請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70454完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 安形高志(Takashi Angata) | |
| dc.contributor.author | Po-Chun Huang | en |
| dc.contributor.author | 黃柏鈞 | zh_TW |
| dc.date.accessioned | 2021-06-17T04:28:32Z | - |
| dc.date.available | 2023-08-16 | |
| dc.date.copyright | 2018-08-16 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2018-08-13 | |
| dc.identifier.citation | 1. Crocker, P.R., J.C. Paulson, and A. Varki, Siglecs and their roles in the immune system. Nat Rev Immunol, 2007. 7(4): p. 255-66.
2. Varki, A. and T. Angata, Siglecs--the major subfamily of I-type lectins. Glycobiology, 2006. 16(1): p. 1R-27R. 3. Properties and distribution of a lectin-like hemagglutinin differentially expressed by murine stromal tissue macrophages. The Journal of Experimental Medicine, 1986. 164(6): p. 1862-1875. 4. Stamenkovic, I. and B. Seed, The B-cell antigen CD22 mediates monocyte and erythrocyte adhesion. Nature, 1990. 345: p. 74. 5. Miescher, G.C., et al., Reciprocal expression of myelin-associated glycoprotein splice variants in the adult human peripheral and central nervous systems1The nucleotide sequence of the human S-MAG cDNA fragment has been made available in the EMBL Nucleotide Sequence Database under the accession number: X98405.1. Molecular Brain Research, 1997. 52(2): p. 299-306. 6. Cao, H. and P.R. Crocker, Evolution of CD33-related siglecs: regulating host immune functions and escaping pathogen exploitation? Immunology, 2011. 132(1): p. 18-26. 7. Nicoll, G., et al., Ganglioside GD3 expression on target cells can modulate NK cell cytotoxicity via siglec-7-dependent and -independent mechanisms. Eur J Immunol, 2003. 33(6): p. 1642-8. 8. Angata, T., et al., Loss of Siglec-14 reduces the risk of chronic obstructive pulmonary disease exacerbation. Cell Mol Life Sci, 2013. 70(17): p. 3199-210. 9. Angata, T., et al., Discovery of Siglec-14, a novel sialic acid receptor undergoing concerted evolution with Siglec-5 in primates. FASEB J, 2006. 20(12): p. 1964-73. 10. Zhang, J.Q., et al., Siglec-9, a novel sialic acid binding member of the immunoglobulin superfamily expressed broadly on human blood leukocytes. J Biol Chem, 2000. 275(29): p. 22121-6. 11. Yamaji, T., et al., A small region of the natural killer cell receptor, Siglec-7, is responsible for its preferred binding to alpha 2,8-disialyl and branched alpha 2,6-sialyl residues. A comparison with Siglec-9. J Biol Chem, 2002. 277(8): p. 6324-32. 12. Blixt, O., et al., Sialoside specificity of the siglec family assessed using novel multivalent probes: identification of potent inhibitors of myelin-associated glycoprotein. J Biol Chem, 2003. 278(33): p. 31007-19. 13. Avril, T., et al., The Membrane-Proximal Immunoreceptor Tyrosine-Based Inhibitory Motif Is Critical for the Inhibitory Signaling Mediated by Siglecs-7 and -9, CD33-Related Siglecs Expressed on Human Monocytes and NK Cells. The Journal of Immunology, 2004. 173(11): p. 6841-6849. 14. Paul, S.P., et al., Myeloid specific human CD33 is an inhibitory receptor with differential ITIM function in recruiting the phosphatases SHP-1 and SHP-2. Blood, 2000. 96(2): p. 483-490. 15. Avril, T., et al., Siglec-5 (CD170) can mediate inhibitory signaling in the absence of immunoreceptor tyrosine-based inhibitory motif phosphorylation. J Biol Chem, 2005. 280(20): p. 19843-51. 16. Vitale, C., et al., Engagement of p75/AIRM1 or CD33 inhibits the proliferation of normal or leukemic myeloid cells. Proceedings of the National Academy of Sciences, 1999. 96(26): p. 15091-15096. 17. Carlin, A.F., et al., Group B Streptococcus suppression of phagocyte functions by protein-mediated engagement of human Siglec-5. J Exp Med, 2009. 206(8): p. 1691-9. 18. Ando, M., et al., Siglec-9 enhances IL-10 production in macrophages via tyrosine-based motifs. Biochem Biophys Res Commun, 2008. 369(3): p. 878-83. 19. Underhill, D.M. and H.S. Goodridge, The many faces of ITAMs. Trends Immunol, 2007. 28(2): p. 66-73. 20. Cao, H., et al., SIGLEC16 encodes a DAP12-associated receptor expressed in macrophages that evolved from its inhibitory counterpart SIGLEC11 and has functional and non-functional alleles in humans. Eur J Immunol, 2008. 38(8): p. 2303-15. 21. Angata, T., et al., Siglec-15: an immune system Siglec conserved throughout vertebrate evolution. Glycobiology, 2007. 17(8): p. 838-46. 22. Jones, C., M. Virji, and P.R. Crocker, Recognition of sialylated meningococcal lipopolysaccharide by siglecs expressed on myeloid cells leads to enhanced bacterial uptake. Molecular Microbiology, 2003. 49(5): p. 1213-1225. 23. Avril, T., et al., Sialic acid-binding immunoglobulin-like lectin 7 mediates selective recognition of sialylated glycans expressed on Campylobacter jejuni lipooligosaccharides. Infect Immun, 2006. 74(7): p. 4133-41. 24. Carlin, A.F., et al., Group B streptococcal capsular sialic acids interact with siglecs (immunoglobulin-like lectins) on human leukocytes. J Bacteriol, 2007. 189(4): p. 1231-7. 25. Angata, T., et al., Large-scale sequencing of the CD33-related Siglec gene cluster in five mammalian species reveals rapid evolution by multiple mechanisms. Proc Natl Acad Sci U S A, 2004. 101(36): p. 13251-6. 26. Ali, S.R., et al., Siglec-5 and Siglec-14 are polymorphic paired receptors that modulate neutrophil and amnion signaling responses to group B Streptococcus. J Exp Med, 2014. 211(6): p. 1231-42. 27. Yamanaka, M., et al., Deletion polymorphism of SIGLEC14 and its functional implications. Glycobiology, 2009. 19(8): p. 841-6. 28. Graustein, A.D., et al., The SIGLEC14 null allele is associated with Mycobacterium tuberculosis- and BCG-induced clinical and immunologic outcomes. Tuberculosis (Edinb), 2017. 104: p. 38-45. 29. Forster, K., et al., Early Identification of Bronchopulmonary Dysplasia Using Novel Biomarkers by Proteomic Screening. Am J Respir Crit Care Med, 2018. 197(8): p. 1076-1080. 30. Higgins, R.D., et al., Bronchopulmonary Dysplasia: Executive Summary of a Workshop. J Pediatr, 2018. 197: p. 300-308. 31. Ryan, R.M., Q. Ahmed, and S. Lakshminrusimha, Inflammatory mediators in the immunobiology of bronchopulmonary dysplasia. Clin Rev Allergy Immunol, 2008. 34(2): p. 174-90. 32. Levine, S.J., Molecular mechanisms of soluble cytokine receptor generation. J Biol Chem, 2008. 283(21): p. 14177-81. 33. JONES, S.A., et al., The soluble interleukin 6 receptor: mechanisms of production and implications in disease. The FASEB Journal, 2001. 15(1): p. 43-58. 34. Ramasamy, R., S.F. Yan, and A.M. Schmidt, RAGE: therapeutic target and biomarker of the inflammatory response--the evidence mounts. J Leukoc Biol, 2009. 86(3): p. 505-12. 35. Pillai, S., et al., Siglecs and immune regulation. Annu Rev Immunol, 2012. 30: p. 357-92. 36. Macauley, M., P. Crocker, and J. Paulson, Siglec-mediated regulation of immune cell function in disease. Nat Rev Immunol, 2014. 14(10): p. 653-66. 37. Biedermann, B., et al., Analysis of the CD33-related siglec family reveals that Siglec-9 is an endocytic receptor expressed on subsets of acute myeloid leukemia cells and absent from normal hematopoietic progenitors. Leuk Res, 2007. 31(2): p. 211-20. 38. Na, H.J., et al., Biomarkers of eosinophil involvement in allergic and eosinophilic diseases: review of phenotypic and serum markers including a novel assay to quantify levels of soluble Siglec-8. J Immunol Methods, 2012. 383(1-2): p. 39-46. 39. Matsubara, K., et al., Secreted ectodomain of sialic acid-binding Ig-like lectin-9 and monocyte chemoattractant protein-1 promote recovery after rat spinal cord injury by altering macrophage polarity. J Neurosci, 2015. 35(6): p. 2452-64. 40. Ishikawa, J., et al., Factors secreted from dental pulp stem cells show multifaceted benefits for treating experimental rheumatoid arthritis. Bone, 2016. 83: p. 210-219. 41. Shimojima, C., et al., Conditioned Medium from the Stem Cells of Human Exfoliated Deciduous Teeth Ameliorates Experimental Autoimmune Encephalomyelitis. J Immunol, 2016. 196(10): p. 4164-71. 42. Cox, J., et al., Accurate Proteome-wide Label-free Quantification by Delayed Normalization and Maximal Peptide Ratio Extraction, Termed MaxLFQ. Molecular & Cellular Proteomics : MCP, 2014. 13(9): p. 2513-2526. 43. Mastroianni, J.R. and A.J. Ouellette, Alpha-defensins in enteric innate immunity: functional Paneth cell alpha-defensins in mouse colonic lumen. J Biol Chem, 2009. 284(41): p. 27848-56. 44. Stowell, S.R., et al., Innate immune lectins kill bacteria expressing blood group antigen. Nat Med, 2010. 16(3): p. 295-301. 45. Angata, T., et al., Association of serum interleukin-27 with the exacerbation of chronic obstructive pulmonary disease. Physiol Rep, 2014. 2(7). 46. Kramer, A., et al., Causal analysis approaches in Ingenuity Pathway Analysis. Bioinformatics, 2014. 30(4): p. 523-30. 47. Chang, L., et al., Identification of Siglec Ligands Using a Proximity Labeling Method. J Proteome Res, 2017. 16(10): p. 3929-3941. 48. Lugade, A.A., et al., The role of TLR2 and bacterial lipoprotein in enhancing airway inflammation and immunity. Front Immunol, 2011. 2: p. 10. 49. Shuto, T., et al., Activation of NF-kappa B by nontypeable Hemophilus influenzae is mediated by toll-like receptor 2-TAK1-dependent NIK-IKK alpha /beta-I kappa B alpha and MKK3/6-p38 MAP kinase signaling pathways in epithelial cells. Proc Natl Acad Sci U S A, 2001. 98(15): p. 8774-9. 50. Jin, M.S., et al., Crystal structure of the TLR1-TLR2 heterodimer induced by binding of a tri-acylated lipopeptide. Cell, 2007. 130(6): p. 1071-82. 51. Hansel-Hertsch, R., M. Di Antonio, and S. Balasubramanian, DNA G-quadruplexes in the human genome: detection, functions and therapeutic potential. Nat Rev Mol Cell Biol, 2017. 18(5): p. 279-284. 52. Waller, Z.A., et al., A small molecule that disrupts G-quadruplex DNA structure and enhances gene expression. J Am Chem Soc, 2009. 131(35): p. 12628-33. 53. Dash, J., et al., Diarylethynyl amides that recognize the parallel conformation of genomic promoter DNA G-quadruplexes. J Am Chem Soc, 2008. 130(47): p. 15950-6. 54. Kumari, S., et al., An RNA G-quadruplex in the 5' UTR of the NRAS proto-oncogene modulates translation. Nat Chem Biol, 2007. 3(4): p. 218-21. 55. Bugaut, A., et al., Small molecule-mediated inhibition of translation by targeting a native RNA G-quadruplex. Org Biomol Chem, 2010. 8(12): p. 2771-6. 56. Weldon, C., et al., Identification of G-quadruplexes in long functional RNAs using 7-deazaguanine RNA. Nat Chem Biol, 2017. 13(1): p. 18-20. 57. Weldon, C., et al., Specific G-quadruplex ligands modulate the alternative splicing of Bcl-X. Nucleic Acids Res, 2018. 46(2): p. 886-896. 58. Marcel, V., et al., G-quadruplex structures in TP53 intron 3: role in alternative splicing and in production of p53 mRNA isoforms. Carcinogenesis, 2011. 32(3): p. 271-8. 59. Patel, D.J., A.T. Phan, and V. Kuryavyi, Human telomere, oncogenic promoter and 5'-UTR G-quadruplexes: diverse higher order DNA and RNA targets for cancer therapeutics. Nucleic Acids Res, 2007. 35(22): p. 7429-55. 60. Zhou, J., et al., The NEIL glycosylases remove oxidized guanine lesions from telomeric and promoter quadruplex DNA structures. Nucleic Acids Res, 2015. 43(8): p. 4039-54. 61. Hsu, S.T., et al., A G-rich sequence within the c-kit oncogene promoter forms a parallel G-quadruplex having asymmetric G-tetrad dynamics. J Am Chem Soc, 2009. 131(37): p. 13399-409. 62. Furtig, B., et al., NMR spectroscopy of RNA. Chembiochem, 2003. 4(10): p. 936-62. 63. Takei, Y., et al., Molecular cloning of a novel gene similar to myeloid antigen CD33 and its specific expression in placenta. Cytogenet Cell Genet, 1997. 78(3-4): p. 295-300. 64. Connolly, N., M. Jones, and S. Watt, Human Siglec-5: tissue distribution, novel isoforms and domain specificities for sialic acid-dependent ligand interactions. Br J Haematol, 2002. 119(1): p. 221-238. 65. Kitzig, F., et al., Cloning of two new splice variants of Siglec-10 and mapping of the interaction between Siglec-10 and SHP-1. Biochem Biophys Res Commun, 2002. 296(2): p. 355-362. 66. Chen, G.-Y., et al., Broad and direct interaction between TLR and Siglec families of pattern recognition receptors and its regulation by Neu1. eLife, 2014. 3: p. e04066. 67. Pepin, M., et al., Soluble Siglec-5 associates to PSGL-1 and displays anti-inflammatory activity. Sci Rep, 2016. 6: p. 37953. 68. Berlin-Rufenach, C., et al., Lymphocyte Migration in Lymphocyte Function-associated Antigen (LFA)-1–deficient Mice. The Journal of Experimental Medicine, 1999. 189(9): p. 1467-1478. 69. Stanley, P., et al., Intermediate-affinity LFA-1 binds α-actinin-1 to control migration at the leading edge of the T cell. The EMBO Journal, 2008. 27(1): p. 62-75. 70. Evans, R., et al., Integrins in immunity. J Cell Sci, 2009. 122(Pt 2): p. 215-25. 71. Kralovicova, J., et al., Optimal antisense target reducing INS intron 1 retention is adjacent to a parallel G quadruplex. Nucleic Acids Res, 2014. 42(12): p. 8161-73. 72. Millevoi, S., H. Moine, and S. Vagner, G-quadruplexes in RNA biology. Wiley Interdiscip Rev RNA, 2012. 3(4): p. 495-507. 73. Zhao, L., et al., Quaking I controls a unique cytoplasmic pathway that regulates alternative splicing of myelin-associated glycoprotein. Proc Natl Acad Sci U S A, 2010. 107(44): p. 19061-6. 74. Zearfoss, N.R., et al., Quaking regulates Hnrnpa1 expression through its 3' UTR in oligodendrocyte precursor cells. PLoS Genet, 2011. 7(1): p. e1001269. 75. Zearfoss, N.R., E.S. Johnson, and S.P. Ryder, hnRNP A1 and secondary structure coordinate alternative splicing of Mag. RNA, 2013. 19(7): p. 948-57. 76. Panda, A.C., J.L. Martindale, and M. Gorospe, Affinity Pulldown of Biotinylated RNA for Detection of Protein-RNA Complexes. Bio Protoc, 2016. 6(24). 77. Malmevik, J., et al., Distinct cognitive effects and underlying transcriptome changes upon inhibition of individual miRNAs in hippocampal neurons. Sci Rep, 2016. 6: p. 19879. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70454 | - |
| dc.description.abstract | 人類唾液酸結合蛋白14 (Siglec-14)為唾液酸結合蛋白家族成員之一,其具有增強細菌誘導的髓細胞促發炎反應。在臨床研究病例中,Siglec-14蛋白已被證實具有影響某些細菌誘導的反應。雖然Siglec-14蛋白已知屬於第一型膜蛋白,但是研究發現人類血液中存在著分泌型Siglec-14蛋白。然而,對於分泌型Siglec-14蛋白產生的機制與其存在人體內所扮演的角色,其研究所知甚少。本研究的目的著重於探索分泌型Siglec-14蛋白如何產生與其在人體內的功能。
我發現Siglec-14蛋白具有兩種傳訊RNA剪接變異體,分別為具備或是缺少內含子5的變異體。由於內含子5帶有終止密碼子,造成蛋白轉譯提前終止。缺乏內含子5的Siglec-14,其外顯子6可以被轉譯形成跨膜部位並組成第一型膜蛋白。藉由專一性辨認分泌型Siglec-14之C端胜肽片段的抗體,實驗證實由分泌型Siglec-14傳訊RNA剪接異變體所轉譯的蛋白是存在於人類血清中的。 在膜型Siglec-14蛋白表現的髓細胞實驗中,我分析重組分泌型Siglec-14蛋白對於促發炎細胞激素的影響。結果發現分泌型Siglec-14蛋白抑制無莢膜流感嗜血桿菌引起的髓細胞發炎反應並呈現劑量依賴性的狀況。此結果可能係由分泌型Siglec-14蛋白阻礙膜型Siglec-14與類鐸受體2 (Toll-like receptor 2)之間在細胞表面上的交互作用。內含子5的一部分序列會形成一種RNA二級結構名為G-四聯體,它可能涉及內含子5剪接的效率。綜上所述,分泌型Siglec-14蛋白在膜型Siglec-14蛋白引發的促發炎反應中扮演著負向調控的角色。 | zh_TW |
| dc.description.abstract | Human Siglec-14 is a member of the Siglec family of sialic acid-binding proteins. Siglec-14 enhances anti-bacterial myeloid cell pro-inflammatory responses. In some clinical conditions, Siglec-14 was shown to influence some bacterially induced responses in patients. Although Siglec-14 is a type 1 transmembrane protein, a soluble form of Siglec-14 was also found in human serum. However, the mechanism how soluble Siglec-14 is generated and what role it plays remain unknown. In this study, I aimed to understand how the soluble Siglec-14 is generated and what the function of soluble Siglec-14 is.
I found two major mRNA splice variants that either contain or lack intron 5, which contains an in-frame stop codon. The variant containing intron 5 yields soluble form by premature termination (as the exon 6 encodes transmembrane domain of Siglec-14), while the one without intron 5 yields the transmembrane form. I prepared antibodies against the C-terminal peptide segment unique to the soluble form of Siglec-14, and confirmed that the soluble form in human serum is indeed generated by the splice variant I found. I analyzed the influence of recombinant soluble Siglec-14 on pro-inflammatory cytokine production by membrane-bound Siglec-14 (mSiglec-14)-expressing myeloid cells. Soluble Siglec-14 suppressed non-typeable Haemophilus influenzae (NTHi)-stimulated response in a dose-dependent manner, which may be the result of interrupting the interaction between mSiglec-14 and toll-like receptor 2 on cell surface. A part of the intron 5 assumes an RNA secondary structure called G-quadruplex, which may be involved in the regulation of intron 5 splicing. In summary, I propose that soluble Siglec-14 is a negative regulator for the pro-inflammatory responses triggered by transmembrane Siglec-14. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T04:28:32Z (GMT). No. of bitstreams: 1 ntu-107-D00b46016-1.pdf: 2325286 bytes, checksum: 7dfa28c6fa7857c94d385f62208f3316 (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | 誌謝 i
摘要 ii Abstract iii Table of Contents v List of Figures viii List of Tables xi CHAPTER I: Introduction 1 1.1 Siglec family and their distributions in human tissues 1 1.2 Function of CD33-rSiglecs in immune system 2 1.3 Human Siglec-14 in immune system 3 1.4 Fine-tuning of immune responses by soluble receptors 4 1.5 Aim of this study 6 CHAPTER II: Materials and Methods 7 2.1 Cell lines and culture 7 2.2 3' Rapid amplification of cDNA end (3'RACE) for Siglec-14 mRNA 8 2.3 Determination of the relative abundance of mRNA variants by quantitative PCR 8 2.4 Production of rabbit polyclonal antibody that recognizes C-terminal segment of sSiglec-14 9 2.5 Preparation of N-terminal His6-tagged sSiglec-14 expression construct 10 2.6 Mutation of N-terminal His6-tagged sSiglec-14 expression constructs 11 2.7 Production of recombinant N-terminal His6-tagged sSiglec-14 protein variants with Expi293F cell 12 2.8 Gravity purification of recombinant N-terminal His6-tagged sSiglec-14 protein variants from culture supernatant 13 2.9 Non-typeable Haemophilus influenzae (NTHi) culture 14 2.10 Analysis of THP-1 pro-inflammatory responses elicited with NTHi or Pam3CSK4 by ELISA 15 2.11 Analysis of multiple chemokines and cytokines by Magnetic Luminex Assay 16 2.12 Analysis of differentially expressed genes in sSiglec-14-treated human monocytes 17 2.13 Production of N-terminal FLAG-tagged mSiglec-14 expression constructs 18 2.14 Preparation of THP-1 cells expressing N-terminal FLAG-tagged Siglec-14 (FLAG-Siglec-14/THP-1) with retroviral expression system 19 2.15 Proximity biotin labeling and identification of Siglec-14-interacting proteins 20 2.16 Co-immunoprecipitation of mSiglec-14 with TLR2 22 2.17 Far-UV circular dichroism (CD) spectroscopy of synthetic 27-nucleotide RNA 23 2.18 Nuclear magnetic resonance (NMR) spectroscopy of synthetic 27-nucleotide RNA 24 2.19 Preparation of mini-gene constructs for Sigec-14 containing intron-5 25 CHAPTER III: Results 26 3.1 Alternative mRNA splicing generates sSiglec-14 26 3.2 sSiglec-14 splicing variant mRNA is abundant 27 3.3 Presence of sSiglec-14 protein corresponding to the mRNA splicing variant 28 3.4 sSiglec-14 suppresses pro-inflammatory responses of the cells that express mSiglec-14 30 3.5 Analysis of differentially expressed genes in sSiglec-14-treated human monocytes. 32 3.6 sSiglec-14 interferes with the interaction between mSiglec-14 and TLR2 34 3.7 Intron 5 of mRNA splice variant encoding sSiglec-14 contains a G-quadruplex structure 36 3.8 G-rich segment in the intron 5 of Siglec-14 pre-mRNA suppresses the splicing of the intron 39 CHAPTER IV: Discussion 40 CHAPTER V: Figures 47 CHAPTER VI: Tables 80 CHAPTER VII: References 85 | |
| dc.language.iso | en | |
| dc.subject | 類鐸受體2 | zh_TW |
| dc.subject | 無莢膜流感嗜血桿菌 | zh_TW |
| dc.subject | 選擇性剪接 | zh_TW |
| dc.subject | G-四聯體 | zh_TW |
| dc.subject | 唾液酸結合蛋白14 | zh_TW |
| dc.subject | 分泌型唾液酸結合蛋白 | zh_TW |
| dc.subject | alternative splicing | en |
| dc.subject | G-quadruplex | en |
| dc.subject | non-typeable Haemophilus influenzae | en |
| dc.subject | Toll-like receptor 2 | en |
| dc.subject | soluble Siglec | en |
| dc.subject | Siglec-14 | en |
| dc.title | 分泌型唾液酸受體其生成機制與抑制骨髓細胞發炎反應的功能探討 | zh_TW |
| dc.title | Soluble Siglec-14 is generated by alternative splicing and suppresses myeloid inflammatory responses | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 吳世雄(Shih-Hsiung Wu),邱繼輝(Kay-Hooi Khoo),林俊宏(Chun-Hung Lin),徐尚德(Shang-Te Danny Hsu) | |
| dc.subject.keyword | 唾液酸結合蛋白14,分泌型唾液酸結合蛋白,選擇性剪接,無莢膜流感嗜血桿菌,類鐸受體2,G-四聯體, | zh_TW |
| dc.subject.keyword | Siglec-14,soluble Siglec,alternative splicing,non-typeable Haemophilus influenzae,Toll-like receptor 2,G-quadruplex, | en |
| dc.relation.page | 90 | |
| dc.identifier.doi | 10.6342/NTU201803214 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2018-08-13 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 生化科學研究所 | zh_TW |
| 顯示於系所單位: | 生化科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-1.pdf 未授權公開取用 | 2.27 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
