Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 分子醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70446
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蔡欣祐(Hsin Yue Tsai)
dc.contributor.authorChiou-Yuan Shenen
dc.contributor.author沈秋媛zh_TW
dc.date.accessioned2021-06-17T04:28:22Z-
dc.date.available2018-08-30
dc.date.copyright2018-08-30
dc.date.issued2018
dc.date.submitted2018-08-13
dc.identifier.citation1. Khurana, R., et al., Role of angiogenesis in cardiovascular disease: a critical appraisal. Circulation, 2005. 112(12): p. 1813-24.
2. Carmeliet, P., Angiogenesis in health and disease. Nat Med, 2003. 9(6): p. 653-60.
3. Ucuzian, A.A., et al., Molecular mediators of angiogenesis. J Burn Care Res, 2010. 31(1): p. 158-75.
4. Okonkwo, U.A. and L.A. DiPietro, Diabetes and Wound Angiogenesis. Int J Mol Sci, 2017. 18(7).
5. Camare, C., et al., Angiogenesis in the atherosclerotic plaque. Redox Biol, 2017. 12: p. 18-34.
6. Elshabrawy, H.A., et al., The pathogenic role of angiogenesis in rheumatoid arthritis. Angiogenesis, 2015. 18(4): p. 433-48.
7. Nishida, N., et al., Angiogenesis in cancer. Vasc Health Risk Manag, 2006. 2(3): p. 213-9.
8. Pavlakovic, H., W. Havers, and L. Schweigerer, Multiple angiogenesis stimulators in a single malignancy: implications for anti-angiogenic tumour therapy. Angiogenesis, 2001. 4(4): p. 259-62.
9. Carmeliet, P., Angiogenesis in life, disease and medicine. Nature, 2005. 438(7070): p. 932-936.
10. Zehetner, C., et al., Systemic Counterregulatory Response of Placental Growth Factor Levels to Intravitreal Aflibercept Therapy. Investigative Ophthalmology & Visual Science, 2015. 56(5): p. 3279-3286.
11. Tabernero, J., The role of VEGF and EGFR inhibition: implications for combining anti-VEGF and anti-EGFR agents. Mol Cancer Res, 2007. 5(3): p. 203-20.
12. Koch, A.E. and O. Distler, Vasculopathy and disordered angiogenesis in selected rheumatic diseases: rheumatoid arthritis and systemic sclerosis. Arthritis Res Ther, 2007. 9 Suppl 2: p. S3.
13. Hoeben, A., et al., Vascular Endothelial Growth Factor and Angiogenesis. Pharmacological Reviews, 2004. 56(4): p. 549-580.
14. Reichardt, L.F., Extracellular-Matrix Molecules and Their Receptors - Functions in Neural Development. Annual Review of Neuroscience, 1991. 14: p. 531-570.
15. Gerber, H.P., et al., VEGF couples hypertrophic cartilage remodeling, ossification and angiogenesis during endochondral bone formation. Nat Med, 1999. 5(6): p. 623-8.
16. Itakura, J., et al., Concomitant over-expression of vascular endothelial growth factor and its receptors in pancreatic cancer. Int J Cancer, 2000. 85(1): p. 27-34.
17. Felmeden, D.C., A.D. Blann, and G.Y.H. Lip, Angiogenesis: basic pathophysiology and implications for disease. European Heart Journal, 2003. 24(7): p. 586-603.
18. McColm, J., P. Geisen, and M. Hartnett, VEGF isoforms and their expression after a single episode of hypoxia or repeated fluctuations between hyperoxia and hypoxia: Relevance to clinical ROP. Molecular Vision, 2004. 10(63): p. 512-520.
19. Ferrara, N., H.P. Gerber, and J. LeCouter, The biology of VEGF and its receptors. Nature Medicine, 2003. 9(6): p. 669-676.
20. Koch, S. and L. Claesson-Welsh, Signal transduction by vascular endothelial growth factor receptors. Cold Spring Harb Perspect Med, 2012. 2(7): p. a006502.
21. Ferrara, N., H.P. Gerber, and J. LeCouter, The biology of VEGF and its receptors. Nat Med, 2003. 9(6): p. 669-76.
22. Matsumoto, T. and L. Claesson-Welsh, VEGF receptor signal transduction. Sci STKE, 2001. 2001(112): p. re21.
23. Meadows, K.N., P. Bryant, and K. Pumiglia, Vascular endothelial growth factor induction of the angiogenic phenotype requires Ras activation. J Biol Chem, 2001. 276(52): p. 49289-98.
24. Eichmann, A. and M. Simons, VEGF signaling inside vascular endothelial cells and beyond. Current Opinion in Cell Biology, 2012. 24(2): p. 188-193.
25. Takahashi, T., H. Ueno, and M. Shibuya, VEGF activates protein kinase C-dependent, but Ras-independent Raf-MEK-MAP kinase pathway for DNA synthesis in primary endothelial cells. Oncogene, 1999. 18(13): p. 2221-30.
26. Cantley, L.C., The phosphoinositide 3-kinase pathway. Science, 2002. 296(5573): p. 1655-7.
27. Binet, F. and P. Sapieha, ER Stress and Angiogenesis. Cell Metab, 2015. 22(4): p. 560-75.
28. Maly, D.J. and F.R. Papa, Druggable sensors of the unfolded protein response. Nat Chem Biol, 2014. 10(11): p. 892-901.
29. Ghosh, R., et al., Transcriptional Regulation of VEGF-A by the Unfolded Protein Response Pathway. Plos One, 2010. 5(3): p. A104-A115.
30. Pereira, E.R., et al., Transcriptional and Post-Transcriptional Regulation of Proangiogenic Factors by the Unfolded Protein Response. Plos One, 2010. 5(9).
31. Liu, L., et al., Targeting the IRE1 alpha/XBP1 and ATF6 Arms of the Unfolded Protein Response Enhances VEGF Blockade to Prevent Retinal and Choroidal Neovascularization. American Journal of Pathology, 2013. 182(4): p. 1412-1424.
32. Zeng, L.F., et al., Vascular Endothelial Cell Growth-Activated XBP1 Splicing in Endothelial Cells Is Crucial for Angiogenesis. Circulation, 2013. 127(16): p. 1712-+.
33. Karali, E., et al., VEGF Signals through ATF6 and PERK to promote endothelial cell survival and angiogenesis in the absence of ER stress. Mol Cell, 2014. 54(4): p. 559-72.
34. Lee, A.S., Glucose-regulated proteins in cancer: molecular mechanisms and therapeutic potential. Nat Rev Cancer, 2014. 14(4): p. 263-76.
35. Zhou, L., et al., Monocyte chemoattractant protein-1 induces a novel transcription factor that causes cardiac myocyte apoptosis and ventricular dysfunction. Circ Res, 2006. 98(9): p. 1177-85.
36. Roy, A. and P.E. Kolattukudy, Monocyte chemotactic protein-induced protein (MCPIP) promotes inflammatory angiogenesis via sequential induction of oxidative stress, endoplasmic reticulum stress and autophagy. Cell Signal, 2012. 24(11): p. 2123-31.
37. Liang, J., et al., Genome-wide survey and expression profiling of CCCH-zinc finger family reveals a functional module in macrophage activation. PLoS One, 2008. 3(8): p. e2880.
38. Matsushita, K., et al., Zc3h12a is an RNase essential for controlling immune responses by regulating mRNA decay. Nature, 2009. 458(7242): p. 1185-U124.
39. Matelska, D., K. Steczkiewicz, and K. Ginalski, Comprehensive classification of the PIN domain-like superfamily. Nucleic Acids Research, 2017. 45(12): p. 6995-7020.
40. Yokogawa, M., et al., Structural basis for the regulation of enzymatic activity of Regnase-1 by domain-domain interactions. Sci Rep, 2016. 6: p. 22324.
41. Yokogawa, M., et al., Structural basis for the regulation of enzymatic activity of Regnase-1 by domain-domain interactions. Scientific Reports, 2016. 6.
42. Hudson, B.P., et al., Recognition of the mRNA AU-rich element by the zinc finger domain of TIS11d. Nature Structural & Molecular Biology, 2004. 11(3): p. 257-264.
43. Hall, T.M.T., Multiple modes of RNA recognition by zinc finger proteins. Current Opinion in Structural Biology, 2005. 15(3): p. 367-373.
44. Behrens, G., et al., A translational silencing function of MCPIP1/Regnase-1 specified by the target site context. Nucleic Acids Research, 2018. 46(8): p. 4256-4270.
45. Liang, J., et al., MCP-induced protein 1 deubiquitinates TRAF proteins and negatively regulates JNK and NF-kappaB signaling. J Exp Med, 2010. 207(13): p. 2959-73.
46. Liang, J., et al., A novel CCCH-zinc finger protein family regulates proinflammatory activation of macrophages. J Biol Chem, 2008. 283(10): p. 6337-46.
47. Uehata, T. and S. Akira, mRNA degradation by the endoribonuclease Regnase-1/ZC3H12a/MCPIP-1. Biochim Biophys Acta, 2013. 1829(6-7): p. 708-13.
48. Liang, J., et al., Genome-Wide Survey and Expression Profiling of CCCH-Zinc Finger Family Reveals a Functional Module in Macrophage Activation. Plos One, 2008. 3(8).
49. Liang, J., et al., A novel CCCH-zinc finger protein family regulates proinflammatory activation of macrophages. Journal of Biological Chemistry, 2008. 283(10): p. 6337-6346.
50. Garg, A.V., et al., MCPIP1 Endoribonuclease Activity Negatively Regulates Interleukin-17-Mediated Signaling and Inflammation. Immunity, 2015. 43(3): p. 475-487.
51. Iwasaki, H., et al., The IkappaB kinase complex regulates the stability of cytokine-encoding mRNA induced by TLR-IL-1R by controlling degradation of regnase-1. Nat Immunol, 2011. 12(12): p. 1167-75.
52. Lin, R.J., et al., MCPIP1 ribonuclease exhibits broad-spectrum antiviral effects through viral RNA binding and degradation. Nucleic Acids Research, 2013. 41(5): p. 3314-3326.
53. Suzuki, H.I., et al., MCPIP1 Ribonuclease Antagonizes Dicer and Terminates MicroRNA Biogenesis through Precursor MicroRNA Degradation. Molecular Cell, 2011. 44(3): p. 424-436.
54. Niu, J., et al., USP10 inhibits genotoxic NF-kappaB activation by MCPIP1-facilitated deubiquitination of NEMO. EMBO J, 2013. 32(24): p. 3206-19.
55. Liang, J.A., et al., MCP-induced protein 1 deubiquitinates TRAF proteins and negatively regulates JNK and NF-kappa B signaling. Journal of Experimental Medicine, 2010. 207(13): p. 2959-2973.
56. Younce, C.W., A. Azfer, and P.E. Kolattukudy, MCP-1 (monocyte chemotactic protein-1)-induced protein, a recently identified zinc finger protein, induces adipogenesis in 3T3-L1 pre-adipocytes without peroxisome proliferator-activated receptor gamma. J Biol Chem, 2009. 284(40): p. 27620-8.
57. Kim, M.S., et al., MCP-1-induced human osteoclast-like cells are tartrate-resistant acid phosphatase, NFATc1, and calcitonin receptor-positive but require receptor activator of NFkappaB ligand for bone resorption. J Biol Chem, 2006. 281(2): p. 1274-85.
58. Niu, J., et al., Monocyte chemotactic protein (MCP)-1 promotes angiogenesis via a novel transcription factor, MCP-1-induced protein (MCPIP). J Biol Chem, 2008. 283(21): p. 14542-51.
59. Moldovan, N.I., et al., Contribution of monocytes/macrophages to compensatory neovascularization - The drilling of metalloelastase-positive tunnels in ischemic myocardium. Circulation Research, 2000. 87(5): p. 378-384.
60. Niiyama, H., et al., Roles of endogenous monocyte chemoattractant protein-1 in ischemia-induced neovascularization. Journal of the American College of Cardiology, 2004. 44(3): p. 661-666.
61. Voskuil, M., et al., Modulation of collateral artery growth in a porcine hindlimb ligation model using MCP-1. American Journal of Physiology-Heart and Circulatory Physiology, 2003. 284(4): p. H1422-H1428.
62. Niu, J., et al., Monocyte chemotactic protein (MCP)-1 promotes angiogenesis via a novel transcription factor, MCP-1-induced protein (MCPIP). Journal of Biological Chemistry, 2008. 283(21): p. 14542-14551.
63. Roy, A., et al., Antidicer RNAse activity of monocyte chemotactic protein-induced protein-1 is critical for inducing angiogenesis. American Journal of Physiology-Cell Physiology, 2013. 305(10): p. C1021-C1032.
64. Tsujii, M., S. Kawano, and R.N. DuBois, Cyclooxygenase-2 expression in human colon cancer cells increases metastatic potential. Proceedings of the National Academy of Sciences of the United States of America, 1997. 94(7): p. 3336-3340.
65. Roy, A. and P.E. Kolattukudy, Monocyte chemotactic protein-induced protein (MCPIP) promotes inflammatory angiogenesis via sequential induction of oxidative stress, endoplasmic reticulum stress and autophagy. Cellular Signalling, 2012. 24(11): p. 2123-2131.
66. Bussolati, B., et al., Vascular endothelial growth factor receptor-1 modulates vascular endothelial growth factor-mediated angiogenesis via nitric oxide. American Journal of Pathology, 2001. 159(3): p. 993-1008.
67. Ushio-Fukai, M. and Y. Nakamura, Reactive oxygen species and angiogenesis: NADPH oxidase as target for cancer therapy. Cancer Letters, 2008. 266(1): p. 37-52.
68. Binet, F. and P. Sapieha, ER Stress and Angiogenesis. Cell Metabolism, 2015. 22(4): p. 560-575.
69. Du, J., et al., Role of autophagy in angiogenesis in aortic endothelial cells. Am J Physiol Cell Physiol, 2012. 302(2): p. C383-91.
70. Lin, R.J., et al., MCPIP1 ribonuclease exhibits broad-spectrum antiviral effects through viral RNA binding and degradation. Nucleic Acids Res, 2013. 41(5): p. 3314-26.
71. Bouis, D., et al., Endothelium in vitro: a review of human vascular endothelial cell lines for blood vessel-related research. Angiogenesis, 2001. 4(2): p. 91-102.
72. Ades, E.W., et al., Hmec-1 - Establishment of an Immortalized Human Microvascular Endothelial-Cell Line. Journal of Investigative Dermatology, 1992. 99(6): p. 683-690.
73. Jura, J., L. Skalniak, and A. Koj, Monocyte chemotactic protein-1-induced protein-1 (MCPIP1) is a novel multifunctional modulator of inflammatory reactions. Biochimica Et Biophysica Acta-Molecular Cell Research, 2012. 1823(10): p. 1905-1913.
74. Iwasaki, H., et al., The I kappa B kinase complex regulates the stability of cytokine-encoding mRNA induced by TLR-IL-1R by controlling degradation of regnase-1. Nature Immunology, 2011. 12(12): p. 1167-U57.
75. Ghosh, R., et al., Transcriptional regulation of VEGF-A by the unfolded protein response pathway. PLoS One, 2010. 5(3): p. e9575.
76. Ogata, M., et al., Autophagy is activated for cell survival after endoplasmic reticulum stress. Molecular and Cellular Biology, 2006. 26(24): p. 9220-9231.
77. Rashid, H.O., et al., ER stress: Autophagy induction, inhibition and selection. Autophagy, 2015. 11(11): p. 1956-1977.
78. Binet, F., et al., Neuronal ER Stress Impedes Myeloid-Cell-Induced Vascular Regeneration through IRE1 alpha Degradation of Netrin-1. Cell Metabolism, 2013. 17(3): p. 353-371.
79. Raiter, A., et al., Activation of GRP78 on Endothelial Cell Membranes by an ADAM15-Derived Peptide Induces Angiogenesis. Journal of Vascular Research, 2010. 47(5): p. 399-411.
80. Lee, S.J., et al., Beclin 1 deficiency is associated with increased hypoxia-induced angiogenesis. Autophagy, 2011. 7(8): p. 829-839.
81. Rual, J.F., et al., Towards a proteome-scale map of the human protein-protein interaction network. Nature, 2005. 437(7062): p. 1173-8.
82. Katanasaka, Y., et al., Cancer antineovascular therapy with liposome drug delivery systems targeted to BiP/GRP78. Int J Cancer, 2010. 127(11): p. 2685-98.
83. Stricher, F., et al., HSPA8/HSC70 chaperone protein: structure, function, and chemical targeting. Autophagy, 2013. 9(12): p. 1937-54.
84. Han, J., et al., ER-stress-induced transcriptional regulation increases protein synthesis leading to cell death. Nat Cell Biol, 2013. 15(5): p. 481-90.
85. Mohr, G., et al., Function of the Neurospora crassa mitochondrial tyrosyl-tRNA synthetase in RNA splicing. Role of the idiosyncratic N-terminal extension and different modes of interaction with different group I introns. J Mol Biol, 2001. 307(1): p. 75-92.
86. Howard, O.M., et al., Histidyl-tRNA synthetase and asparaginyl-tRNA synthetase, autoantigens in myositis, activate chemokine receptors on T lymphocytes and immature dendritic cells. J Exp Med, 2002. 196(6): p. 781-91.
87. Ko, Y.G., et al., Glutamine-dependent antiapoptotic interaction of human glutaminyl-tRNA synthetase with apoptosis signal-regulating kinase 1. J Biol Chem, 2001. 276(8): p. 6030-6.
88. Mirando, A.C., C.S. Francklyn, and K.M. Lounsbury, Regulation of angiogenesis by aminoacyl-tRNA synthetases. Int J Mol Sci, 2014. 15(12): p. 23725-48.
89. Shi, Y., et al., tRNA synthetase counteracts c-Myc to develop functional vasculature. Elife, 2014. 3.
90. Mirando, A.C., C.S. Francklyn, and K.M. Lounsbury, Regulation of Angiogenesis by Aminoacyl-tRNA Synthetases. International Journal of Molecular Sciences, 2014. 15(12): p. 23725-23748.
91. Guo, M., X.L. Yang, and P. Schimmel, New functions of aminoacyl-tRNA synthetases beyond translation. Nat Rev Mol Cell Biol, 2010. 11(9): p. 668-74.
92. Ray, P.S., A. Arif, and P.L. Fox, Macromolecular complexes as depots for releasable regulatory proteins. Trends in Biochemical Sciences, 2007. 32(4): p. 158-164.
93. Fu, Y., et al., Structure of the ArgRS-GlnRS-AIMP1 complex and its implications for mammalian translation. Proc Natl Acad Sci U S A, 2014. 111(42): p. 15084-9.
94. Vinayagam, A., et al., A directed protein interaction network for investigating intracellular signal transduction. Sci Signal, 2011. 4(189): p. rs8.
95. Kwon, H.S., et al., Identification of CD23 as a functional receptor for the proinflammatory cytokine AIMP1/p43. Journal of Cell Science, 2012. 125(19): p. 4620-4629.
96. Park, S.G., E.C. Choi, and S. Kim, Aminoacyl-tRNA synthetase-interacting multifunctional proteins (AIMPs): a triad for cellular homeostasis. IUBMB Life, 2010. 62(4): p. 296-302.
97. Bottoni, A., et al., Proteasomes and RARS modulate AIMP1/EMAP II secretion in human cancer cell lines. J Cell Physiol, 2007. 212(2): p. 293-7.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70446-
dc.description.abstract血管新生是一個以原有血管為基礎,進而發展出新微血管並提供血流供應系統的生理過程,於生理和病理中都佔有重要角色,例如在胚胎發展中,要藉由血管新生作用增加血管網路,使發育中的組織或器官獲得足夠的營養和氧氣供應。人體終其一生都需以精密的血管新生調控來維持正常生理現象,血管新生的調控更影響許多組織病變與疾病,例如,心血管疾病、糖尿病、腫瘤生長,若無法正常調控,則會造成身體的損傷。先前的研究結果知道MCPIP是一種可以調控血管新生的核糖核酸酶,它可以通過透過誘導HIF1α和VEGF的上升促進血管生成 。然而,MCPIP的分子相互作用因子尚未闡明。我們的研究目的是探討MCPIP在人類真皮微血管內皮細胞-1(HMEC1)中的血管新生調節作用,本篇我們證明在VEGF的刺激下HMEC1中的MCPIP會隨著時間有不同表現量。此外,我們也發現將減少MCPIP基因的表現可以顯著的抑制血管生成。為了進一步闡明MCPIP在內皮細胞中的分子作用。我們通過蛋白質體學分析鑑定方式,找出幾種可能與MCPIP相互作用的蛋白質。本研究結果提供了MCPIP 亦可以被VEGF來調控而影響的血管生成並且探討可能調控的機制。我們的研究為MCPIP調節的血管生成提供了新的視角,並為VEGF所調控的血管新生路徑提供了新的研究方向。zh_TW
dc.description.abstractAngiogenesis is a vital function in both physiology and pathology. The growth of blood vessels from existing vasculature could increase vascular networks which help the converged tissue or organ to get enough supply of nutrients and oxygen. Angiogenesis could also serve as an indicator which indicate the transition of tumor cells. Previous findings have demonstrated that MCPIP, a ribonuclease, which plays a key role in promoting angiogenesis via upregulating HIF1α and VEGF which leads to angiogenesis. However, the regulations and molecular interactors of MCPIP have not been elucidated. The aim of our study is to explore the potential regulation of MCPIP mediated angiogenesis in the human microvascular endothelial cells -1 (HMEC1). In our study, we have demonstrated that by establishing ex vivo angiogenesis assay using HMEC1 with VEGF treatment not only results in tubing formation but also MCPIP upregulation. In addition, we saw that specific inhibitory of MCPIP can reduce tube formation in ex vivo angiogenesis assay. To further clarify the molecular role of MCPIP in endothelial cells. We identify several candidate protein interactors of MCPIP through proteomic analysis. The results provide the potential possibility that MCPIP is one of the regulatory protein downstream of VEGF mediated angiogenesis pathways. Our data shed a new sight on MCPIP regulated angiogenesis and provides a conceivable visions of the potential biological regulations.en
dc.description.provenanceMade available in DSpace on 2021-06-17T04:28:22Z (GMT). No. of bitstreams: 1
ntu-107-R05448011-1.pdf: 2411794 bytes, checksum: 603649b4d4058d001531c267f915a70c (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents論文口試委員審定書 i
Acknowledgements ii
中文摘要 iii
Abstract iv
Chapter 1 INTRODUCTION 1
1.1 overview of Angiogenesis 1
1.2 Angiogenic Regulator- VEGF 3
1.2.1 Physiological characters and functions of VEGF 3
1.2.2 Modulations of VEGF through ER stress pathways 6
1.3 MCPIP- a novel regulator in angiogenesis 8
1.3.1 Characterizations of MCPIP 8
1.3.2 Inflammatory regulations of MCPIP 9
1.3.3 Angiogenesis regulations of MCPIP 10
1.4 Conclusion 12
Chapter 2 MATERIALS AND METHODS 13
2.1 Cell culture conditions 13
2.2 Transfection procedure 13
2.3 In vitro capillary-like tube formation assays 14
2.4 RNA Extraction and Quantitative PCR 14
2.5 RNA interference assay 15
2.6 Protein expression and Antibody purification 15
2.6.1 Recombinant protein expression 15
2.6.2 Antibody affinity purification 17
2.7 Western Blot Analysis 17
2.8 Immunoprecipitaion and Proteomic analysis 18
2.8.1 Immunoprecipitaion 18
2.8.2 Proteomic analysis 19
Chapter 3 RESULTS 21
3.1 Establishing in vitro tube formation assay in HMEC1 21
3.2 Purification of human MCPIP antibody 22
3.3 VEGF could regulate MCPIP expression 24
3.4 VEGF could regulate ER stress and autophagy related gene expression 26
3.5 HMEC1 in vitro tube formation is inhibited by knocking down of MCPIP 27
3.6 Identification of potential protein interactors of MCPIP in HMEC1 28
Chapter 4 DISCUSSION 30
4.1 A potential regulatory pathway between VEGF and MCPIP induced angiogenic signaling through UPR components 30
4.2 The proteomic analysis of MCPIP reveals that stress-related proteins could be potential interactors of MCPIP 32
4.3 The potential interactor- Arginyl-tRNA synthetase is a potent regulator of angiogenesis 33
4.4 Perspective 35
Chapter 5 Figures 36
Figure 1 Tubes formation of HMEC1 36
Figure 2 Purification of customized MCPIP antibody 38
Figure 3 Treatment of VEGF regulates MCPIP expression level 42
Figure 4 VEGF regulate ER stress and autophagy related mRNA expression 44
Figure 5 RNA interference of MCPIP inhibits the tube formation 46
Figure 6 Proteomic analysis of MCPIP interactors 49
Figure 7 Schematic model of VEGF promotes angiogenesis via MCPIP 51
Tables 52
Table 1 List of Primers for quantitative PCR analysis 52
Table 2 List of MCPIP antibodies in our lab 52
References 53
dc.language.isoen
dc.subject血管新生zh_TW
dc.subject血管?皮生長因子zh_TW
dc.subject人類真皮微血管內皮細胞zh_TW
dc.subject內質網壓力zh_TW
dc.subjectER stressen
dc.subjectangiogenesisen
dc.subjectVEGFen
dc.subjectMCPIPen
dc.title探討人類真皮微血管內皮細胞中MCPIP 調控血管新生機制zh_TW
dc.titleCharacterizations of MCPIP in angiogenesis of HMEC1en
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.oralexamcommittee朱家瑜(Chia-Yu Chu),朱家瑩(Chia-Ying Chu)
dc.subject.keyword血管新生,血管?皮生長因子,人類真皮微血管內皮細胞,內質網壓力,zh_TW
dc.subject.keywordMCPIP,VEGF,angiogenesis,ER stress,en
dc.relation.page67
dc.identifier.doi10.6342/NTU201802860
dc.rights.note有償授權
dc.date.accepted2018-08-13
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept分子醫學研究所zh_TW
顯示於系所單位:分子醫學研究所

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  未授權公開取用
2.36 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved