請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70459完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林逸彬(Yi-Pin Lin) | |
| dc.contributor.author | Mao-Shu Du | en |
| dc.contributor.author | 杜茂煦 | zh_TW |
| dc.date.accessioned | 2021-06-17T04:28:38Z | - |
| dc.date.available | 2023-08-16 | |
| dc.date.copyright | 2018-08-16 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2018-08-13 | |
| dc.identifier.citation | References
APHA; WWA; WDF, Standard methods for the examination of water and waste water, 21 st Ed. In APHP: Washington, DC, 2012. Audenaert, W. T. M., Vandierendonck, D., Van Hulle, S. W. H., and Nopens, I., 2013. Comparison of ozone and HO. induced conversion of effluent organic matter (EfOM) using ozonation and UV/H2O2 treatment. Water Research, 47, 2387-2398. Buehler, R. E., Staehelin, J., Hoigne, J., 1984. Ozone decomposition in water studied by pulse radiolysis. 1. Perhydroxyl (HO2)/hyperoxide (O2-) and HO3/O3- as intermediates. The Journal of Physical Chemistry, 88, 2560-2564. Buffle, M.O., and von Gunten, U., 2006. Phenols and Amine Induced HO. Generation During the Initial Phase of Natural Water Ozonation. Environmental Science and Technology, 40, 3057-3063. Buxton, G. V., Greenstock, C. L., Helman, W. P., Ross, A. B., 1988. Critical Review of rate constants for reactions of hydrated electrons, hydrogen atoms and hydroxyl radicals (⋅OH/⋅O− in Aqueous Solution. Journal of Physical and Chemical Reference Data, 17, 513-886. David Yao, C. C., Haag, W. R., 1991. Rate constants for direct reactions of ozone with several drinking water contaminants. Water Research, 25, 761-773. Dodd, M. C., Buffle, M.O., von Gunten, U., 2006. Oxidation of Antibacterial Molecules by Aqueous Ozone: Moiety-Specific Reaction Kinetics and Application to Ozone-Based Wastewater Treatment. Environmental Science and Technology, 40, 1969-1977. Elovitz, M. S., von Gunten, U., 1999. Hydroxyl Radical/Ozone Ratios During Ozonation Processes. I. The Rct Concept. Ozone: Science and Engineering, 21, 239-260. Glaze, W. H., Kang, J.W., Chapin, D. H., 1987. The Chemistry of Water Treatment Processes Involving Ozone, Hydrogen Peroxide and Ultraviolet Radiation. Ozone: Science and Engineering, 9, 335-352. Hoigne, J., Bader, H., 1979. Ozonation of Water: Selectivity and Rate of Oxidation of Solutes. Ozone: Science and Engineering, 1, 73-85. Huber, M. M., Canonica, S., Park, G.-Y., von Gunten, U., 2003. Oxidation of Pharmaceuticals during Ozonation and Advanced Oxidation Processes. Environmental Science and Technology, 37, 1016-1024. Kasprzyk-Hordern, B., Ziółek, M., & Nawrocki, J., 2003. Catalytic ozonation and methods of enhancing molecular ozone reactions in water treatment. Applied Catalysis B: Environmental, 46, 639-669. Kolpin, D. W., Furlong, E. T., Meyer, M. T., Thurman, E. M., Zaugg, S. D., Barber, L. B., Buxton, H. T. (2002). Pharmaceuticals, Hormones, and Other Organic Wastewater Contaminants in U.S. Streams, 1999−2000: A National Reconnaissance. Environmental Science and Technology, 36, 1202-1211. Legube, B., Karpel Vel Leitner, N., 1999. Catalytic ozonation: a promising advanced oxidation technology for water treatment. Catalysis Today, 53, 61-72. Nöthe, T., Fahlenkamp, H., Sonntag, C. v., 2009. Ozonation of Wastewater: Rate of Ozone Consumption and Hydroxyl Radical Yield. Environmental Science and Technology, 43, 5990-5995. Nawrocki, J., 2013. Catalytic ozonation in water: Controversies and questions. Discussion paper. Applied Catalysis B: Environmental, 142-143, 465-471. Neta, P., Dorfman, L. M., 1968. Pulse Radiolysis Studies. XIII. Rate Constants for the Reaction of Hydroxyl Radicals with Aromatic Compounds in Aqueous Solutions Radiation Chemistry 81, 222-230. Oulton, R., Haase, J. P., Kaalberg, S., Redmond, C. T., Nalbandian, M. J., Cwiertny, D. M., 2015. Hydroxyl Radical Formation during Ozonation of Multiwalled Carbon Nanotubes: Performance Optimization and Demonstration of a Reactive CNT Filter. Environmental Science and Technology, 49, 3687-3697. Roberts, P. H., and Thomas, K. V., 2006. The occurrence of selected pharmaceuticals in wastewater effluent and surface waters of the lower Tyne catchment. Science of The Total Environment, 356, 143-153. Robson, C. M., and Rice, R. G., 1991. Wastewater Ozonation in the U.S.A. – History and Current Status - 1989. Ozone: Science and Engineering, 13, 23-40. Sánchez-Polo, M., von Gunten, U., Rivera-Utrilla, J., 2005. Efficiency of activated carbon to transform ozone into OH radicals: Influence of operational parameters. Water Research, 39, 3189-3198. Smith, B., Wepasnick, K., Schrote, K. E., Cho, H. H., Ball, W. P., and Fairbrother, D. H., 2009. Influence of surface oxides on the colloidal stability of multi-walled carbon nanotubes: A structure-property relationship. Langmuir, 25, 9767-9776. Staehelin, J., Buehler, R. E., Hoigne, J., 1984. Ozone decomposition in water studied by pulse radiolysis. 2. Hydroxyl and hydrogen tetroxide (HO4) as chain intermediates. The Journal of Physical Chemistry, 88, 5999-6004. Staehelin, J., Hoigne, J., 1985. Decomposition of ozone in water in the presence of organic solutes acting as promoters and inhibitors of radical chain reactions. Environmental Science and Technology, 19, 1206-1213. Ternes, T. A., Meisenheimer, M., McDowell, D., Sacher, F., Brauch, H.J., Haist-Gulde, B., Preuss, G., Wilme, U., Zulei-Seibert, N. 2002. Removal of Pharmaceuticals during Drinking Water Treatment. Environmental Science and Technology, 36, 3855-3863. Wang, J., Chen, S., Quan, X., Yu, H. (2018). Fluorine-doped carbon nanotubes as an efficient metal-free catalyst for destruction of organic pollutants in catalytic ozonation. Chemosphere, 190, 135-143. Wieser, G., M. Havranek, W., 1993. Ozone uptake in the sun and shade crown of spruce: quantifying the physiological effects of ozone exposure 7. Yong, E. L., Lin, Y.-P., 2012. Incorporation of initiation, promotion and inhibition in the Rct concept and its application in determining the initiation and inhibition capacities of natural water in ozonation. Water Research, 46, 1990-1998. Yong, E. L., Lin, Y.-P., 2013. Kinetics of Natural Organic Matter as the Initiator, Promoter, and Inhibitor, and Their Influences on the Removal of Ibuprofen in Ozonation. Ozone: Science and Engineering, 35, 472-481. Yoon, Y., Moon, J., Kwon, M., Jung, Y., Kim, S., Kang, J.W., 2014. Evaluation of the Catalytic Effect of the Ozone/Carbon Nanotube (O3/CNT) Process Using para-Chlorobenzoic Acid (pCBA). Ozone: Science and Engineering, 36, 465-471. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70459 | - |
| dc.description.abstract | 在自然水體中,藥物和個人保健用品(pharmaceuticals and personal care products, PPCPs)時常被發現,並已經成為現今相當重要的議題。為了去除水中的藥物和個人保健用品,臭氧高級氧化處理(advanced oxidation process)是ㄧ項十分有效並被應用的方法。對於較難被臭氧分子降解的污染物,在系統中催化劑可以提高臭氧產生氫氧自由基(hydroxyl radical, .OH)的效率。
在本研究之中,多壁奈米碳管(multi-walled carbon nanotubes, CNTs)作為催化臭氧處理程序的催化劑。並將奈米碳管以不同的硝酸濃度(20%、40%以及70%)進行前處理,比較不同濃度的硝酸前處理的奈米碳管以及未改質之奈米碳管(pristine CNT)之催化效果。在本實驗中,分別去除兩種藥物和個人保健用品,包括ibuprofen以及acetylsulfamethoxazole。奈米碳管可直接與臭氧反應,亦可以在臭氧降解過程中的氫氧自由基鍊狀反應中扮演起始劑(initiator)、促進劑(promoter)以及抑制劑(inhibitor)的角色。在本研究中,未改質的奈米碳管及被不同濃度硝酸前處理過的奈米碳管之臭氧直接反應、起始反應(initiation)、促進反應(promotion)以及抑制反應(inhibition)的速率常數皆被測定。並發現直接反應及起始反應的速率常數隨著前處理的硝酸濃度的升高而增加,而促進反應及抑制反應的速率常數隨著前處理的硝酸濃度的升高而減少。此外,直接反應及起始反應的速率常數也會隨著pH值升高而增加,促進反應及抑制反應的速率常數則隨著pH值升高而減少。利用奈米碳管的四個速率常數、Rct概念以及臭氧的擬ㄧ階速率模式結合,可建立ㄧ個模擬污染物在催化臭氧中去除情況的模型,並有良好的去除效率預測。 | zh_TW |
| dc.description.abstract | The ubiquitous presence of pharmaceuticals and personal care products (PPCPs) in natural waters has been a major concern nowadays. To conquer this problem, ozone-based advance oxidation process has been applied to remove PPCPs. To improve the performance of ozonation, various catalysts have been introduced to enhance the formation of hydroxyl radical (.OH) to remove ozone-recalcitrant compounds.
In this study, the performances of multi-walled carbon nanotubes (CNTs) pre-treated by different concentrations of HNO3 (20%, 40% and 70%) to catalyze the formation of .OH and the effectiveness to remove two PPCPs, namely ibuprofen and acetylsulfamethoxazole were evaluated. The rate constants of pristine CNT and four HNO3-pretreated CNTs in terms of direct ozone reaction, initiation, promotion and inhibition reactions were determined. It was found that the rate constants of direct ozone reaction and initiation increased with the increasing HNO3 concentrations used in the pretreatment while the rate constants of promotion and inhibition decreased with the increasing HNO3 concentrations used in pretreatment. In addition, the rate constants of direct ozone reaction and initiation increased with the increasing pH values while the rate constants of promotion and inhibition decreased with the increasing pH values. A model considering the determined rate constants was established to predict the catalytic effects of CNTs on the removal of ibuprofen and acetylsulfamethoxazole. The removal of these two PPCPs was enhanced when CNT was used as the catalyst in ozonation and the kinetics can be fairly well modeled by the developed model. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T04:28:38Z (GMT). No. of bitstreams: 1 ntu-107-R05541131-1.pdf: 2219024 bytes, checksum: 5ac82887a4599ae5a5715aaf6d2243d4 (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | CONTENTS
致謝 I 摘要 II ABSTRACT III CONTENTS V FIGURES VII TABLES XI Chapter 1 INTRODUCTION 1 1.1 Background 1 1.2 Objectives 3 Chapter 2 LITERATURE REVIEW 4 2.1 Basic properties of ozone 4 2.2 Radical chain reaction 5 2.3 Catalytic Ozonation 8 2.4 The Rct model 9 2.5 Ozonation of micropollutants 15 Chapter 3 MATERIALS AND METHODS 17 3.1 Reagents and chemicals 17 3.2 Stock solutions 17 3.3 Oxidation of carbon nanotubes 18 3.4 Characterization of CNT 19 3.5 Determination of the rate constants of CNTs in ozonation 19 3.6 Degradation of ibuprofen and acetylsulfamethoxazole using CNT-catalytic ozonation 21 3.7 Analytical methods 21 Chapter 4 RESULTS AND DISCUSSION 24 4.1 Characterization of CNTs 24 4.2 Characterization of the catalytic effect of CNT in ozonation 31 4.3 Removal of pharmaceuticals by ozonation over CNTs 44 Chapter 5 CONCLUSIONS AND RECOMMENDATIONS 53 5.1 Conclusions 53 5.2 Recommendations for future studies 54 References 56 Appendix A 61 Appendix B 63 Appendix C 66 Appendix D 68 | |
| dc.language.iso | en | |
| dc.subject | 奈米碳管 | zh_TW |
| dc.subject | 藥物和個人保健用品 | zh_TW |
| dc.subject | 臭氧高級氧化處理 | zh_TW |
| dc.subject | 催化臭氧處理程序 | zh_TW |
| dc.subject | 氫氧自由基鍊狀反應 | zh_TW |
| dc.subject | Rct概念 | zh_TW |
| dc.subject | carbon nanotubes | en |
| dc.subject | emerging contaminants | en |
| dc.subject | pharmaceutical and personal care products | en |
| dc.subject | catalytic ozonation | en |
| dc.subject | hydroxyl radical | en |
| dc.title | 以奈米碳管催化之臭氧處理程序降解布洛芬及乙酰磺胺甲噁唑之動力評估 | zh_TW |
| dc.title | Kinetic Evaluation of Carbon Nanotube Catalytic Ozonation for the Degradation of Ibuprofen and Acetylsulfamethoxazole | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 張慶源,林郁真,康佩群 | |
| dc.subject.keyword | 藥物和個人保健用品,臭氧高級氧化處理,催化臭氧處理程序,奈米碳管,氫氧自由基鍊狀反應,Rct概念, | zh_TW |
| dc.subject.keyword | emerging contaminants,pharmaceutical and personal care products,catalytic ozonation,carbon nanotubes,hydroxyl radical, | en |
| dc.relation.page | 69 | |
| dc.identifier.doi | 10.6342/NTU201803189 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2018-08-13 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 環境工程學研究所 | zh_TW |
| 顯示於系所單位: | 環境工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-1.pdf 未授權公開取用 | 2.17 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
