Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 農業化學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70452
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor賴喜美
dc.contributor.authorKuo-Chih Shihen
dc.contributor.author石國治zh_TW
dc.date.accessioned2021-06-17T04:28:29Z-
dc.date.available2020-08-21
dc.date.copyright2018-08-21
dc.date.issued2018
dc.date.submitted2018-08-13
dc.identifier.citationAlexandridis, P., and T. A. Hatton. 1995. Poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) block-copolymer surfactants in aqueous-solutions and at interfaces - thermodynamics, structure, dynamics, and modeling, Colloids and Surfaces a-Physicochemical and Engineering Aspects, 96: 1-46.
Alexandridis, P., J. F. Holzwarth, and T. A. Hatton. 1994. Micellization of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) triblock copolymers in aqueous-solutions - thermodynamics of copolymer association, Macromolecules, 27: 2414-25.
Araki, J., and K. Ito. 2007. Recent advances in the preparation of cyclodextrin-based polyrotaxanes and their applications to soft materials, Soft Matter, 3: 1456-73.
Bacon, G. E. 1975. The scattering of neutrons by atoms. in G. E. Bacon (ed.), Neutron diffraction (Oxford University Press).
Barros, Suellen D. T., Aline V. Coelho, Elizabeth R. Lachter, Rosane A. S. San Gil, Karim Dahmouche, Maria Isabel Pais da Silva, and Andrea L. F. Souza. 2013. Esterification of lauric acid with butanol over mesoporous materials, Renewable Energy, 50: 585-89.
Becheri, A., P. Lo Nostro, B. W. Ninham, and P. Baglioni. 2003. The curious world of polypseudorotaxanes: Cyclodextrins as probes of water structure, Journal of Physical Chemistry B, 107: 3979-87.
Berghausen, J., J. Zipfel, P. Lindner, and W. Richtering. 1998. Shear-induced orientations in a lyotropic defective lamellar phase, Europhysics Letters, 43: 683-89.
Bonn, D., M. M. Denn, L. Berthier, T. Divoux, and S. Manneville. 2017. Yield stress materials in soft condensed matter, Reviews of Modern Physics, 89.
Brown, W., K. Schillén, M. Almgren, S. Hvidt, and P. Bahadur. 1991. Micelle and gel formation in a poly(ethylene oxide)/poly(propylene oxide)/ poly(ethylene oxide) triblock copolymer in water solution. Dynamic and static light scattering and oscillatory shear measurements, Journal of Physical Chemistry, 95: 1850-58.
Chen, P. 2005. Shear alignments in three-dimensional simulations of lamellar phases, Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 71.
Choi, H. S., K. Kontani, K. M. Huh, S. Sasaki, T. Ooya, W. K. Lee, and N. Yui. 2002. Rapid induction of thermoreversible hydrogel formation based on poly(propylene glycol)-grafted dextran inclusion complexes, Macromolecular Bioscience, 2: 298-303.
Cullis, Pieter R., Michael J. Hope, and Colin P. S. Tilcock. 1986. Lipid polymorphism and the roles of lipids in membranes, Chemistry and Physics of Lipids, 40: 127-44.
Davis, M. E., and M. E. Brewster. 2004. Cyclodextrin-based pharmaceutics: Past, present and future, Nature Reviews Drug Discovery, 3: 1023-35.
Debye, P., H. R. Anderson, and H. Brumberger. 1957. Scattering by an Inhomogeneous Solid .2. The Correlation Function and Its Application, Journal of Applied Physics, 28: 679-83.
Dey, J., S. Kumar, S. Nath, R. Ganguly, V. K. Aswal, and K. Ismail. 2014. Additive induced core and corona specific dehydration and ensuing growth and interaction of Pluronic F127 micelles, Journal of Colloid and Interface Science, 415: 95-102.
Diat, O., D. Roux, and F. Nallet. 1993. Lamellar phase under shear: SANS measurements, Journal De Physique. IV : JP, 3: 193-204.
Dreiss, C. A., E. Nwabunwanne, R. Liu, and N. J. Brooks. 2009. Assembling and de-assembling micelles: competitive interactions of cyclodextrins and drugs with Pluronics, Soft Matter, 5: 1888-96.
Duval, M. 2000. Monitoring of cluster formation and elimination in PEO solutions, Macromolecules, 33: 7862-67.
Duval, M., and D. Sarazin. 2000. Identification of the formation of aggregates in PEO solutions, Polymer, 41: 2711-16.
Ensign, L. M., S. K. Lai, Y. Y. Wang, M. Yang, O. Mert, J. Hanes, and R. Cone. 2014. Pretreatment of human cervicovaginal mucus with pluronic F127 enhances nanoparticle penetration without compromising mucus barrier properties to herpes simplex virus, Biomacromolecules, 15: 4403-09.
Fan, L., M. Degen, N. Grupido, S. Bendle, and P. Pennartz. 2010. Effects of molecular weight, temperature and salt on the self assembly of triblock copolymer solutions, Materials Science and Engineering: A, 528: 127-36.
Fang, L., L. Wang, Y. Yao, J. Zhang, X. Wu, X. Li, H. Wang, X. Zhang, X. Gong, and J. Chang. 2017. Micro- and nano-carrier systems: The non-invasive and painless local administration strategies for disease therapy in mucosal tissues, Nanomedicine: Nanotechnology, Biology and Medicine, 13: 153-71.
Fay, H., J. Cayer-Barrioz, D. Mazuyer, O. Mondain-Monval, V. Ponsinet, and S. Meeker. 2012. Lubrication mechanisms of lamellar fatty acid fluids, Tribology Letters, 46: 285-97.
Franco, J. M., J. Munoz, and C. Gallegos. 1995. Transient and steady flow of a lamellar liquid-crystalline surfactant water-system, Langmuir, 11: 669-73.
Fujita, H., T. Ooya, and N. Yui. 1999. Synthesis and characterization of a polyrotaxane consisting of beta-cyclodextrins and a poly(ethylene glycol) poly(propylene glycol) triblock copolymer, Macromolecular Chemistry and Physics, 200: 706-13.
Ganguly, R., V. K. Aswal, and P. A. Hassan. 2007. Room temperature sphere-to-rod growth and gelation of PEO-PPO-PEO triblock copolymers in aqueous salt solutions, Journal of Colloid and Interface Science, 315: 693-700.
Ganguly, R., Y. Kadam, N. Choudhury, V. K. Aswal, and P. Bahadur. 2011. Growth and interaction of the Tetronic 904 micelles in aqueous alkaline solutions, Journal of Physical Chemistry B, 115: 3425-33.
Ganguly, R., M. Kumbhakar, and V. K. Aswal. 2009. Time dependent growth of the block copolymer p123 micelles near cloud point: employing heat cycling as a tool to form kinetically stable wormlike micelles, Journal of Physical Chemistry B, 113: 9441-46.
Gentile, L., C. O. Rossi, U. Olsson, and G. A. Ranieri. 2011. Effect of shear rates on the MLV formation and MLV stability region in the C12E5/D2O system: Rheology and rheo-NMR and rheo-SANS experiments, Langmuir, 27: 2088-92.
Girardeau, T. E., T. J. Zhao, J. Leisen, H. W. Beckham, and D. G. Bucknall. 2005. Solid inclusion complexes of alpha-cyclodextrin and perdeuterated poly(oxyethylene), Macromolecules, 38: 2261-70.
Glatter, Otto, Gunther Scherf, Karin Schillen, and Wyn Brown. 1994. Characterization of a poly(ethylene oxide)-poly(propylene oxide) triblock copolymer (EO27-PO39-EO27) in aqueous solution, Macromolecules, 27: 6046-54.
Gonzalez-Gaitano, G., M. A. da Silva, A. Radulescu, and C. A. Dreiss. 2015. Selective tuning of the self-assembly and gelation of a hydrophilic poloxamine by cyclodextrins, Langmuir, 31: 5645-55.
Grindley, John, and Charles R. Bury. 1929. XCVII.-The densities of butyric acid-water mixtures, Journal of the Chemical Society (Resumed): 679-84.
Guinier, A. 1939. La diffraction des rayons X aux tres petits angles; application a l'etude de phenomenes ultramicroscopiques', Annales de Physique (Paris), 12: 161-237.
Hamley, Ian W. 1998. The Physics of Block Copolymers (Oxford University Express: New York).
Hammouda, B., D. L. Ho, and S. Kline. 2004. Insight into clustering in poly(ethylene oxide) solutions, Macromolecules, 37: 6932-37.
Harada, A. 1996. Preparation and structures of supramolecules between cyclodextrins and polymers, Coordination Chemistry Reviews, 148: 115-33.
Harada, A., and M. Kamachi. 1990. Complex-formation between poly(ethylene glycol) and alpha-cyclodextrin, Macromolecules, 23: 2821-23.
Hey, M. J., D. P. Jackson, and H. Yan. 2005. The salting-out effect and phase separation in aqueous solutions of electrolytes and poly(ethylene glycol), Polymer, 46: 2567-72.
Hezaveh, Samira, Susruta Samanta, Antonio De Nicola, Giuseppe Milano, and Danilo Roccatano. 2012. Understanding the interaction of block copolymers with DMPC lipid bilayer using coarse-grained molecular dynamics simulations', The Journal of Physical Chemistry B, 116: 14333-45.
Hezaveh, Samira, Susruta Samanta, Giuseppe Milano, and Danilo Roccatano. 2012. Molecular dynamics simulation study of solvent effects on conformation and dynamics of polyethylene oxide and polypropylene oxide chains in water and in common organic solvents', The Journal of Chemical Physics, 136: 124901.
Hsu, Y. H., H. W. Tsui, S. Y. Ling, and L. J. Chen. 2016. The origin of anomalous positive heat capacity change upon micellization of Pluronic triblock copolymer F108 in aqueous solutions: Effect of PEO-PPO diblock impurities, Colloids and Surfaces a-Physicochemical and Engineering Aspects, 509: 109-15.
Huang, J., Z. Y. Zhou, M. Wei, Y. Chen, and P. R. Chang. 2008. Soy protein-based nanocomposites reinforced by supramolecular nanoplatelets assembled from Pluronic polymers/beta-cyclodextrin pseudopolyrotaxanes, Journal of Applied Polymer Science, 107: 409-17.
Huh, K. M., Y. W. Cho, H. Chung, I. C. Kwon, S. Y. Jeong, T. Ooya, W. K. Lee, S. Sasaki, and N. Yui. 2004. Supramolecular hydrogel formation based on inclusion complexation between poly(ethylene glycol)-modified chitosan and alpha-cyclodextrin, Macromolecular Bioscience, 4: 92-99.
Huh, K. M., T. Ooya, W. K. Lee, S. Sasaki, I. C. Kwon, S. Y. Jeong, and N. Yui. 2001. Supramolecular-structured hydrogels showing a reversible phase transition by inclusion complexation between poly(ethylene glycol) grafted dextran and alpha-cyclodextrin, Macromolecules, 34: 8657-62.
Ji, H. Y., and M. Jie. 2010. Study of alkyl polyglucosides' surface activity and electrolyte effects on the surface tension and micellization of the solutions, Wool Textile Journal, 38: 12-15.
Jin, X., S. Zhang, J. Yang, and R. Lv. 2004. Surface tension and micellization of aqueous alkyl polyglucosides solutions: Influence of the molecular structure and the addition of electrolyte, Tenside, Surfactants, Detergents, 41: 126-29.
Joseph, J., C. A. Dreiss, T. Cosgrove, and J. S. Pedersen. 2007. Rupturing polymeric micelles with cyclodextrins rupturing polymeric micelles with cyclodextrins, Langmuir, 23: 460-66.
Kadam, Y., R. Ganguly, M. Kumbhakar, V. K. Aswal, P. A. Hassan, and P. Bahadur. 2009. Time Dependent Sphere-to-Rod Growth of the Pluronic Micelles: Investigating the Role of Core and Corona Solvation in Determining the Micellar Growth Rate, Journal of Physical Chemistry B, 113: 16296-302.
Kato, T., K. Miyazaki, Y. Kawabata, S. Komura, M. Fujii, and M. Imai. 2005. Shear-induced structural transition in a lyotropic lamellar phase studied using small angle neutron and light scattering, Journal of Physics Condensed Matter, 17: S2923-S28.
Koumakis, N., and G. Petekidis. 2011. Two step yielding in attractive colloids: Transition from gels to attractive glasses, Soft Matter, 7: 2456-70.
Kuo, Wan-Yuan, and Hsi-Mei Lai. 2011. Morphological, structural and rheological properties of beta-cyclodextrin based polypseudorotaxane gels, Polymer, 52: 3389-95.
Li, J. 2010. Self-assembled supramolecular hydrogels based on polymer-cyclodextrin inclusion complexes for drug delivery, NPG Asia Materials, 2: 112-18.
Li, J., B. Chen, X. Wang, and S. H. Goh. 2004. Preparation and characterization of inclusion complexes formed by biodegradable poly(epsilon-caprolactone)-poly(tetrahydrofuran)-poly(ε -caprolactone) triblock copolymer and cyclodextrins, Polymer, 45: 1777-85.
Li, J., X. Li, X. P. Ni, X. Wang, H. Z. Li, and K. W. Leong. 2006. Self-assembled supramolecular hydrogels formed by biodegradable PEO-PHB-PEO triblock copolymers and alpha-cyclodextrin for controlled drug delivery, Biomaterials, 27: 4132-40.
Li, J., X. Ni, Z. Zhou, and K. W. Leong. 2003. Preparation and characterization of polypseudorotaxanes based on block-selected inclusion complexation between poly(propylene oxide)-poly(ethylene oxide)-poly(propylene oxide) triblock copolymers and α-cyclodextrin, Journal of the American Chemical Society, 125: 1788-95.
Li, X., and J. Li. 2008. Supramolecular hydrogels based on inclusion complexation between poly(ethylene oxide)-b-poly (ε-caprolactone) diblock copolymer and α-cyclodextrin and their controlled release property, Journal of Biomedical Materials Research - Part A, 86: 1055-61.
Liao, H. C., C. S. Tsao, T. H. Lin, C. M. Chuang, C. Y. Chen, U. S. Jeng, C. H. Su, Y. F. Chen, and W. F. Su. 2011. Quantitative Nanoorganized Structural Evolution for a High Efficiency Bulk Heterojunction Polymer Solar Cell, Journal of the American Chemical Society, 133: 13064-73.
Linee, P., and M. Malmeten. 1992. Temperature-Dependent Micellization in Aqueous Block Copolymer Solutions, Macromolecules, 25: 5434-39.
Lines, Per. 1994. Micellization of poly (ethylene oxide)-poly (propylene oxide) block copolymer in aqueous solution: effect of polymer impurities, Macromolecules, 27: 2685-93.
Linse, P. 1994. Micellization of poly(ethylene oxide)-poly(propylene oxide) block copolymers in aqueous solution: Effect of polymer polydispersity, Macromolecules, 27: 6404-17.
Liu, H., X. Sun, C. Yin, and C. Hu. 2008. Removal of phosphate by mesoporous ZrO2, Journal of Hazardous Materials, 151: 616-22.
Liu, Z., G. Xu, C. Wang, C. Li, and P. Yao. 2017. Shear-responsive injectable supramolecular hydrogel releasing doxorubicin loaded micelles with pH-sensitivity for local tumor chemotherapy, International Journal of Pharmaceutics, 530: 53-62.
Lo Nostro, P., J. R. Lopes, B. W. Ninham, and P. Baglioni. 2002. Effect of cations and anions on the formation of polypseudorotaxanes, Journal of Physical Chemistry B, 106: 2166-74.
Manet, S., A. Lecchi, M. Imperor-Clerc, V. Zholobenko, D. Durand, C. L. P. Oliveira, J. S. Pedersen, I. Grillo, F. Meneau, and C. Rochas. 2011. Structure of Micelles of a Nonionic Block Copolymer Determined by SANS and SAXS, Journal of Physical Chemistry B, 115: 11318-29.
Marrink, Siewert J, H Jelger Risselada, Serge Yefimov, D Peter Tieleman, and Alex H De Vries. 2007. The MARTINI force field: coarse grained model for biomolecular simulations, The Journal of Physical Chemistry B, 111: 7812-24.
Marrink, Siewert J, and D Peter Tieleman. 2013. Perspective on the Martini model, Chemical Society Reviews, 42: 6801-22.
Matsunaga, T., H. Endo, M. Takeda, and M. Shibayama. 2010. Microscopic Structure Analysis of Clay-Poly(ethylene oxide) Mixed Solution in a Flow Field by Contrast-Variation Small-Angle Neutron Scattering, Macromolecules, 43: 5075-82.
Mewis, J., and Wagner, N. J. 2009. Thixotropy, Advances in Colloid and Interface Science, 147-148: 214-227.
Micutz, M., E. Matalon, T. Staicu, D. Angelescu, A. M. Ariciu, A. Rogozea, I. M. Turcu, and G. Ionita. 2014. The influence of hydroxy propyl beta-cyclodextrin on the micellar to gel transition in F127 solutions investigated at macro and nanoscale levels, New Journal of Chemistry, 38: 2801-12.
Moller, P. C. F., J. Mewis, and D. Bonn. 2006. Yield stress and thixotropy: on the difficulty of measuring yield stresses in practice, Soft Matter, 2: 274-83.
Mortensen, Kell, and Wyn Brown. 1993. Poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) triblock copolymers in aqueous solution. the influence of relative block size, Macromolecules, 26: 4128-35.
Mortensen, Kell, and Jan Skov Pedersen. 1993. Structural study on the micelle formation of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) triblock copolymer in aqueous solution, Macromolecules, 26: 805-12.
Muller, P. 1994. Glossary of terms used in physical organic chemistry: (IUPAC Recommendations 1994), Pure and Applied Chemistry, 66: 1077-184.
Murhammer, D. W., and C. F. Goochee. 1990. Sparged Animal Cell Bioreactors: Mechanism of Cell Damage and Pluronic F‐68 Protection, Biotechnology Progress, 6: 391-97.
Nawaz, Selina, Martin Redhead, Giuseppe Mantovani, Cameron Alexander, Cynthia Bosquillon, and Paola Carbone. 2012. Interactions of PEO–PPO–PEO block copolymers with lipid membranes: a computational and experimental study linking membrane lysis with polymer structure, Soft Matter, 8: 6744-54.
Nelson, A. Z., and R. H. Ewoldt. 2017. Design of yield-stress fluids: A rheology-to-structure inverse problem, Soft Matter, 13: 7578-94.
Nieh, M. P., S. K. Kumar, R. H. Fernando, R. H. Colby, and J. Katsaras. 2004. Effect of the hydrophilic size on the structural phases of aqueous nonionic gemini surfactant solutions, Langmuir, 20: 9061-68.
Nilsson, M., B. Hâkansson, O. Söderman, and D. Topgaard. 2007. Influence of polydispersity on the micellization of triblock copolymers investigated by pulsed field gradient nuclear magnetic resonance, Macromolecules, 40: 8250-58.
Okada, M., M. Kamachi, and A. Harada. 1999. Preparation and characterization of inclusion complexes of poly(propylene glycol) with methylated cyclodextrins, Journal of Physical Chemistry B, 103: 2607-13.
Paasch, S., F. Schambil, and M. J. Schwuger. 1989. Rheological properties of lamellar lyotropic liquid-crystals, Langmuir, 5: 1344-46.
Parekh, P., R. Ganguly, V. K. Aswal, and P. Bahadur. 2012. Room temperature sphere-to-rod growth of Pluronic® P85 micelles induced by salicylic acid, Soft Matter, 8: 5864.
Park, H. J., and C. Y. Ryu. 2012. Scalable PEO-PPO-PEO triblock copolymer purification from Pluronics through competitive adsorption, Polymer, 53: 5052-59.
Park, J. D., and K. H. Ahn. 2013. Structural evolution of colloidal gels at intermediate volume fraction under start-up of shear flow, Soft Matter, 9: 11650-62.
Park, J. D., K. H. Ahn, and S. J. Lee. 2015. Structural change and dynamics of colloidal gels under oscillatory shear flow, Soft Matter, 11: 9262-72.
Patel, K., P. Bahadur, C. Guo, J. H. Ma, H. Z. Liu, and K. Nakashima. 2008. Salt‐Induced Micellization of Pluronic F88 in Water, Journal of Dispersion Science and Technology, 29: 748-55.
Patel, K., P. Bahadur, C. Guo, J. H. Ma, H. Z. Liu, Y. Yamashita, A. Khanal, and K. Nakashima. 2007. Salt induced micellization of very hydrophilic PEO–PPO–PEO block copolymers in aqueous solutions, European Polymer Journal, 43: 1699-708.
Perry, C. C., T. S. Sabir, W. J. Livingston, J. R. Milligan, Q. Chen, V. Maskiewicz, and D. S. Boskovic. 2011. Fluorescence of commercial Pluronic F127 samples: Temperature-dependent micellization, Journal of Colloid and Interface Science, 354: 662-69.
Perry, C., P. Hebraud, V. Gernigon, C. Brochon, A. Lapp, P. Lindner, and G. Schlatter. 2011. Pluronic and beta-cyclodextrin in water: from swollen micelles to self-assembled crystalline platelets, Soft Matter, 7: 3502-12.
Plimpton, Steve. 1995. Fast parallel algorithms for short-range molecular dynamics, Journal of Computational Physics, 117: 1-19.
Polverari, M., and T. G. M. Van De Ven. 1996. 'Dilute aqueous poly(ethylene oxide) solutions: Clusters and single molecules in thermodynamic equilibrium', Journal of Physical Chemistry, 100: 13687-95.
Pradal, C., K. S. Jack, L. Grondahl, and J. J. Cooper-White. 2013. Gelation kinetics and viscoelastic properties of pluronic and alpha-cyclodextrin-based pseudopolyrotaxane hydrogels, Biomacromolecules, 14: 3780-92.
Prud'homme, R. K., G. Wu, and D. K. Schneider. 1996. Structure and rheology studies of poly(oxyethylene-oxypropylene-oxyethylene) aqueous solution, Langmuir, 12: 4651-59.
Qin, J., X. W. Meng, B. J. Li, W. Ha, X. Q. Yu, and S. Zhang. 2010. Self-assembly of beta-cyclodextrin and pluronic into hollow nanospheres in aqueous solution, Journal of Colloid and Interface Science, 350: 447-52.
Sadeghi, Rahmat, and Farahnaz Jahani. 2012. Salting-in and salting-out of water-soluble polymers in aqueous salt solutions, The Journal of Physical Chemistry B, 116: 5234-41.
Saffer, E. M., M. A. Lackey, D. M. Griffin, S. Kishore, G. N. Tew, and S. R. Bhatia. 2014. SANS study of highly resilient poly(ethylene glycol) hydrogels, Soft Matter, 10: 1905-16.
Sagar, V., S. Pilakka-Kanthikeel, R. Pottathil, S. K. Saxena, and M. Nair. 2014. Towards nanomedicines for neuroAIDS, Reviews in Medical Virology, 24: 103-24.
Shih, K. C., C. Y. Li, W. H. Li, and H. M. Lai. 2014. Fine structures of self-assembled beta-cyclodextrin/Pluronic in dilute and dense systems: a small angle X-ray scattering study, Soft Matter, 10: 7606-14.
Shimomura, T., K. Yoshida, K. Ito, and R. Hayakawa. 2000. Insulation effect of an inclusion complex formed by polyaniline and beta-cyclodextrin in solution, Polymers for Advanced Technologies, 11: 837-39.
Soltani, Soroush, Umer Rashid, Saud Ibrahim Al-Resayes, and Imededdine Arbi Nehdi. 2017. Recent progress in synthesis and surface functionalization of mesoporous acidic heterogeneous catalysts for esterification of free fatty acid feedstocks: A review, Energy Conversion and Management, 141: 183-205.
Song, H., S. Liu, C. Li, Y. Geng, G. Wang, and Z. Gu. 2014. Pluronic® L64-mediated stable HIF-1α expression in muscle for therapeutic angiogenesis in mouse hindlimb ischemia, International Journal of Nanomedicine, 9: 3439-52.
Strazielle, Par Claude. 1968. Etude par diffusion de la lumière des hétérogéneités rencontrées dans les solutions de polyoxyéthylène, Die Makromolekulare Chemie, 119: 50-63.
Svergun, D. I. 1992. Determination of the Regularization Parameter in Indirect-Transform Methods Using Perceptual Criteria, Journal of Applied Crystallography, 25: 495-503.
Szejtli, J. 1996. Chemistry, Physical and Bioloigcal Properties of cyclodextrin. in J Szejtli and Tetsuo Osa (eds.), Comprehensive Supramolecular Chemistry (Pergamon: New York).
Szejtli, J. 2004. 'Cyclodextrins.' in P. Tomasik (ed.), Chemical and functional properties of food saccharides (CRC Press: Boca Raton, FL).
Terekhova, I. V., O. V. Kulikov, R. S. Kumeev, M. Y. Nikiforov, and G. A. Al'per. 2005. H-1 NMR study of complexation of alpha- and beta-cyclodextrins with some biologically active acids, Russian Journal of Coordination Chemistry, 31: 218-20.
Trathnigg, B. 2005. Characterization of amphiphilic polymers: Independent analysis of blocks in poloxamers by liquid chromatography under critical conditions, Polymer, 46: 9211-23.
Trathnigg, B., and A. Gorbunov. 2006. Characterization of EO-PO block copolymers by liquid chromatography under critical conditions, Macromolecular Symposia, 237: 18-27.
Travelet, C., P. Hebraud, C. Perry, C. Brochon, G. Hadziioannou, A. Lapp, and G. Schlatter. 2010. Temperature-dependent structure of alpha-cd/peo-based polyrotaxanes in concentrated solution in dmso: kinetics and multiblock copolymer behavior, Macromolecules, 43: 1915-21.
Valero, M., C. Carrillo, and L. J. Rodriguez. 2003. Ternary naproxen :beta-cyclodextrin : polyethylene glycol complex formation, International Journal of Pharmaceutics, 265: 141-49.
Valero, M., and C. A. Dreiss. 2010. Growth, shrinking, and breaking of pluronic micelles in the presence of drugs and/or beta-cyclodextrin, a study by small-angle neutron scattering and fluorescence spectroscopy, Langmuir, 26: 10561-71.
Wang, J., P. Gao, P. J. Wang, L. Ye, A. Y. Zhang, and Z. G. Feng. 2011. Novel polyrotaxanes comprising γ-cyclodextrins and Pluronic F127 end-capped with poly(N-isopropylacrylamide) showing solvent-responsive crystal structures, Polymer, 52: 347-55.
Wang, J. Q. 2015. The origin of the slow mode in dilute aqueous solutions of PEO, Macromolecules, 48: 1614-20.
Wanka, G., H. Hoffmann, and W. Ulbricht. 1994. Phase diagrams and aggregation behavior of poly(oxyethylene)-poly(oxypropylene)-poly(oxyethylene) triblock copolymers in aqueous solutions, Macromolecules, 27: 4145-59.
Yang, B., C. Guo, S. Chen, J. H. Ma, J. Wang, X. F. Liang, L. Zheng, and H. Z. Liu. 2006. Effect of acid on the aggregation of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) block copolymers, Journal of Physical Chemistry B, 110: 23068-74.
Yang, M., S. K. Lai, Y. Y. Wang, W. Zhong, C. Happe, M. Zhang, J. Fu, and J. Hanes. 2011. Biodegradable nanoparticles composed entirely of safe materials that rapidly penetrate human mucus, Angewandte Chemie - International Edition, 50: 2597-600.
Yang, M., S. K. Lai, T. Yu, Y. Y. Wang, C. Happe, W. Zhong, M. Zhang, A. Anonuevo, C. Fridley, A. Hung, J. Fu, and J. Hanes. 2014. Nanoparticle penetration of human cervicovaginal mucus: The effect of polyvinyl alcohol, Journal of Controlled Release, 192: 202-08.
Yoshida, K., T. Shimomura, K. Ito, and R. Hayakawa. 1999. Inclusion complex formation of cyclodextrin and polyaniline, Langmuir, 15: 910-13.
Yu, G.-E., H. Altinok, S. Keith Nixon, C. Booth, P. Alexandridis, and T. Alan Hatton. 1997. Self-association properties of oxyethylene/oxypropylene/oxyethylene triblock copolymer F88, European Polymer Journal, 33: 673-77.
Zhou, Z., and B. Chu. 1987. Anomalous association behavior of an ethylene oxide/propylene oxide ABA block copolymer in water, Macromolecules, 20: 3089-91.
Zhou, Z., and B. Chu. 1988. Anomalous micellization behavior and composition heterogeneity of a triblock ABA copolymer of (A) ethylene oxide and (B) propylene oxide in aqueous solution, Macromolecules, 21: 2548-54.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70452-
dc.description.abstract先前研究中指出Pluronic (PL)及β-cyclodextrin (β-CD)可以藉由主客交互作用形成準聚輪烷(polypseudorotaxane, PPR)。然而,β-CD的在水相中之低溶解度卻限制了此系統之應用性。利用24%檸檬酸(CA)作為溶劑,β-CD的溶解度可以提高至比水相中高約10倍,因此可以製備出以PL及β-CD自組裝形成之PPR膠體。所形成的PPR膠體亦被證實具有搖變減黏之特性。然而,檸檬酸對於PL自身自組裝結構之影響尚未被研究。此外,在檸檬酸溶液中,PL及β-CD之自組裝結構及其結構對於流變性質之關係亦尚未被研究。在低於 PL F108、F127、F88及P84之臨界微胞濃度時,可以利用動態光散射、小角度X光/中子散射觀察到一異常聚集之行為。分子動力學模擬結果指出,在小於PL之臨界微胞濃度時,PPO之疏水作用力為造成此異常聚集之原因。而在此溶液中添加檸檬酸、醋酸、鹽酸及氫氧化鈉可以有效抑制聚集生成長達20天。在酸性溶液中,由於H3O+分子與PL分子上之EO單體結合進而使分子間產生斥力,以及在鹼性溶液中,因鹽析現象而降低其臨界微胞濃度則為其抑制聚集產生之原因。了解檸檬酸對於F108自身聚集之影響後,則繼續探討添加不同β-CD對於此系統之自組裝結構影響。在此可以發現,尚未添加β-CD時,5% F108將自組裝形成一半徑為1 nm而長度為8 nm之柱狀微胞。當添加β-CD後,則可觀察到柱狀之PPR。在1%至9% β-CD添加量下,散布在F108分子鏈上之β-CD數目從1-2個增加到3-4個。當β-CD濃度大於10%時,將藉由β-CD之分子間氫鍵形成以兩個組成單元構成之相關性結構(correlated structure)。而在10% β-CD添加量時,可以觀察到兩個大小分別為50 (α相) 及46 nm (β相)之domain。然而,此兩個domain之內部結構中卻無法觀察到週期性結構。當β-CD添加量大於12%後,週期性結構則可以在domain內部被觀察到。在12-19% β-CD系統中,此α相 及β相之domain大小縮小至41 & 32及 30 & 10 nm。根據分析19% β-CD系統散射圖譜之繞射峰,更可以知道單一F108分子鏈上有48個β-CD與化學計量之計算結果(49個)相互吻合。之後,對於PL/β-CD系統之結構特徵和流變性進行研究。使用流變學小角度中子散射(Rheo-SANS)可以知道,在流場中由PPR組成之層板結構可以沿著速度梯度之方向排列。移除剪切力後,高度排列的層板結構回復至其勻相性排列狀態之鬆弛時間,可能大於2小時,亦甚至不會發生(不可逆)。此層板結構間則以F108分子鏈串接成一更大尺度之結構。在此,我們認為晶粒(grain)中即包含了此網絡結構。晶粒大小的動態變化則源自於F108分子鏈所形成網絡的破壞及重新建立,進而導致了搖變減黏及降伏應力之行為。層板結構在系統中之位向(orientation)導致了預剪切系統中黏度的不可逆變化(在實驗時間尺度上)。上述這些知識為PL/β-CD系統提供了基本的理解。zh_TW
dc.description.abstractPolypseudorotaxane (PPR) prepared by the host-guest interaction between Pluronic (PL) and β-cyclodextrin (β-CD) had been studied in the past. However, the low solubility of β-CD in water limited its application. In this study, by utilizing 24% citric acid (CA), the solubility of β-CD can be increased to ~10 times higher than that in aqueous phase and, hence, makes the gelation of β-CD based PPR system possible. The formed PPR gel bear thixotropic behavior which makes it a potential candidate for the injectable gel. However, the fundemental understanding about the effect of CA to PL is not clear. The self-assembly structure of PPR formed by such high concentration of β-CD as well as the the relation between the structure characteristics to the rheological properties also need to be revealed. Anomalous large PL aggregates below the critical micelle concentration (CMC) were found throughout four PL types (F108, F127, F88 and P84). We characterized their structures using dynamic light scattering and small-angle X-ray/neutron scattering. Molecular dynamic simulations suggest that the PPO segments, through weakly hydrophobic (insufficient to form micelles), promotes the formation of large aggregates. Addition of acid or base (e.g. citric acid, acetic acid, hydrochloric acid and sodium hydroxide) in F108 solution significantly suppresses the aggregate formation up to 20 days due to the repulsion force from the attached H3O+ molecules on EO segment in both PEO and PL and the reduction of CMC though the salting-out effect. The self-assembly structure of F108 in various amount of β-CD solution was investigated. 5% F108 formed cylindrical micelles of 1 nm in radius and 8 nm in length in the presence of 24% citric acid through the dehydration of citric acid and citrate. PPR was formed once β-CD was added. In dilute β-CD system (1%), the single chains of PPR with separated β-CD stacks on F108 were formed. The numbers of β-CD in each stack increased from 1 to 4 with increasing β-CD concentration to 9%. In dense β-CD system, PPR condensed to correlated structures majorly composed of two unit blocks through the hydrogen bonds between PPRs. Two distinguishable correlated domains with correlation lengths of 50 nm (marked α-phase) and 46 nm (marked β-phase) along the chains, but without fine periodic structure within each individual domain, were identified in the 10% β-CD solution. Periodic stacking of β-CD in the domains developed in the 12% solution. As β-CD concentration increased from 12 to 19%, the correlated heights of α and β phases shrank from 41 and 32 nm into 30 and 10 nm, respectively. There were 48 β-CDs that stabilized on each PL F108 chain in the 19% β-CD system, which is in a good agreement with the stoichiometry.Then, the structural characteristic and the rheological properties were studied. The PPR based lamellar structure could be aligned with the velocity gradient direction in shear flow evidenced by small angle neutron scattering for rheology (Rheo-SANS). The relaxation of highly aligned lamellae to the isotropic state is either slower than 2 h or irreversible after ceasing the shear flow. We propose that the lamellar stacks which are connected by the protruded PL F108 chains. The secondary structure is “grain” within which several lamellar stacks network with each other through F108. The dynamic variation of grain size through dissociation and reestablishment of the networks of the PL F108 chain is responsible for the thixotropic behavior and the observed yielding behavior. The orientation of the lamellar stacks results in the irreversible change (on the experimental time scale) of the viscosity in the pre-sheared system. This knowledge provides fundamental understanding of the PL/β-CD system.en
dc.description.provenanceMade available in DSpace on 2021-06-17T04:28:29Z (GMT). No. of bitstreams: 1
ntu-107-F99623011-1.pdf: 4402770 bytes, checksum: 08e26340e954808f54bf2ddbe0e64ea7 (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents謝誌 I
中文摘要 II
Abstract IV
目錄 VI
圖次 VIII
表次 XII
第一章、緒論 1
第二章、文獻探討 2
一、Pluronic 2
1. Pluronic基本性質 2
2. Pluronic之異常微胞化現象(anomalous micellizaion) 3
二、環狀糊精 4
1. 環狀糊精基本性質 4
2. 環狀糊精與PL形成準聚輪烷之結構與流變性質 6
三、搖變減黏(Thixotropy)與降伏應力(Yield Stress) 8
四、小角度散射 10
1. 小角度X光散射 (SAXS) 11
2. 小角度中子散射 (SANS) 11
3. 小角度散射實驗簡述 12
4. 形狀因子 (Form factor, P(q)) 13
5. 結構因子 (Structure factor, S(q)) 14
6. 流變學小角度散射(Rheo-SAS) 14
第三章、材料與方法 19
一、材料 19
二、製備PL溶液 19
三、分離PL微胞、單體及異常微胞聚集 19
四、製備F108及F108/b-CD混合物 19
五、動態光散射(Dynamic light scattering, DLS) 20
六、熱重分析(Thermal Gravimetric Analysis, TGA)測定 20
七、高效能分子篩層析(high-performance size exclusion chromatography, HPSEC)測定 20
八、小角度X光散射(small-angle X-ray scattering, SAXS)測定 21
九、小角度中子散射(small-angle neutron scattering, SANS)測定 21
十、流變學小角度中子散射(rheo-SANS)量測 21
十一、SAXS / SANS數據分析 22
1. 定性分析 22
2. 定量分析-數據擬合 23
十三、流變性質測定 26
十四、分子動力學模擬(Molecular Dynamic Simulation) 27
第四章、結果與討論 28
一、PL異常微胞化現象之緣由 28
二、添加檸檬酸對PL之影響 45
三、探討不同CD添加量對於PL/CD自組裝結構之影響 52
四、稀薄系統中b-CD/F108之奈米結構 56
五、濃稠系統中b-CD/F108之奈米結構 59
六、準聚輪烷膠體之流變性質 67
七、準聚輪烷膠體在流場下之結構特性 69
八、PPR成之層板結構在流場下之位向(orientation) 76
九、PPR組成之層板結構與流變性質之關係 78
第五章、結論 84
Publications 85
參考文獻 86
dc.language.isozh-TW
dc.subject搖變減黏zh_TW
dc.subject流變學zh_TW
dc.subject層板zh_TW
dc.subject檸檬酸zh_TW
dc.subject異常聚集現象zh_TW
dc.subject小角度X光散射zh_TW
dc.subject小角中子散射zh_TW
dc.subjectcitric aciden
dc.subjectlamellaeen
dc.subjectthixotropyen
dc.subjectrheologyen
dc.subjectsmall-angle X-ray scattering (SAXS) and small-angle neutron scattering (SANS)en
dc.subjectAnnamolous aggregationen
dc.title以β-環狀糊精與三嵌段共聚物自組裝形成準聚輪烷之結構與流變性質zh_TW
dc.titleStructural and Rheological Properties of Self-assembled β-cyclodextrin and Tri-block Copolymeren
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree博士
dc.contributor.oralexamcommittee曹正熙,李文?,張永和,孫亞賢,童世煌
dc.subject.keyword異常聚集現象,檸檬酸,層板,流變學,搖變減黏,小角度X光散射,小角中子散射,zh_TW
dc.subject.keywordAnnamolous aggregation,citric acid,lamellae,rheology,thixotropy,small-angle X-ray scattering (SAXS) and small-angle neutron scattering (SANS),en
dc.relation.page94
dc.identifier.doi10.6342/NTU201802504
dc.rights.note有償授權
dc.date.accepted2018-08-13
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept農業化學研究所zh_TW
Appears in Collections:農業化學系

Files in This Item:
File SizeFormat 
ntu-107-1.pdf
  Restricted Access
4.3 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved