒化,使得訊號受到紊流影響之程度降低,再計算其亂度值,發現結果之多尺度熵曲線無論在合格或不合格樣本間的重複性皆相當高,因此將其做為樣本之特徵。 最後利用特徵建立類神經網路之模型,以經專業聽音員判斷是否符合出廠標準為樣本的分類。第一個模型使用36 個樣本進行訓練,並針對新的9 個樣本進行模型之測試,準確率達100 %;第二個模型針對重複性實驗的結果建立,確認模型是否可預測出同樣的結果,使用兩次的結果建立模型,以第三次的實驗結果進行預測,驗證之準確率達88.9 %,達成以振動訊號對風扇之品質進行辨識的目的。 | zh_TW |
| dc.description.abstract | Aiming at long term smart manufacturing goal, in solving the global problem of skilled labor shortage, production line and quality testing automation is one of the primary high agenda issues. In this research vibrational signal is used for fan QC as compared with conventional manufacturing factories which apply abnormal sound detection as index. Apart from traditional analytical tools RMS value and FFT, multiscale entropy, which estimates the complexity of signals is also adopted in the present study.
Cooling fans will be affected by the turbulence air flow while it is operating, making its vibrational signal in a type of ‘Cyclostationary’. Traditional FFT has its limitations on analyzing cyclostationary signals. In this research, multiscale entropy is adapted to make the signal coarse-grained, decreasing the effect of turbulence. The multiscale entropy curves of the sample are found to have good repeatability, and also it gives the characteristic of the sample quality. A neural network model was developed in this research. The labeled samples that had been classified by the professional fan quality controllers were used to train the model. The first model obtained using 36 fans as the training samples, and the validation has been made with 9 new samples, with the accuracy 100 %. Repeated experiments were also carried out for further observation. The second model obtained was used to validate the result of the third repeated experiment, with the accuracy of 88.9 %. The approach has found to be succeessful in classifying fan quality by its vibrational signal. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T04:28:47Z (GMT). No. of bitstreams: 1 ntu-107-R05522711-1.pdf: 3832351 bytes, checksum: c1a50d34dfb1873c13150aabbc8da743 (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | 論文審定書 i
誌謝 ii 摘要 iii Abstract iv 目錄 v 圖目錄 vii 表目錄 x 第一章 緒論 1 1.1 研究動機與目的 1 1.2 文獻回顧 2 1.3 論文架構 5 第二章 研究方法 6 2.1 風扇品質診斷方式 6 2.2 風扇結構 7 2.3 傅立葉轉換 8 2.4 多尺度熵簡介 9 2.4.1 熵(Entropy) 9 2.4.2 樣本熵(Sample Entropy) 9 2.4.3 多尺度熵(Multiscale Entropy) 10 2.5 類神經網路 12 2.5.1 多層感知器 13 2.5.2 模型架構 13 2.5.3 訓練過程 16 第三章 系統架構與實驗設計 17 3.1 系統架構 17 3.2 訊號擷取系統 18 3.2.1 感測器特性簡介 18 3.2.2 資料擷取卡特性簡介 21 3.3 風扇控制系統 24 3.3.1 訊號產生器. 24 3.3.2 電力控制系統 25 3.4 量測系統與穩定性 27 3.5 實驗設計 28 第四章 訊號分析與實驗結果 31 4.1 穩定性分析 31 4.1.1 治具穩定性 31 4.1.2 風扇穩定性 37 4.1.3 擺放方式 42 4.2 MSE 特徵曲線計算 43 4.2.1 計算點數 43 4.2.2 計算結果 45 4.3 模型訓練與結果 52 4.3.1 模型建立與驗證 52 4.3.2 重複性驗證 59 第五章 結論與未來展望 65 5.1 結論 65 5.2 未來展望 66 參考文獻 67 | |
| dc.language.iso | zh-TW | |
| dc.subject | 類神經網路 | zh_TW |
| dc.subject | 迴轉機械 | zh_TW |
| dc.subject | 多尺度熵 | zh_TW |
| dc.subject | 風扇檢測 | zh_TW |
| dc.subject | Fan quality diagnosis | en |
| dc.subject | multiscale entropy | en |
| dc.subject | neural network | en |
| dc.subject | rotary machine | en |
| dc.title | 以多尺度熵為特徵之風扇品質診斷系統 | zh_TW |
| dc.title | Multiscale-Entropy-based Model for Fan Quality
Diagnosis System | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 李貫銘,張復瑜,陳德楨,王嘉 | |
| dc.subject.keyword | 風扇檢測,多尺度熵,類神經網路,迴轉機械, | zh_TW |
| dc.subject.keyword | Fan quality diagnosis,multiscale entropy,neural network,rotary machine, | en |
| dc.relation.page | 68 | |
| dc.identifier.doi | 10.6342/NTU201803209 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2018-08-13 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-1.pdf 未授權公開取用 | 3.74 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
