Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 公共衛生學院
  3. 職業醫學與工業衛生研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70463
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor鄭尊仁(Tsun-Jen Cheng)
dc.contributor.authorLo-Yao Leeen
dc.contributor.author李洛堯zh_TW
dc.date.accessioned2021-06-17T04:28:44Z-
dc.date.available2019-09-04
dc.date.copyright2018-09-04
dc.date.issued2018
dc.date.submitted2018-08-13
dc.identifier.citation1. Ball, J.C., Straccia, A.M., Young, W.C., Aust, A.E., 2011. The Formation of Reactive Oxygen Species Catalyzed by Neutral, Aqueous Extracts of NIST Ambient Particulate Matter and Diesel Engine Particles. Journal of the Air & Waste Management Association 50, 1897-1903.
2. Ballatore, C., Lee, V.M.Y., Trojanowski, J.Q., 2007. Tau-mediated neurodegeneration in Alzheimer's disease and related disorders. Nature Reviews Neuroscience 8, 663.
3. Betzer, O., Shilo, M., Opochinsky, R., Barnoy, E., Motiei, M., Okun, E., Yadid, G., Popovtzer, R., 2017. The effect of nanoparticle size on the ability to cross the blood–brain barrier: an in vivo study. Nanomedicine 12, 1533-1546.
4. Bhatt, D.P., Puig, K.L., Gorr, M.W., Wold, L.E., Combs, C.K., 2015. A pilot study to assess effects of long-term inhalation of airborne particulate matter on early Alzheimer-like changes in the mouse brain. PLoS One 10, e0127102.
5. Block, M.L., Calderon-Garciduenas, L., 2009. Air pollution: mechanisms of neuroinflammation and CNS disease. Trends Neurosci 32, 506-516.
6. Bolos, M., Llorens-Martín, M., Jurado-Arjona, J., Hernández, F., Rábano, A., Avila, J., 2015. Direct Evidence of Internalization of Tau by Microglia In Vitro and In Vivo.
7. Borza, C., Muntean, D., Dehelean, C., Savoiu, G., Serban, C., Simu, G., Andoni, M., Butur, M., Drag, S., 2013. Oxidative Stress and Lipid Peroxidation – A Lipid Metabolism Dysfunction. Lipid Metabolism.
8. Budzynska, B., Boguszewska-Czubara, A., Kruk-Slomka, M., Skalicka-Wozniak, K., Michalak, A., Musik, I., Biala, G., 2015. Effects of imperatorin on scopolamine-induced cognitive impairment and oxidative stress in mice. Psychopharmacology (Berl) 232, 931-942.
9. Buerger, K., Ewers, M., Pirttila, T., Zinkowski, R., Alafuzoff, I., Teipel, S.J., DeBernardis, J., Kerkman, D., McCulloch, C., Soininen, H., Hampel, H., 2006. CSF phosphorylated tau protein correlates with neocortical neurofibrillary pathology in Alzheimer's disease. Brain 129, 3035-3041.
10. Campbell, A., Araujo, J.A., Li, H., Sioutas, C., Kleinman, M., 2009. Particulate Matter Induced Enhancement of Inflammatory Markers in the Brains of Apolipoprotein E Knockout Mice. Journal of Nanoscience and Nanotechnology 9, 5099-5104.
11. Campbell, A., Oldham, M., Becaria, A., Bondy, S.C., Meacher, D., Sioutas, C., Misra, C., Mendez, L.B., Kleinman, M., 2005. Particulate matter in polluted air may increase biomarkers of inflammation in mouse brain. Neurotoxicology 26, 133-140.
12. Cheignon, C., Tomas, M., Bonnefont-Rousselot, D., Faller, P., Hureau, C., Collin, F., 2018. Oxidative stress and the amyloid beta peptide in Alzheimer's disease. Redox Biol 14, 450-464.
13. Cole, T.B., Coburn, J., Dao, K., Roque, P., Chang, Y.C., Kalia, V., Guilarte, T.R., Dziedzic, J., Costa, L.G., 2016. Sex and genetic differences in the effects of acute diesel exhaust exposure on inflammation and oxidative stress in mouse brain. Toxicology 374, 1-9.
14. D'Mello, C., Le, T., Swain, M.G., 2009. Cerebral microglia recruit monocytes into the brain in response to tumor necrosis factoralpha signaling during peripheral organ inflammation. J Neurosci 29, 2089-2102.
15. De Vooght, V., Vanoirbeek, J.A.J., Haenen, S., Verbeken, E., Nemery, B., Hoet, P.H.M., 2009. Oropharyngeal aspiration: An alternative route for challenging in a mouse model of chemical-induced asthma. Toxicology 259, 84-89.
16. Dias-Santagata, D., Fulga, T.A., Duttaroy, A., Feany, M.B., 2007. Oxidative stress mediates tau-induced neurodegeneration in Drosophila. Journal of Clinical Investigation 117, 236-245.
17. Eagle, A.L., Wang, H., Robison, A.J., 2016. Sensitive Assessment of Hippocampal Learning Using Temporally Dissociated Passive Avoidance Task. Bio Protoc 6.
18. Fagundes, L.S., Fleck Ada, S., Zanchi, A.C., Saldiva, P.H., Rhoden, C.R., 2015. Direct contact with particulate matter increases oxidative stress in different brain structures. Inhal Toxicol 27, 462-467.
19. Federico, A., Cardaioli, E., Da Pozzo, P., Formichi, P., Gallus, G.N., Radi, E., 2012. Mitochondria, oxidative stress and neurodegeneration. J Neurol Sci 322, 254-262.
20. Fonken, L.K., Xu, X., Weil, Z.M., Chen, G., Sun, Q., Rajagopalan, S., Nelson, R.J., 2011. Air pollution impairs cognition, provokes depressive-like behaviors and alters hippocampal cytokine expression and morphology. Mol Psychiatry 16, 987-995, 973.
21. Gerlofs-Nijland, M.E., van Berlo, D., Cassee, F.R., Schins, R.P., Wang, K., Campbell, A., 2010. Effect of prolonged exposure to diesel engine exhaust on proinflammatory markers in different regions of the rat brain. Part Fibre Toxicol 7, 12.
22. Goedert, M., Spillantini, M.G., Crowther, R.A., 1991. Tau Proteins and Neurofibrillary Degeneration. pp. 279-286.
23. Grotto, D., Santa Maria, L., Valentini, J., Paniz, C., Schmitt, G., Garcia, S., Juarez Pomblum, V., Rocha, J.B., Farina, M., 2009. Importance of the lipid peroxidation biomarkers and methodological aspects FOR malondialdehyde quantification.
24. Guerra, R., Vera-Aguilar, E., Uribe-Ramirez, M., Gookin, G., Camacho, J., Osornio-Vargas, A.R., Mugica-Alvarez, V., Angulo-Olais, R., Campbell, A., Froines, J., Kleinman, T.M., De Vizcaya-Ruiz, A., 2013. Exposure to inhaled particulate matter activates early markers of oxidative stress, inflammation and unfolded protein response in rat striatum. Toxicol Lett 222, 146-154.
25. Gustaw‐Rothenberg, K., Kowalczuk, K., Stryjecka‐Zimmer, M., 2010. Lipids' peroxidation markers in Alzheimer's disease and vascular dementia. Geriatrics & Gerontology International 10, 161-166.
26. Hartz, A.M., Bauer, B., Block, M.L., Hong, J.S., Miller, D.S., 2008. Diesel exhaust particles induce oxidative stress, proinflammatory signaling, and P-glycoprotein up-regulation at the blood-brain barrier. FASEB J 22, 2723-2733.
27. Hernández, F., Avila, J., 2007. Tauopathies. Cellular and Molecular Life Sciences 64, 2219-2233.
28. Hougaard, K., Saber, A., Jensen, K., Vogel, U., Wallin, H., 2009. Diesel Exhaust Particles: Effects on Neurofunction in Female Mice. pp. 139-143.
29. Hu, W., Wu, F., Zhang, Y., Gong, C.X., Iqbal, K., Liu, F., 2017. Expression of Tau Pathology-Related Proteins in Different Brain Regions: A Molecular Basis of Tau Pathogenesis. Front Aging Neurosci 9, 311.
30. Iqbal, K., Liu, F., Gong, C.-X., Grundke-Iqbal, I., 2010. Tau in Alzheimer Disease and Related Tauopathies. Current Alzheimer research 7, 656-664.
31. Jhoo, J.H., Kim, H.C., Nabeshima, T., Yamada, K., Shin, E.J., Jhoo, W.K., Kim, W., Kang, K.S., Jo, S.A., Woo, J.I., 2004. Beta-amyloid (1-42)-induced learning and memory deficits in mice: involvement of oxidative burdens in the hippocampus and cerebral cortex. Behav Brain Res 155, 185-196.
32. Kampa, M., Castanas, E., 2008. Human health effects of air pollution. Environ Pollut 151, 362-367.
33. Kim, K.H., Kabir, E., Kabir, S., 2015. A review on the human health impact of airborne particulate matter. Environ Int 74, 136-143.
34. Kim, S.Y., Kim, J.K., Park, S.H., Kim, B.G., Jang, A.S., Oh, S.H., Lee, J.H., Suh, M.W., Park, M.K., 2018. Effects of inhaled particulate matter on the central nervous system in mice. Neurotoxicology 67, 169-177.
35. Kimura, T., Ono, T., Takamatsu, J., Yamamoto, H., Ikegami, K., Kondo, A., Hasegawa, M., Ihara, Y., Miyamoto, E., Miyakawa, T., 1996. Sequential Changes of Tau-Site-Specific Phosphorylation during Development of Paired Helical Filaments. Dementia and Geriatric Cognitive Disorders 7, 177-181.
36. Kuo, C.Y., Wong, R.H., Lin, J.Y., Lai, J.C., Lee, H., 2006. Accumulation of chromium and nickel metals in lung tumors from lung cancer patients in Taiwan. J Toxicol Environ Health A 69, 1337-1344.
37. Löndahl, J., Pagels, J., Swietlicki, E., Zhou, J., Ketzel, M., Massling, A., Bohgard, M., 2006. A set-up for field studies of respiratory tract deposition of fine and ultrafine particles in humans. pp. 1152-1163.
38. Lakatos, H.F., Burgess, H.A., Thatcher, T.H., Redonnet, M.R., Hernady, E., Williams, J.P., Sime, P.J., 2006. OROPHARYNGEAL ASPIRATION OF A SILICA SUSPENSION PRODUCES A SUPERIOR MODEL OF SILICOSIS IN THE MOUSE WHEN COMPARED TO INTRATRACHEAL INSTILLATION. Experimental Lung Research 32, 181-199.
39. Lee, J., Giordano, S., Zhang, J., 2012. Autophagy, mitochondria and oxidative stress: cross-talk and redox signalling. Biochem J 441, 523-540.
40. Lee, P.S., Chan, T.L., Hering, W.E., 1983. Long-term clearance of inhaled diesel exhaust particles in rodents. J Toxicol Environ Health 12, 801-813.
41. Levesque, S., Taetzsch, T., Lull, M.E., Kodavanti, U., Stadler, K., Wagner, A., Johnson, J.A., Duke, L., Kodavanti, P., Surace, M.J., Block, M.L., 2011. Diesel exhaust activates and primes microglia: air pollution, neuroinflammation, and regulation of dopaminergic neurotoxicity. Environ Health Perspect 119, 1149-1155.
42. Lindwall, G., Cole, R.D., 1984. Phosphorylation affects the ability of tau protein to promote microtubule assembly. Journal of Biological Chemistry 259, 5301-5305.
43. Liu, Z., Li, T., Li, P., Wei, N., Zhao, Z., Liang, H., Ji, X., Chen, W., Xue, M., Wei, J., 2015. The Ambiguous Relationship of Oxidative Stress, Tau Hyperphosphorylation, and Autophagy Dysfunction in Alzheimer's Disease. Oxid Med Cell Longev 2015, 352723.
44. Luca, M., Luca, A., Calandra, C., 2015. The Role of Oxidative Damage in the Pathogenesis and Progression of Alzheimer's Disease and Vascular Dementia. Oxid Med Cell Longev 2015, 504678.
45. M. H. S. Peter M. Schantz, C.A.G., Robert L. Watters, 2013. Certificate of Analysis Standard Reference Material 1650 b Diesel Particulate Matter. National Institute of Standards and Technology U.S. Department of Commerce: Gaithersburg, MD(2013).
46. Manousakis, G., Jensen, M.B., Chacon, M.R., Sattin, J.A., Levine, R.L., 2008. The interface between stroke and infectious disease: Infectious diseases leading to stroke and infections complicating stroke. Current Neurology and Neuroscience Reports 9, 28.
47. Matsui, Y., Sakai, N., Tsuda, A., Terada, Y., Takaoka, M., Fujimaki, H., Uchiyama, I., 2009. Tracking the pathway of diesel exhaust particles from the nose to the brain by X-ray florescence analysis. Spectrochimica Acta Part B: Atomic Spectroscopy 64, 796-801.
48. Melov, S., Adlard, P.A., Morten, K., Johnson, F., Golden, T.R., Hinerfeld, D., Schilling, B., Mavros, C., Masters, C.L., Volitakis, I., Li, Q.-X., Laughton, K., Hubbard, A., Cherny, R.A., Gibson, B., Bush, A.I., 2007. Mitochondrial Oxidative Stress Causes Hyperphosphorylation of Tau. PLoS ONE 2, e536.
49. Nie, C.L., Wei, Y., Chen, X., Liu, Y.Y., Dui, W., Liu, Y., Davies, M.C., Tendler, S.J.B., He, R.G., 2007. Formaldehyde at Low Concentration Induces Protein Tau into Globular Amyloid-Like Aggregates In Vitro and In Vivo. PLoS ONE 2, e629.
50. Oberdörster, G., Elder, A., Rinderknecht, A., 2009. Nanoparticles and the Brain: Cause for Concern? Journal of nanoscience and nanotechnology 9, 4996-5007.
51. Oberdörster, G., Sharp, Z., Atudorei, V., Elder, A., Gelein, R., Kreyling, W., Cox, C., 2004. Translocation of Inhaled Ultrafine Particles to the Brain. Inhalation Toxicology 16, 437-445.
52. Perry, V.H., Cunningham, C., Holmes, C., 2007. Systemic infections and inflammation affect chronic neurodegeneration. Nature Reviews Immunology 7, 161.
53. Peters, A., Veronesi, B., Calderon-Garciduenas, L., Gehr, P., Chen, L.C., Geiser, M., Reed, W., Rothen-Rutishauser, B., Schurch, S., Schulz, H., 2006. Translocation and potential neurological effects of fine and ultrafine particles a critical update. Part Fibre Toxicol 3, 13.
54. Pope, C.A., 3rd, Dockery, D.W., 2006. Health effects of fine particulate air pollution: lines that connect. J Air Waste Manag Assoc 56, 709-742.
55. Praticò, D., 2008. Oxidative stress hypothesis in Alzheimer’s disease: a reappraisal. Trends in Pharmacological Sciences 29, 609-615.
56. Riediker, M., Cascio, W.E., Griggs, T.R., Herbst, M.C., Bromberg, P.A., Neas, L., Williams, R.W., Devlin, R.B., 2004. Particulate matter exposure in cars is associated with cardiovascular effects in healthy young men. Am J Respir Crit Care Med 169, 934-940.
57. Ris, C., 2007. U.S. EPA Health Assessment for Diesel Engine Exhaust: A Review. Inhalation Toxicology 19, 229-239.
58. Rodriguiz, R.M., Wetsel, W.C., 2006. 12 Assessments of Cognitive Deficits in Mutant Mice. Animal models of cognitive impairment, 187.
59. Ruckerl, R., Greven, S., Ljungman, P., Aalto, P., Antoniades, C., Bellander, T., Berglind, N., Chrysohoou, C., Forastiere, F., Jacquemin, B., von Klot, S., Koenig, W., Kuchenhoff, H., Lanki, T., Pekkanen, J., Perucci, C.A., Schneider, A., Sunyer, J., Peters, A., Group, A.S., 2007. Air pollution and inflammation (interleukin-6, C-reactive protein, fibrinogen) in myocardial infarction survivors. Environ Health Perspect 115, 1072-1080.
60. Sergeant, N., Bretteville, A., Hamdane, M., Caillet-Boudin, M.-L., Grognet, P., Bombois, S., Blum, D., Delacourte, A., Pasquier, F., Vanmechelen, E., Schraen-Maschke, S., Buée, L., 2008. Biochemistry of Tau in Alzheimer’s disease and related neurological disorders. Expert Review of Proteomics 5, 207-224.
61. Serrano, J., Fernández, A.P., Martínez-Murillo, R., Martínez, A., 2010. High sensitivity to carcinogens in the brain of a mouse model of Alzheimer's disease. Oncogene 29, 2165.
62. Sies, H., 1991. Oxidative stress: From basic research to clinical application. The American Journal of Medicine 91, S31-S38.
63. Sjogren, M., Davidsson, P., Tullberg, M., Minthon, L., Wallin, A., Wikkelso, C., Granerus, A., Vanderstichele, H., Vanmechelen, E., Blennow, K., 2001. Both total and phosphorylated tau are increased in Alzheimer's disease. Journal of Neurology, Neurosurgery, and Psychiatry 70, 624-630.
64. Sokoloff, L., 1999. Energetics of Functional Activation in Neural Tissues. Neurochemical Research 24, 321-329.
65. Sunday, O., Adekunle, M., Temitope, O., Richard, A., Samuel, A., Olufunminyi, A., Elizabeth, O., 2014. Alteration in antioxidants level and lipid peroxidation of patients with neurodegenerative diseases {Alzheimer's disease and Parkinson disease}. International Journal of Nutrition, Pharmacology, Neurological Diseases 4, 146-152.
66. Sunderland, T., Linker, G., Mirza, N., et al., 2003. Decreased β-amyloid1-42 and increased tau levels in cerebrospinal fluid of patients with alzheimer disease. JAMA 289, 2094-2103.
67. Tai, H.-C., Serrano-Pozo, A., Hashimoto, T., Frosch, M.P., Spires-Jones, T.L., Hyman, B.T., 2012. The Synaptic Accumulation of Hyperphosphorylated Tau Oligomers in Alzheimer Disease Is Associated With Dysfunction of the Ubiquitin-Proteasome System. The American Journal of Pathology 181, 1426-1435.
68. Thron, R.W., 1996. Direct and Indirect Exposure to Air Pollution. Otolaryngology–Head and Neck Surgery 114, 281-285.
69. Tukozkan, N., Erdamar, H., Seven, I., 2006. Measurement of total malondialdehyde in plasma and tissues by high-performance liquid chromatography and thiobarbituric acid assay. pp. 88-92.
70. Valko, M., Leibfritz, D., Moncol, J., Cronin, M.T., Mazur, M., Telser, J., 2007. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 39, 44-84.
71. Vermylen, J., Nemmar, A., Nemery, B., Hoylaerts, M.F., 2005. Ambient air pollution and acute myocardial infarction. J Thromb Haemost 3, 1955-1961.
72. Weingarten, M.D., Lockwood, A.H., Hwo, S.Y., Kirschner, M.W., 1975. A protein factor essential for microtubule assembly. Proceedings of the National Academy of Sciences of the United States of America 72, 1858-1862.
73. Win-Shwe, T.T., Yamamoto, S., Fujitani, Y., Hirano, S., Fujimaki, H., 2012. Nanoparticle-rich diesel exhaust affects hippocampal-dependent spatial learning and NMDA receptor subunit expression in female mice. Nanotoxicology 6, 543-553.
74. Wong, E., Cuervo, A.M., 2010. Integration of Clearance Mechanisms: The Proteasome and Autophagy. Cold Spring Harbor Perspectives in Biology 2, a006734.
75. Xin, S.H., Tan, L., Cao, X., Yu, J.T., Tan, L., 2018. Clearance of Amyloid Beta and Tau in Alzheimer's Disease: from Mechanisms to Therapy. Neurotox Res.
76. Yamada, K., Patel, T.K., Hochgrafe, K., Mahan, T.E., Jiang, H., Stewart, F.R., Mandelkow, E.M., Holtzman, D.M., 2015. Analysis of in vivo turnover of tau in a mouse model of tauopathy. Mol Neurodegener 10, 55.
77. Yang, G., Kitagawa, K., Matsushita, K., Mabuchi, T., Yagita, Y., Yanagihara, T., Matsumoto, M., 1997. C57BL/6 strain is most susceptible to cerebral ischemia following bilateral common carotid occlusion among seven mouse strains: selective neuronal death in the murine transient forebrain ischemia. Brain Research 752, 209-218.
78. Yokota, S., Sato, A., Umezawa, M., Oshio, S., Takeda, K., 2015. In utero exposure of mice to diesel exhaust particles affects spatial learning and memory with reduced N-methyl-D-aspartate receptor expression in the hippocampus of male offspring. Neurotoxicology 50, 108-115.
79. Zempel, H., Mandelkow, E., 2014. Lost after translation: missorting of Tau protein and consequences for Alzheimer disease. Trends Neurosci 37, 721-732.
80. Zhang, J.Y., Peng, C., Shi, H., Wang, S., Wang, Q., Wang, J.Z., 2009. Inhibition of autophagy causes tau proteolysis by activating calpain in rat brain. J Alzheimers Dis 16, 39-47.
81. Zhao, Y., Zhao, B., 2013. Oxidative stress and the pathogenesis of Alzheimer's disease. Oxid Med Cell Longev 2013, 316523.
82. 吳亦翎, 2016. 細懸浮微粒之中樞神經系統毒性CNS Toxicity Induced by DEPs and Ambient Particles.
83. 程欣源, 2015. 懸浮微粒對中樞神經系統的毒性研究. 職業醫學與工業衛生研究所, vol. 碩士. 國立臺灣大學, 台北市, p. 100.
84. 趙貞婷, 2017. 柴油引擎微粒對中樞神經系統影響之時間軸研究. 職業醫學與工業衛生研究所, vol. 碩士. 國立臺灣大學, 台北市, p. 79.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70463-
dc.description.abstract現今的空氣污染日益嚴重,空氣污染的暴露也會造成許多身體健康上的影響。研究指出暴露於空氣污染之中會造成呼吸系統、心血管疾病甚至影響中樞神經系統(central nervous system)。直至今日,大氣細懸浮微粒與神經退化性疾病(neuro-degenerative diseases)的關聯已經被確立了,然而其中的詳細機制仍舊不得而知。現今大都市中的空氣污染排放嚴重,柴油引擎微粒(diesel exhaust particles, DEPs)更是主要的污染物之一。柴油引擎微粒的神經毒性可能與神經退化性疾病的產生有所關聯。因此,我們希望藉由實驗動物模型暴露於柴油引擎微粒來觀察實驗動物是否在空間記憶、學習能力上有所改變。同時,我們也會蒐集與測量動物的腦部氧化壓力(oxidative stress)、腦中神經纖維纏結指標,以了解柴油引擎微粒對中樞神經系統的神經毒性。
本研究使用32隻C57BL/6母鼠,透過口咽吸入(oropharyngeal aspiration,OA)在三週內分6次暴露共300 μg的SRM 1650b型柴油引擎微粒。柴油引擎微粒購買自美國國家標準暨技術研究院,是由多種重型柴油引擎機具燃燒所排放出來的引擎微粒,適合代表使用柴油引擎的重型機具與車輛所產生的微粒。在暴露之後,其中一批小鼠會在24小時內犧牲(急性組);另一批則會給予3個月的恢復期(恢復組)並且進行莫式水迷津(Morris water maze)、被動迴避測驗(passive avoidance test)兩個動物行為實驗。小鼠犧牲後會取下全腦做為樣本並再分為小腦、海馬迴、大腦皮質三個腦區進行研究。這些樣本將會使用LC-MS/MS分析腦中脂質過氧化(lipid peroxidation)的指標丙二醛(malondialdehyde, MDA),也會使用西方點墨法(Western blot)檢測神經纖維纏結指標:total Tau、phosphorylated Tau蛋白。部分腦組織灌流後進行石蠟包埋、H&E染色與切片,透過專業獸醫師分析組織病理。
實驗結果表示,脂質過氧化指標MDA於急性組的暴露組小腦、海馬迴有顯著的上升,在其他組別與腦區則無差異;神經纖維纏結指標分析上發現,total Tau、phosphorylated Tau蛋白的表現量在急性組的暴露組大腦皮質顯著的高於控制組,其他組別與腦區同樣無差異。動物行為實驗的結果表示,恢復前與恢復後的莫式水迷津與被動迴避試驗控制組與暴露組間皆無差異。在病理切片的部份,在兩大組別的暴露組肺部有發現微粒的堆積與發炎反應的產生,不過腦部並沒有顯著的發炎與病變發生。
總結來說,急性暴露於柴油引擎微粒的神經毒性會造成腦部的氧化壓力、total Tau與phosphorylated Tau蛋白表現量上升,但是經過長期的恢復後並沒有在腦部發現任何病變與生物指標上升而且在動物行為實驗上也沒有差異。這種結果可能表示小鼠在三個月恢復期中,由於自身的清除機制消除柴油引擎微粒產生的神經毒性。再加上本次使用健康的成年小鼠暴露,比起易感受族群(嬰幼兒、年長者)更不易受到神經毒性的傷害且恢復快速。不過,本實驗也指出急性的柴油引擎微粒暴露能夠造成中樞神經系統的受損,若長期暴露之下所帶來的危害更不容小覷。本次實驗在建立完整的柴油引擎微粒毒性影響中樞神經系統機制仍缺乏部份證據來佐證,期望未來可以增加檢測自噬作用、乙型類澱粉蛋白亦或更多的相關生物指標或在實驗動物上使用基因轉殖動物達到完整的結果。
zh_TW
dc.description.abstractThe association between ambient particles and neurodegenerative diseases has been acquired. However, the exact mechanisms remain unclear. Diesel exhaust particles (DEPs) are one of major sources of ambient particles and it is also related to neuro-degenerative diseases. Here, we investigated if DEPs’ neurotoxicity induced behaviour changes of learning and memory of mice. We also evaluated the level of oxidative stress and Tau protein expression in brain tissue of mice.
Female C57BL/6 mice were administered with 300μg of SRM 1650b DEPs in 3 weeks through multiple oropharyngeal aspiration (OA). SRM 1650b DEPs used in this study was purchased from National Institute of Standards and Technology. After exposure, one group was sacrificed at 24 hours, and the other group was allotted 3-months recovery time. Morris water maze test was conducted to study the spatial learning and memory of mice. Additionally, passive avoidance task was used to evaluate learning and memory. The cortex, hippocampus and cerebellum regions were sampled after the sacrifice. Lipid peroxidation was measured by assaying the malondialdehyde level with LC-MS/MS. As markers of neurofibrillary tangle, expression of total Tau protein and phosphorylated Tau protein were also tested by western blot. Brain tissues were stained by hematoxylin and eosin (H&E) for histopathology.
Our results showed that MDA concentration significantly increased in hippocampus and cerebellum of mice (p<0.01, Wilcoxon rank sum test), which sacrificed right after exposure in 24 hours. We also found that expression of total Tau and phosphorylated Tau protein were significantly higher in the cortex of the exposure than the control (p<0.05, Wilcoxon rank sum test) in the same group. Whereas, we didn’t find any noticeable increasing of MDA concentration and expression of Tau protein in 3-months recovery group. The results of the Morris water maze and passive avoidance test didn’t show any difference between control and exposure, either. The histopathology of 3 brain regions (olfactory bulb, hippocampus and cerebellum) had no histopathological changed, but mild inflammation in lung of exposed mice in both groups.
Previous reports show that DEPs caused an increase of oxidative stress and expression of Tau protein, but there was no deficit of spatial learning and memory of animals. In our study, we only found that DEPs induced oxidative stress up-regulation and higher expression of Tau protein in the CNS, but a spatial learning and memory defect after acute exposure were not observed. Therefore, we conclude that acute exposure to DEPs could cause damage to the CNS and 3-months of recovery time could nearly remove the neurotoxicity of DEPs. However, the underlying mechanism through which DEPs affects our CNS requires further studies including biomarkers of autophagy (LC3b), beta-amyloid (Aβ), and microglia activation (Iba-1).
In conclusion, acute exposure to DEPs could cause neurotoxicity in mice. Our study also indicated a possible link between neurotoxicity of DEPs and neurodegenerative diseases. However, further studies are needed to elucidate the relationship between DEPs and neurodegenerative diseases.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T04:28:44Z (GMT). No. of bitstreams: 1
ntu-107-R05841014-1.pdf: 3482297 bytes, checksum: 2ce7eb301be05ccde7a2a9d555ea7ca5 (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents目 錄
中文摘要 I
Abstract III
第一章 背景與研究目的 1
第二章 文獻回顧 2
2.1空氣污染與健康效應 2
2.2 DEPs對於中樞神經毒性的可能途徑 4
2.2.1微粒直接進入中樞神經 4
2.2.2微粒表面之可溶性有毒物質 4
2.2.3全身性的發炎反應 5
2.3 DEPs對神經退化性疾病的影響與指標 6
2.3.1氧化壓力與脂質過氧化 6
2.3.2Tau蛋白與神經纖維纏結 7
2.3.3行為與記憶改變 8
第三章 材料與方法 10
3.1 實驗動物 10
3.2 實驗設計 10
3.3 柴油引擎微粒 12
3.4 口咽吸入法 - Oropharyngeal aspiration (OA) 12
3.5 脂質過氧化指標 - MDA 14
3.5.1 MDA標準品與DNPH溶液配製 14
3.5.2 MDA萃取 14
3.5.3檢量線與標準添加法 15
3.5.4 LC-MS/MS分析MDA 15
3.6西方點墨法-Tau蛋白表現量 17
3.6.1蛋白質萃取與濃度測定 17
3.6.2凝膠電泳 18
3.6.3電泳照膠分析 19
3.7 動物行為實驗 20
3.7.1 莫式水迷津實驗 – Morris water maze 20
3.7.2 被動迴避實驗 – Passive avoidance test 22
3.8 組織病理 23
3.8.1灌流方法 23
3.9 統計分析 23
第四章 結果 24
4.1脂質過氧化 - MDA 24
4.2西方點墨法 - Tau 蛋白測定 24
4.2.1 Total Tau表現量 24
4.2.2 P-Tau表現量 25
4.2.3 P-Tau與total Tau相對比例 25
4.3動物行為實驗 26
4.3.1莫式水迷津 26
4.3.2被動迴避實驗 26
4.4組織病理 27
第五章 討論 28
5.1腦部脂質過氧化 29
5.2腦部Tau蛋白表現量 31
5.3空間學習與記憶 34
5.4肺部與中樞神經組織病理特徵 36
5.5結論與建議 37
第六章 參考文獻 39
 
表目錄
表一、細懸浮微粒對中樞神經系統影響之研究 51
表二、柴油引擎微粒對動物中樞神經系統影響之研究 53
表三、SRM 1650b柴油引擎微粒PAH質量分數 55
表四、LC-MS/MS移動相濃度梯度比例 57
表五、串聯質譜儀離子源設定參數 57
表六、SRM參數 58
表七、各組別不同腦區的MDA濃度(nmol/mL) 59
表八、Total Tau與P-Tau在急性組不同腦區的表現量 60
表九、Total Tau與P-Tau在恢復組不同腦區的表現量 61
表十、莫式水迷津第一次知識採集階段 62
表十一、莫式水迷津第一次空間探索實驗 63
表十二、莫式水迷津第二次知識採集階段 64
表十三、莫式水迷津第二次空間探索實驗 65
表十四、第一次被動迴避實驗每日滯留時間 66
表十五、第二次被動迴避實驗每日滯留時間 66
表十六、病理組織切片評分 67
 
圖目錄
圖一、實驗設計圖 68
圖二、實驗暴露與犧牲流程 69
圖三、MDA-DNPH層析圖 70
圖四、MDA-DNPH標準品檢量線與標準添加法檢量線 71
圖五、各腦區MDA平均濃度 72
圖六、小腦total Tau與phosphorylated Tau表現量 73
圖七、海馬迴total Tau與phosphorylated Tau表現量 74
圖八、大腦皮質total Tau與phosphorylated Tau表現量 75
圖九、急性組P-Tau與total Tau表現量比值 76
圖十、恢復組P-Tau與total Tau表現量比值 77
圖十一、第一次莫式水迷津知識採集階段結果 78
圖十二、第一次莫式水迷津空間探索階段結果 79
圖十三、第二次莫式水迷津知識採集階段結果 80
圖十四、第二次莫式水迷津空間探索階段結果 81
圖十五、第一次被動迴避實驗滯留時間趨勢圖 82
圖十六、第二次被動迴避實驗滯留時間趨勢圖 82
圖十七、急性組:控制組與暴露組小腦組織病理切片 83
圖十八、急性組:控制組與暴露組海馬迴組織病理切片 84
圖十九、急性組:控制組與暴露組嗅球組織病理切片 85
圖二十、急性組:控制組與暴露組肺部組織病理切片 86
圖二十一、恢復組:控制組與暴露組小腦組織病理切片 87
圖二十二、恢復組:控制組與暴露組海馬迴組織病理切片 88
圖二十三、恢復組:控制組與暴露組嗅球組織病理切片 89
圖二十四、恢復組:控制組與暴露組肺部組織病理切片 90
dc.language.isozh-TW
dc.title以口咽吸入多次暴露柴油引擎微粒對小鼠誘發神經毒性之研究zh_TW
dc.titleNeurotoxicity induced by diesel exhaust particles with repeated oropharyngeal aspiration in miceen
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳鑫昌(Hsin-Chang Chen),莊校奇(Hsiao-Chi Chuang)
dc.subject.keyword柴油引擎微粒,口咽吸入,神經毒性,神經退化性疾病,氧化壓力,中樞神經系統,神經纖維纏結,zh_TW
dc.subject.keyworddiesel exhaust particles (DEPs),oropharyngeal aspiration (OA),neurotoxicity,neurodegenerative diseases,oxidative stress,central nervous system (CNS),neurofibrillary tangle,en
dc.relation.page90
dc.identifier.doi10.6342/NTU201802976
dc.rights.note有償授權
dc.date.accepted2018-08-13
dc.contributor.author-college公共衛生學院zh_TW
dc.contributor.author-dept職業醫學與工業衛生研究所zh_TW
顯示於系所單位:職業醫學與工業衛生研究所

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  目前未授權公開取用
3.4 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved