Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生化科技學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70461
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李昆達(Kung-Ta Lee)
dc.contributor.authorYu-Jie Linen
dc.contributor.author林宇倢zh_TW
dc.date.accessioned2021-06-17T04:28:41Z-
dc.date.available2025-03-05
dc.date.copyright2020-03-05
dc.date.issued2020
dc.date.submitted2020-02-27
dc.identifier.citationTalano MA, Laura Wevar Oller A, S Gonzalez P, Agostini E (2012) Hairy roots, their multiple applications and recent patents. Recent Patents on Biotechnology 6: 115-133
Abdelkareem A, Thagun C, Nakayasu M, Mizutani M, Hashimoto T, Shoji T (2017) Jasmonate-induced biosynthesis of steroidal glycoalkaloids depends on COI1 proteins in tomato. Biochemical and Biophysical Research Communications 489: 206-210
Bartels S, Boller T (2015) Quo vadis, Pep? Plant elicitor peptides at the crossroads of immunity, stress, and development. Journal of Experimental Botany 66: 5183-5193
Cárdenas PD, Sonawane PD, Pollier J, Bossche RV, Dewangan V, Weithorn E, Tal L, Meir S, Rogachev I, Malitsky S (2016) GAME9 regulates the biosynthesis of steroidal alkaloids and upstream isoprenoids in the plant mevalonate pathway. Nature Communications:10654
Chen H, Chen F (2000) Effect of yeast elicitor on the secondary metabolism of Ti-transformed Salvia miltiorrhiza cell suspension cultures. Plant Cell Reports 19: 710-717
Chinchilla D, Bauer Z, Regenass M, Boller T, Felix G (2006) The Arabidopsis receptor kinase FLS2 binds flg22 and determines the specificity of flagellin perception. The Plant Cell 18: 465-476
Constabel CP, Yip L, Ryan CA (1998) Prosystemin from potato, black nightshade, and bell pepper: primary structure and biological activity of predicted systemin polypeptides. Plant Molecular Biology 36: 55-62
Dewey RE, Xie J (2013) Molecular genetics of alkaloid biosynthesis in Nicotiana tabacum. Phytochemistry 94: 10-27
Dixon RA (2003) Phytochemistry meets genome analysis, and beyond. Phytochemistry 62: 815-816
Facchini PJ (2001) Alkaloid biosynthesis in plants: biochemistry, cell biology, molecular regulation, and metabolic engineering applications. Annual Review of Plant Biology 52: 29-66
Facchini PJ, Bohlmann J, Covello PS, De Luca V, Mahadevan R, Page JE, Ro D-K, Sensen CW, Storms R, Martin VJ (2012) Synthetic biosystems for the production of high-value plant metabolites. Trends in Biotechnology 30: 127-131
Ge X, Wu J (2005) Induction and potentiation of diterpenoid tanshinone accumulation in Salvia miltiorrhiza hairy roots by β-aminobutyric acid. Applied Microbiology and Biotechnology 68: 183-188
Gómez-Gómez L, Boller T (2000) FLS2: an LRR receptor–like kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis. Molecular Cell 5: 1003-1011
Grzegorczyk I, Wysokinska H (2010) Antioxidant compounds in Salvia officinalis L. shoot and hairy root cultures in the nutrient sprinkle bioreactor. Acta Societatis Botanicorum Poloniae 79: 7-10
Gust AA, Pruitt R, Nürnberger T (2017) Sensing danger: key to activating plant immunity. Trends in Plant Science 22: 779-791
Hann DR, Rathjen JP (2007) Early events in the pathogenicity of Pseudomonas syringae on Nicotiana benthamiana. The Plant Journal 49: 607-618
Hao X, Shi M, Cui L, Xu C, Zhang Y, Kai G (2015) Effects of methyl jasmonate and salicylic acid on tanshinone production and biosynthetic gene expression in transgenic Salvia miltiorrhiza hairy roots. Biotechnology and Applied Biochemistry 62: 24-31
Herbert RB (2003) The biosynthesis of plant alkaloids and nitrogenous microbial metabolites. Natural Product Reports 20: 494-508
Huffaker A, Ryan CA (2007) Endogenous peptide defense signals in Arabidopsis differentially amplify signaling for the innate immune response. Proceedings of the National Academy of Sciences 104: 10732-10736
Kim Y, Tsuda K, Igarashi D, Hillmer RA, Sakakibara H, Myers CL, Katagiri F (2014) Mechanisms underlying robustness and tunability in a plant immune signaling network. Cell Host Microbe 15: 84-94
Koiwa H, Bressan RA, Hasegawa PM (1997) Regulation of protease inhibitors and plant defense. Trends in Plant Science 2: 379-384
Min JY, Jung HY, Kang SM, Kim YD, Kang YM, Park DJ, Prasad DT, Choi MS (2007) Production of tropane alkaloids by small-scale bubble column bioreactor cultures of Scopolia parviflora adventitious roots. Bioresource Technology 98: 1748-1753
Morrone D, Hillwig ML, Mead ME, Lowry L, Fulton DB, Peters RJ (2011) Evident and latent plasticity across the rice diterpene synthase family with potential implications for the evolution of diterpenoid metabolism in the cereals. Biochemical Journal 435: 589-595
Mueller K, Bittel P, Chinchilla D, Jehle AK, Albert M, Boller T, Felix G (2012) Chimeric FLS2 receptors reveal the basis for differential Flagellin perception in Arabidopsis and tomato. The Plant Cell 24: 2213-2224
Ono NN, Tian L (2011) The multiplicity of hairy root cultures: prolific possibilities. Plant Science 180: 439-446
Pearce G (2011) Systemin, hydroxyproline-rich systemin and the induction of protease inhibitors. Current Protein and Peptide Science 12: 399-408
Pearce G, Moura DS, Stratmann J, Ryan CA (2001) Production of multiple plant hormones from a single polyprotein precursor. Nature 411: 817
Rao SR, Ravishankar G (2002) Plant cell cultures: chemical factories of secondary metabolites. Biotechnology Advances 20: 101-153
Ren F, Lu Y-T (2006) Overexpression of tobacco hydroxyproline-rich glycopeptide systemin precursor A gene in transgenic tobacco enhances resistance against Helicoverpa armigera larvae. Plant Science 171: 286-292
Rivero J, Álvarez D, Flors V, Azcón‐Aguilar C, Pozo MJ (2018) Root metabolic plasticity underlies functional diversity in mycorrhiza‐enhanced stress tolerance in tomato. New Phytologist 220: 1322-1336
Robatzek S, Bittel P, Chinchilla D, Köchner P, Felix G, Shiu S-H, Boller T (2007) Molecular identification and characterization of the tomato flagellin receptor LeFLS2, an orthologue of Arabidopsis FLS2 exhibiting characteristically different perception specificities. Plant Molecular Biology 64: 539-547
Ron M, Kajala K, Pauluzzi G, Wang D, Reynoso MA, Zumstein K, Garcha J, Winte S, Masson H, Inagaki S (2014) Hairy root transformation using Agrobacterium rhizogenes as a tool for exploring cell type-specific gene expression and function using tomato as a model. Plant Physiology 166: 455-469
Ryan CA, Pearce G (2003) Systemins: a functionally defined family of peptide signals that regulate defensive genes in Solanaceae species. Proceedings of the National Academy of Sciences 100: 14577-14580
Saedler R, Baldwin IT (2004) Virus‐induced gene silencing of jasmonate‐induced direct defences, nicotine and trypsin proteinase‐inhibitors in Nicotiana attenuata. Journal of Experimental Botany 55: 151-157
Saeed S, Ali H, Khan T, Kayani W, Khan MA (2017) Impacts of methyl jasmonate and phenyl acetic acid on biomass accumulation and antioxidant potential in adventitious roots of Ajuga bracteosa Wall ex Benth., a high valued endangered medicinal plant. Physiology and Molecular Biology of Plants 23: 229-237
Shilpha J, Satish L, Kavikkuil M, Largia MJV, Ramesh M (2015) Methyl jasmonate elicits the solasodine production and anti-oxidant activity in hairy root cultures of Solanum trilobatum L. Industrial Crops and Products 71: 54-64
Shoji T, Kajikawa M, Hashimoto T (2010) Clustered transcription factor genes regulate nicotine biosynthesis in tobacco. The Plant Cell 22: 3390-3409
Shoji T, Hashimoto T (2011) Tobacco MYC2 regulates jasmonate-inducible nicotine biosynthesis genes directly and by way of the NIC2-locus ERF genes. Plant and Cell Physiology 52: 1117-1130
Singh A, Dwivedi P (2018) Methyl-jasmonate and salicylic acid as potent elicitors for secondary metabolite production in medicinal plants: A review. Journal of Pharmacognosy and Phytochemistry 7: 750-757
Sivanandhan G, Dev GK, Jeyaraj M, Rajesh M, Arjunan A, Muthuselvam M, Manickavasagam M, Selvaraj N, Ganapathi A (2013) Increased production of withanolide A, withanone, and withaferin A in hairy root cultures of Withania somnifera L. Dunal elicited with methyl jasmonate and salicylic acid. Plant Cell, Tissue and Organ Culture 114: 121-129
Sun B, Tian Y-X, Zhang F, Chen Q, Zhang Y, Luo Y, Wang X-R, Lin F-C, Yang J, Tang H-R (2018) Variations of Alkaloid Accumulation and Gene Transcription in Nicotiana tabacum. Biomolecules 8: 114
Takai R, Isogai A, Takayama S, Che F-S (2008) Analysis of flagellin perception mediated by flg22 receptor OsFLS2 in rice. Molecular Plant-Microbe Interactions 21: 1635-1642
Wang JW, Wu JY (2013) Effective elicitors and process strategies for enhancement of secondary metabolite production in hairy root cultures. Advances in Biochemical Engineering 134: 55-89
Wasternack C, Stenzel I, Hause B, Hause G, Kutter C, Maucher H, Neumerkel J, Feussner I, Miersch O (2006) The wound response in tomato–role of jasmonic acid. Journal of Plant Physiology 163: 297-306
Yang L, Stöckigt J (2010) Trends for diverse production strategies of plant medicinal alkaloids. Natural Product Reports 27: 1469-1479
Yeh P-H (2018) 以代謝體學探討菸草毛狀根之尼古丁生合成機制. 臺灣大學生化科技學系學位論文:1-46
Yonekura-Sakakibara K, Saito K (2009) Functional genomics for plant natural product biosynthesis. Natural Product Reports 26: 1466-1487
Yoshikawa T, Furuya T (1987) Saponin production by cultures of Panax ginseng transformed with Agrobacterium rhizogenes. Plant Cell Reports 6: 449-453
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70461-
dc.description.abstract愈來愈多的植物胜肽分子被發現會參與植物防禦,藉由啟動茉莉酸訊息傳遞路徑,促進次級代謝物生產。然而這些胜肽在毛狀根累積次級代謝物中扮演怎樣的角色仍所知甚少。本研究中我們首先建立番茄毛狀根。接著利用菸草毛狀根作為研究材料,測試多種胜肽對尼古丁含量之影響,並參考菸草毛狀根之操作程序測並測試胜肽對番茄毛狀根累積番茄鹼能力之影響。研究結果顯示,在菸草毛狀根中,0.1 μM茉莉酸甲酯能刺激尼古丁累積,但添加菸草或番茄系統素後,原本0.1 μM茉莉酸甲酯所能累積之番茄鹼含量受到顯著抑制。而在番茄毛狀根中,同時添加0.1 μM茉莉酸甲酯及番茄系統素或flg22,番茄鹼含量相較只有0.1 μM茉莉酸甲酯的處理下降20%。本研究結果顯示,無論在煙草或是番茄毛狀根中,特定胜肽會抑制0.1 μM茉莉酸甲酯累積代謝物之能力,暗示著與0.1 μM 茉莉酸甲酯及特定胜肽間存在著拮抗關係。zh_TW
dc.description.abstractMore and more signaling peptides have been discovered to participate in plant defense through stimulating jasmonate (JA) signaling pathway that activates defense genes and enhances the production of secondary metabolites. However, little is known pertaining to the role of peptides in hairy root cultures accumulating secondary metabolites. In this study, tomato hairy roots were first established. Afterwards, tobacco hairy roots were used as the study model to screen out peptides that could affect nicotine content. Based on the screening procedure established in tobacco hairy roots, a screening procedure for the tomato hairy root targeting its metabolite, tomatine, was subsequently developed. Through this process, we found nicotine content elevated by 0.1 µM MeJA but decreased significantly after the addition of tobacco or tomato systemin. Tomatine content decreased by 20% in comparison with that in 0.1 µM MeJA after the addition of tomato systemin or flg22. These results demonstrate that in both tobacco and tomato hairy root cultures, the addition of specific peptides gave rise to a negative effect of 0.1 µM MeJA on accumulating secondary metabolites, suggesting an antagonistic effect between 0.1 µM MeJA and peptides.en
dc.description.provenanceMade available in DSpace on 2021-06-17T04:28:41Z (GMT). No. of bitstreams: 1
U0001-2602202014221000.pdf: 3030300 bytes, checksum: b2a3535acc05e08cce6d645210f2ba5a (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents誌謝 i
Abstract ii
中文摘要 iii
Chapter 1: Introduction 1
1.1 Hairy root cultures 1
1.1.1 Induction of hairy roots 1
1.1.2 Hairy roots in valuable plant secondary metabolites production 1
1.2 Plant secondary metabolites 2
1.2.1 Classification of plant secondary metabolites 2
1.2.2 Production of therapeutic secondary metabolites using hairy root cultures 3
1.2.3 Alkaloids in Nicotiana tabacum 5
1.2.4 Steroidal glycoalkaloids in Solanum lycopersicum 5
1.3 Role of secondary metabolites in plant defense response 6
1.4 Peptides involved in the defense responses and immunity 7
1.4.1 Perception of danger signals 7
1.4.2 Bacterial flagellin-derived flg22 peptide 7
1.4.3 Endogenous peptides 8
Chapter 2: Materials and Methods 11
2.1 Plant materials 11
2.2 Agrobacterium rhizogenes strain and culture condition 11
2.3 Infection and induction 11
2.4 Tomato hairy root molecular confirmation 12
2.5 Culture condition of hairy roots 13
2.5.1 Nicotiana tabacum hairy roots 13
2.5.2 Solanum lycopersicum hairy roots 14
2.6 Peptide preparation and application 14
2.7 Methyl jasmonate preparation and application 15
2.8 Alkaloids quantification and quantification by UPLC 15
2.8.1 Alkaloids extraction 15
2.8.2 UPLC condition 16
2.8.3 Standard curves for quantification 16
2.9 Glycoalkaloids quantification and quantification by UPLC-QTOF/MS 17
2.9.1 Glycoalkaloids extraction 17
2.9.2 UPLC-QTOF-MS conditions 17
2.9.3 Standard curves for quantification 18
2.10 Statistical analysis 19
Chapter 3: Results 20
3.1 Method development 20
3.2 Effect of flg22 on growth and nicotine content in tobacco hairy roots 21
3.3 Effect of TomSys and TobSys on nicotine content in tobacco hairy roots 21
3.4 Induction and establishment of tomato hairy roots 22
3.5 Confirmation of tomato hairy roots by PCR 23
3.6 Detection of tomatine occurrence in tomato plants and hairy roots 23
3.7 Comparative growth and tomatine production of each hairy root clone 24
3.8 Growth kinetics of LE3 and tomatine accumulation 25
3.9 Effect of Flg22 on tomatine content and growth in tomato hairy roots 25
3.10 Effect of tomato systemin on tomatine content and growth in tomato hairy roots 26
Chapter 4: Discussion 27
4.1 Developments and modifications of the screening procedure 27
4.2 Effect of MeJA on growth and metabolites content in hairy roots 28
4.3 Comparison of the screening results in tobacco and tomato hairy roots 29
4.4 The antagonistic effect between 0.1 µM MeJA and peptides 31
Chapter 5: Conclusion 33
List of Figures 34
Abbreviations 48
References 49
dc.language.isoen
dc.subject菸草zh_TW
dc.subject番茄zh_TW
dc.subject胜?zh_TW
dc.subject次級代謝物zh_TW
dc.subject毛狀根zh_TW
dc.subjectsecondary metaboliteen
dc.subjectpeptideen
dc.subjectSolanum lycopersicumen
dc.subjectNicotiana tabacumen
dc.subjecthairy rooten
dc.title添加胜肽對毛狀根生物鹼含量之影響zh_TW
dc.titleEffect of Peptides on Alkaloids Occurrence in Hairy Root Culturesen
dc.typeThesis
dc.date.schoolyear109-1
dc.description.degree碩士
dc.contributor.oralexamcommittee楊健志(Chien-Chih Yang),陳佩燁(Rita P.-Y. Chen),賴爾?(Erh-Min Lai),鄭秋萍(Chiu-Ping Cheng)
dc.subject.keyword毛狀根,次級代謝物,菸草,番茄,胜?,zh_TW
dc.subject.keywordhairy root,secondary metabolite,Nicotiana tabacum,Solanum lycopersicum,peptide,en
dc.relation.page52
dc.identifier.doi10.6342/NTU202000628
dc.rights.note有償授權
dc.date.accepted2020-02-27
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生化科技學系zh_TW
顯示於系所單位:生化科技學系

文件中的檔案:
檔案 大小格式 
U0001-2602202014221000.pdf
  未授權公開取用
2.96 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved