Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 動物科學技術學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70428
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor劉?睿(Je-Ruei Liu)
dc.contributor.authorLi-Wei Chenen
dc.contributor.author陳立維zh_TW
dc.date.accessioned2021-06-17T04:27:58Z-
dc.date.available2020-08-14
dc.date.copyright2018-08-14
dc.date.issued2018
dc.date.submitted2018-08-13
dc.identifier.citation李恩。2014。具黴菌毒素分解能力之芽孢桿菌的鑑定與特性分析。碩士論文。國立台灣大學。
饒宗璇。2017。乳酸桿菌Pg4與中藥草的抗病毒能力評估。碩士論文。國立台灣大學。
許琇涵。2017。具抗病毒能力之乳酸菌株篩選及其特性研究。碩士論文。國立台灣大學。
Al Kassaa, I., D. Hober, M. Hamze, N. E. Chihib, and D. Drider. 2014. Antiviral potential of lactic acid bacteria and their bacteriocins. Probiotics Antimicrob Proteins. 6(3-4):177-185. doi:10.1007/s12602-014-9162-6
Albarracin, L., H. Kobayashi, H. Iida, N. Sato, T. Nochi, H. Aso, S. Salva, S. Alvarez, H. Kitazawa, and J. Villena. 2017. Transcriptomic analysis of the innate antiviral immune response in porcine intestinal epithelial cells: influence of immunobiotic lactobacilli. Front. Immunol. 8:57. doi:10.3389/fimmu.2017.00057
Annamalai, T., L. J. Saif, Z. Lu, and K. Jung. 2015. Age-dependent variation in innate immune responses to porcine epidemic diarrhea virus infection in suckling versus weaned pigs. Vet. Immunol. Immunopathol. 168(3-4):193-202. doi:10.1016/j.vetimm.2015.09.006
Arena, A., T. L. Maugeri, B. Pavone, D. Iannello, C. Gugliandolo, and G. Bisignano. 2006. Antiviral and immunoregulatory effect of a novel exopolysaccharide from a marine thermotolerant Bacillus licheniformis. Int. Immunopharmacol. 6(1):8-13. doi: 10.1016/j.intimp.2005.07.004
Arzt, J., N. Juleff, Z. Zhang, and L. L. Rodriguez. 2011. The pathogenesis of foot-and-mouth disease I: viral pathways in cattle. Transbound. Emerg. Dis. 58(4):291-304. doi: 10.1111/j.1865-1682.2011.01204.x
Blome, S., C. Staubach, J. Henke, J. Carlson, and M. Beer. 2017. Classical swine fever-an updated review. Viruses. 9(4). doi:10.3390/v9040086
Boo, K. H., and J. S. Yang. 2010. Intrinsic cellular defenses against virus infection by antiviral type I interferon. Yonsei. Med. J. 51(1):9-17. doi:10.3349/ymj.2010.51.1.9
Bourque, D. L., T. R. Bhuiyan, D. P. Genereux, R. Rashu, C. N. Ellis, F. Chowdhury, A. I. Khan, N. H. Alam, A. Paul, L. Hossain, L. M. Mayo-Smith, R. C. Charles, A. A. Weil, R. C. LaRocque, S. B. Calderwood, E. T. Ryan, E. K. Karlsson, F. Qadri, and J. B. Harris. 2018. Analysis of the human mucosal response to cholera reveals sustained activation of innate immune signaling pathways. Infect. Immun. 86(2) e00594-17. doi:10.1128/IAI.00594-17
Calzada-Nova, G., W. Schnitzlein, R. Husmann, and F. A. Zuckermann. 2010. Characterization of the cytokine and maturation responses of pure populations of porcine plasmacytoid dendritic cells to porcine viruses and toll-like receptor agonists. Vet. Immunol. Immunopathol. 135(1-2):20-33. doi:10.1016/j.vetimm.2009.10.026
Chen, Y., C. Wen and Y. Zhou. 2018. Dietary synbiotic incorporation as analternative to antibiotic improves growthperformance, intestinal morphology, immunityand antioxidant capacity of broilers. J. Sci. Food Agric. 98: 3343–3350. doi: 10.1002/jsfa.8838
Coleman, O. I., and T. Nunes. 2016. Role of the microbiota in colorectal cancer: updates on microbial associations and therapeutic implications. Biores Open Access. 5(1):279-288. doi: 10.1089/biores.2016.0028
Cutting, S. M. 2011. Bacillus probiotics. Food Microbiol. 28(2):214-220. doi: 10.1016/j.fm.2010.03.007
Desmyter, J., J. L. Melnick, and W. E. Rawls. 1968. Defectiveness of interferon production and of rubella virus interference in a line of African green monkey kidney cells (Vero). J. Virol. 2(10):955-961.
Ding, Z., L. R. Fang, H. Y. Jing, S. L. Zeng, D. Wang, L. Z. Liu, H. Zhang, R. Luo, H. C. Chen, and S. B. Xiao. 2014. Porcine epidemic diarrhea virus nucleocapsid protein antagonizes beta interferon production by sequestering the interaction between IRF3 and TBK1. J. Virol. 88(16):8936-8945. doi:10.1128/Jvi.00700-14
Dornfeld, D., A. H. Dudek, T. Vausselin, S. C. Gunther, J. F. Hultquist, S. Giese, D. Khokhlova-Cubberley, Y. C. Chew, N. J. Krogan, A. Garcia-Sastre, M. Schwemmle, and M. L. Shaw. 2018. SMARCA2-regulated host cell factors are required for MxA restriction of influenza A viruses. Sci. Rep. 8(1):2092. doi:10.1038/s41598-018-20458-2
Edwards, S., A. Fukusho, P.-C. Lefèvre, A. Lipowski, Z. Pejsak, P. Roehe, and J. Westergaard. 2000. Classical swine fever: the global situation. Vet. Microbiol. 73(2-3):103-119. doi:10.1016/s0378-1135(00)00138-3
Emeny, J. M., and M. J. Morgan. 1979. Regulation of the interferon system: evidence that Vero cells have a genetic defect in interferon production. J. Gen. Virol. 43(1):247-252. doi:10.1099/0022-1317-43-1-247
FAO/WHO. 2002. FAO/WHO. (2002). Guidelines for the evaluation of probiotics in food. London, Ontario, Canada: Joint FAO/WHO Working Group, pp. 1–11.
Farhat-Khemakhem, A., M. Blibech, I. Boukhris, M. Makni, and H. Chouayekh. 2018. Assessment of the potential of the multi-enzyme producer Bacillus amyloliquefaciens US573 as alternative feed additive. J. Sci. Food. Agric. 98(3):1208-1215. doi:10.1002/jsfa.8574
Fournier, P., A. Arnold, H. Wilden, and V. Schirrmacher. 2012. Newcastle disease virus induces pro-inflammatory conditions and type I interferon for counter-acting Treg activity. Int. J. Oncol. 40(3):840-850. doi: 10.3892/ijo.2011.1265
Frolov, I., T. A. Hoffman, B. M. Pragai, S. A. Dryga, H. V. Huang, S. Schlesinger, and C. M. Rice. 1996. Alphavirus-based expression vectors: strategies and applications. Proc. Natl. Acad. Sci. 93(21):11371-11377.
Gadde, U. D., S. Oh, Y. Lee, E. Davis, N. Zimmerman, T. Rehberger, and H. S. Lillehoj. 2017. Dietary Bacillus subtilis-based direct-fed microbials alleviate LPS-induced intestinal immunological stress and improve intestinal barrier gene expression in commercial broiler chickens. Res. Vet. Sci. 114:236-243. doi:10.1016/j.rvsc.2017.05.004
Gaggia, F., P. Mattarelli, and B. Biavati. 2010. Probiotics and prebiotics in animal feeding for safe food production. Int. J. Food. Microbiol. 141 Suppl 1:S15-28. doi:10.1016/j.ijfoodmicro.2010.02.031
Gao, X., M. Zhang, X. Li, Y. Han, F. Wu and Y. Liu. 2018. Effects of a probiotic (Bacillus licheniformis) on the growth, immunity, and disease resistance of Haliotis discus hannai Ino. Fish Shellfish Immunol. 76:143-152. doi: 10.1016/j.fsi.2018.02.028
Gill, H. S. 2003. Probiotics to enhance anti-infective defences in the gastrointestinal tract. Best Pract. Res. Clin. Gastroenterol. 17(5):755-773. doi:10.1016/S1521-6918(03)00074-X
Goris, N., F. Vandenbussche, and K. De Clercq. 2008. Potential of antiviral therapy and prophylaxis for controlling RNA viral infections of livestock. Antiviral Res. 78(1):170-178. doi:10.1016/j.antiviral.2007.10.003
Hairul Islam, V. I., N. Prakash Babu, P. Pandikumar, and S. Ignacimuthu. 2011. Isolation and characterization ofputative probiotic bacterial dtrain, Bacillus amyloliquefaciens, from north rast Himalayan doil based on in vitro and in vivo functional properties. Probiotics Antimicrob Proteins. 3(3-4):175-185. doi:10.1007/s12602-011-9081-8
Hasan, M., J. Koch, D. Rakheja, A. K. Pattnaik, J. Brugarolas, I. Dozmorov, B. Levine, E. K. Wakeland, M. A. Lee-Kirsch, and N. Yan. 2013. Trex1 regulates lysosomal biogenesis and interferon-independent activation of antiviral genes. Nat. Immunol. 14(1):61-71. doi:10.1038/ni.2475
Hill, C., F. Guarner, G. Reid, G. R. Gibson, D. J. Merenstein, B. Pot, L. Morelli, R. B. Canani, H. J. Flint, S. Salminen, P. C. Calder, and M. E. Sanders. 2014. The International Scientific Association for probiotics and prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat. Rev. Gastro. Hepat. 11(8):506-514. doi:10.1038/nrgastro.2014.66
Huang, P. Y., J. H. Guo, and L. H. Hwang. 2012. Oncolytic Sindbis virus targets tumors defective in the interferon response and induces significant bystander antitumor immunity in vivo. Mol. Ther. 20(2):298-305. doi:10.1038/mt.2011.245
Jacouton, E., F. Chain, H. Sokol, P. Langella, and L. G. Bermudez-Humaran. 2017. Probiotic strain Lactobacillus casei BL23 prevents colitis-associated colorectal cancer. Front. Immunol. 8:1553. doi:10.3389/fimmu.2017.01553
Jamin, A., S. Gorin, R. Cariolet, M. F. Le Potier, and G. Kuntz-Simon. 2008. Classical swine fever virus induces activation of plasmacytoid and conventional dendritic cells in tonsil, blood, and spleen of infected pigs. Vet. Res. 39(1):7. doi:10.1051/vetres:2007045
Jin, L. Z., Y. W. Ho, N. Abdullah, and S. Jalaludin. 2000. Digestive and bacterial enzyme activities in broilers fed diets supplemented with Lactobacillus cultures. Poult. Sci. 79(6):886-891. doi:10.1093/ps/79.6.886
La Ragione, R. M., G. Casula, S. M. Cutting, and M. J. Woodward. 2001. Bacillus subtilis spores competitively exclude Escherichia coli O78:K80 in poultry. Vet Microbiol. 79(2):133-142. doi:10.1016/S0378-1135(00)00350-3
La Ragione, R. M., and M. J. Woodward. 2003. Competitive exclusion by Bacillus subtilis spores of Salmonella enterica serotype Enteritidis and Clostridium perfringens in young chickens. Vet Microbiol. 94(3):245-256.
Lee, A., K. C. Cheng, and J. R. Liu. 2017. Isolation and characterization of a Bacillus amyloliquefaciens strain with zearalenone removal ability and its probiotic potential. PLoS One. 12(8):e0182220. doi: 10.1371/journal.pone.0182220
Lee, W., M. Kim, S. H. Lee, H. G. Jung, and J. W. Oh. 2018. Prophylactic efficacy of orally administered Bacillus poly-gamma-glutamic acid, a non-LPS TLR4 ligand, against norovirus infection in mice. Sci. Rep. 8(1):8667. doi:10.1038/s41598-018-26935-y
Lee, W., S. H. Lee, D. G. Ahn, H. Cho, M. H. Sung, S. H. Han, and J. W. Oh. 2013. The antiviral activity of poly-gamma-glutamic acid, a polypeptide secreted by Bacillus sp., through induction of CD14-dependent type I interferon responses. Biomaterials. 34(37):9700-9708. doi:10.1016/j.biomaterials.2013.08.067
Lei, X. J., Y. J. Ru, and H. F. Zhang. 2014. Effect of Bacillus amyloliquefaciens-based direct-fed microbials and antibiotic on performance, nutrient digestibility, cecal microflora, and intestinal morphology in broiler chickens. J. Appl. Poultry Res. 23(3):486-493. doi:10.3382/japr.2014-00965
Li, Y., H. Zhang, Y. P. Chen, M. X. Yang, L. L. Zhang, Z. X. Lu, Y. M. Zhou, and T. Wang. 2015. Bacillus amyloliquefaciens supplementation alleviates immunological stress and intestinal damage in lipopolysaccharide-challenged broilers. Anim. Feed Sci. Technol. 208:119-131. doi:10.1016/j.anifeedsci.2015.07.001
Lilly, D. M., and R. H. Stillwell. 1965. Probiotics: growth-promoting factors produced by microorganisms. Science. 147(3659):747-748.
Lin, C. M., L. J. Saif, D. Marthaler, and Q. Wang. 2016. Evolution, antigenicity and pathogenicity of global porcine epidemic diarrhea virus strains. Virus Res. 226:20-39. doi:10.1016/j.virusres.2016.05.023
Liu, L., X. Qu, Q. Xia, H. Wang, P. Chen, X. Li, L. Wang, W. Yang. 2018. Effect of Lactobacillus rhamnosus on the antioxidant activity of Cheddar cheese during ripening and under simulated gastrointestinal digestion. Food Sci. Technol. 95 (2018) 99–106. doi:10.1016/j.lwt.2018.04.053
Llewellyn, A., and A. Foey. 2017. Probiotic modulation of innate cell pathogen sensing and signaling events. Nutrients. 9(10). doi:10.3390/nu9101156
Lunney, J. K., Y. Fang, A. Ladinig, N. Chen, Y. Li, B. Rowland, and G. J. Renukaradhya. 2016. Porcine Reproductive and Respiratory Syndrome Virus (PRRSV): Pathogenesis and interaction with the immune system. Annu. Rev. Anim. Biosci. 4:129-154. doi:10.1146/annurev-animal-022114-111025
Madani, N. S. H., T. J. Adorian, H. G. Farsani, S. H. Hoseinifar. 2018. The effects of dietary probiotic Bacilli (Bacillus subtilis and Bacillus licheniformis) on growth performance, feed efficiency,body composition and immune parameters of whiteleg shrimp (Litopenaeus vannamei) postlarvae. J. Aquac. Fish Sci. 49:1926-1933. doi: 10.1111/are.13648
Madrid-Marina, V., K. Torres-Poveda, G. Lopez-Toledo, and A. Garcia-Carranca. 2009. Advantages and disadvantages of current prophylactic vaccines against HPV. Arch. Med. Res. 40(6):471-477. doi:10.1016/j.arcmed.2009.08.005
Martinez, J. C. S., W. K. Chou, L. R. Berghman, and J. B. Carey. 2018. Evaluation of the effect of live LaSota Newcastle disease virus vaccine as primary immunization on immune development in broilers. Poult. Sci. 97(2):455-462. doi:10.3382/ps/pex339
Mehmeti, I., F. Kiran, and O. Osmanagaoglu. 2011. Comparison of three methods for determination of protein concentration in lactic acid bacteria for proteomics studies. Afr. J. Biotechnol. 10(11):2178-2185.
Mingmongkolchai, S. and W. Panbangred. 2017 Bacillus probiotics: an alternative to antibiotics for livestock production. J. Appl. Microbiol. 124:1334—1346. doi:10.1111/jam.13690
Moir, A. 2006. How do spores germinate? J. Appl. Microbiol. 101(3):526-530. doi:10.1111/j.1365-2672.2006.02885.x
Morton, D. B. 2007. Vaccines and animal welfare. Rev. Sci. Tech. 26(1):157-63. doi:10.20506/rst.26.1.1735
Nakayama, Y., T. Moriya, F. Sakai, N. Ikeda, T. Shiozaki, T. Hosoya, H. Nakagawa, and T. Miyazaki. 2014. Oral administration of Lactobacillus gasseri SBT2055 is effective for preventing influenza in mice. Sci. Rep. 4:4638. doi:10.1038/srep04638
Nauwynck, H. J., X. Duan, H. W. Favoreel, P. Van Oostveldt, and M. B. Pensaert. 1999. Entry of porcine reproductive and respiratory syndrome virus into porcine alveolar macrophages via receptor-mediated endocytosis. J. Gen. Virol. 80:297-305. doi:10.1099/0022-1317-80-2-297
Nossol, C., A. Barta-Böszörményi, S. Kahlert, W. Zuschratter, H. Faber-Zuschratter, N. Reinhardt, S. Ponsuksili, K. Wimmers, A. Diesing and H. Rothkötter. 2015. Comparing Two Intestinal Porcine Epithelial Cell Lines (IPECs): Morphological Differentiation, Function and Metabolism. PLoS One. 10(7):e0132323. doi:10.1371/journal.pone.0132323
Olivia, L. W., V. Obanda, G. Bucht, G. Mosomtai, V. Otieno, C. Ahlm and M. Evander. 2015. Global emergence of Alphaviruses that cause arthritis in humans. Infect. Ecol. Epidemiol. 5:1, 29853. doi:10.3402/iee.v5.29853
Pidutti, P., F. Federici, J. Brandi, L. Manna, E. Rizzi, U. Marini, and D. Cecconi. 2018. Purification and characterization of ribosomal proteins L27 and L30 having antimicrobial activity produced by the Lactobacillus salivarius SGL 03. J. Appl. Microbiol. 124(2):398-407. doi:10.1111/jam.13646
Priest, F. G., M. Goodfellow, L. A. Shute, and R. C. W. Berkeley. 1987. Bacillus-amyloliquefaciens Sp-Nov, Nom Rev. Int. J. Syst. Bacteriol. 37(1):69-71. doi:10.1099/00207713-37-1-69
Rajão, D. S., and D. R. Pérez. 2018. Universal vaccines and vaccine platforms to protect against influenza viruses in humans and agriculture. Front. Microbiol. 9:123. doi:10.3389/fmicb.2018.00123
Ramos, I., D. Bernal-Rubio, N. Durham, A. Belicha-Villanueva, A. C. Lowen, J. Steel, and A. Fernandez-Sesma. 2011. Effects of receptor binding specificity of avian influenza virus on the human innate immune response. J. Virol. 85(9):4421-4431. doi:10.1128/JVI.02356-10
Resta-Lenert, S., and K. E. Barrett. 2003. Live probiotics protect intestinal epithelial cells from the effects of infection with enteroinvasive Escherichia coli (EIEC). Gut. 52(7):988-997. doi:10.1136/gut.52.7.988
Rodriguez-Pulido, M., B. Borrego, F. Sobrino, and M. Saiz. 2011. RNA structural domains in noncoding regions of the foot-and-mouth disease virus genome trigger innate immunity in porcine cells and mice. J. Virol. 85(13):6492-6501. doi:10.1128/JVI.00599-11
Schirrmacher. 2009. Expression of RIG-I, IRF3, IFN-β and IRF7 determines resistance or susceptibility of cells to infection by Newcastle Disease Virus. Int. J. Oncol. 34 34: 971-982. doi:10.3892/ijo_00000223
Schirrmacher, V. 2017. Immunobiology of Newcastle disease virus and its use for prophylactic vaccination in poultry and as adjuvant for therapeutic vaccination in cancer patients. Int. J. Mol. Sci. 18(5)doi:10.3390/ijms18051103
Skjolaas, K. A., T. E. Burkey, S. S. Dritz, and J. E. Minton. 2007. Effects of Salmonella enterica serovar Typhimurium, or serovar Choleraesuis, Lactobacillus reuteri and Bacillus licheniformis on chemokine and cytokine expression in the swine jejunal epithelial cell line, IPEC-J2. Vet Immunol Immunopathol. 115(3-4):299-308. doi:10.1016/j.vetimm.2006.10.012
Starosila, D., S. Rybalko, L. Varbanetz, N. Ivanskaya, and I. Sorokulova. 2017. Anti-influenza Activity of a Bacillus subtilis Probiotic Strain. Antimicrob. Agents Chemother. 61(7). doi:10.1128/AAC.00539-17
Summerfield, A., M. Alves, N. Ruggli, M. G. de Bruin, and K. C. McCullough. 2006. High IFN-alpha responses associated with depletion of lymphocytes and natural IFN-producing cells during classical swine fever. J. Interferon Cytokine Res. 26(4):248-255. doi:10.1089/jir.2006.26.248
Temeeyasen, G., A. Sinha, L. G. Gimenez-Lirola, J. Q. Zhang, and P. E. Pineyro. 2018. Differential gene modulation of pattern-recognition receptor TLR and RIG-I-like and downstream mediators on intestinal mucosa of pigs infected with PEDV non S-INDEL and PEDV S-INDEL strains. Virology. 517:188-198. doi:10.1016/j.virol.2017.11.024
Urdaci, M. C., P. Bressollier, and I. Pinchuk. 2004. Bacillus clausii probiotic strains: antimicrobial and immunomodulatory activities. J. Clin. Gastroenterol. 38(6 Suppl):S86-90. doi:10.1097/01.mcg.0000128925.06662.69
van Meerloo, J., G. J. Kaspers, and J. Cloos. 2011. Cell sensitivity assays: the MTT assay. Methods Mol. Biol. 731:237-245. doi:10.1007/978-1-61779-080-5_20
Vogel, K., N. Blumer, M. Korthals, J. Mittelstadt, H. Garn, M. Ege, E. von Mutius, S. Gatermann, A. Bufe, T. Goldmann, K. Schwaiger, H. Renz, S. Brandau, J. Bauer, H. Heine, and O. Holst. 2008. Animal shed Bacillus licheniformis spores possess allergy-protective as well as inflammatory properties. J. Allergy Clin. Immun. 122(2):307-312. doi:10.1016/j.jaci.2008.05.016
Wang, Y., W. Du, K. Lei, B. Wang, Y. Wang, Y. Zhou, and W. Li. 2017. Effects of Dietary Bacillus licheniformis on gut physical barrier, immunity, and reproductive hormones of laying hens. Probiotics Antimicrob Proteins. 9(3):292-299. doi:10.1007/s12602-017-9252-3
Wang, Z., W. Chai, M. Burwinkel, S. Twardziok, P. Wrede, C. Palissa, B. Esch, and M. F. Schmidt. 2013. Inhibitory influence of Enterococcus faecium on the propagation of swine influenza A virus in vitro. PLoS One. 8(1):e53043. doi:10.1371/journal.pone.0053043
Woo, P. C. Y., S. K. P. Lau, C. S. F. Lam, C. C. Y. Lau, A. K. L. Tsang, J. H. N. Lau, R. Bai, J. L. L. Teng, C. C. C. Tsang, M. Wang, B. J. Zheng, K. H. Chan, and K. Y. Yuen. 2012. Discovery of seven novel mammalian and avian coronaviruses in the genus deltacoronavirus supports bat coronaviruses as the gene source of alphacoronavirus and betacoronavirus and avian coronaviruses as the gene source of gammacoronavirus and deltacoronavirus. J. Virol. 86(7):3995-4008. doi:10.1128/Jvi.06540-11
Xing, J., G. Wang, Q. Zhang, X. Liu, Z. Gu, H. Zhang, Y. Q. Chen, and W. Chen. 2015. Determining antioxidant activities of lactobacilli cell-free supernatants by cellular antioxidant assay: a comparison with traditional methods. PLoS One. 10(3):e0119058. doi:10.1371/journal.pone.0119058
Xu, B., Q. F. Zhong, X. H. Tang, Y. J. Yang, and Z. X. Huang. 2009. Isolation and characterization of a new keratinolytic bacterium that exhibits significant feather-degrading capability. Afr. J. Biotechnol. 8(18):4590-4596.
Yi, P.-J., C.-K. Pai, and J.-R. Liu. 2010. Isolation and characterization of a Bacillus licheniformis strain capable of degrading zearalenone. World J. Microbiol. Biotechnol. 27(5):1035-1043. doi:10.1007/s11274-010-0548-7
Zhu, J., M. Gao, R. Zhang, Z. Sun, C. Wang, F. Yang, T. Huang, S. Qu, L. Zhao, Y. Li, and Z. Hao. 2017. Effects of soybean meal fermented by L. plantarum, B. subtilis and S. cerevisieae on growth, immune function and intestinal morphology in weaned piglets. Microb. Cell Fact. 16(1):191. doi:10.1186/s12934-017-0809-3
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70428-
dc.description.abstract現今畜牧業仍飽受各種動物疾病的侵擾,造成嚴重的經濟損失,而又以病毒性疾病較為棘手,目前是以疫苗施打來預防病毒性疾病的問題,但此方法會有病毒專一性、成本考量、施打的安全性及疫苗預防效率等諸多問題,因此本研究希望能以益生菌來輔助疫苗作為動物抵抗病毒疾病的方法。本研究選擇芽孢桿菌屬的益生菌作為研究對象,芽孢桿菌能夠在極端的環境下以內孢子的方式度過,所以生存能力較佳,所選擇的芽孢桿菌有枯草芽孢桿菌AC(Bacillus subtilis AC)、地衣芽孢桿菌CK(B. licheniformis CK),以及液化澱粉芽孢桿菌LN(B. amyloliquefaciens LN),三者分別經由生長曲線實驗得知所須培養時間,並將處理組分為胞內萃取物、胞外分泌物、細胞壁及活菌四個不同的處理方法進行共培養實驗。實驗所選用的第一個病毒為辛德比病毒(Sindbis virus, SBV),細胞平台分別為倉鼠腎臟細胞(baby hamster kidney cell, BHK)與人類腸道上皮細胞(colon epithelial cells, Caco-2),結果發現與地衣桿菌CK之胞內萃取物、胞外分泌物及活菌共培養的組別皆能顯著降低細胞受病毒感染的百分比,且發現CK的胞內萃取物及活菌分別能在攻毒後提升ISG56及MX1的表現量,但CK胞外分泌物所作用機制仍尚未明確。第二個病毒為豬流行性下痢病毒(porcine epidemic diarrhea virus, PEDV),所使用的細胞平台為恆河猴腎臟細胞(Chlorocebus aethiops kidney cell, Vero cell),在此實驗結果三種菌皆未能改善細胞受感染的情形,且與CK的細胞壁及活菌共培養的組別還使受感染情況加重,其原因可能為細胞經共培養處理後慢性的死亡,也可能因為細胞模型的不同,其表面上具不同受體,所觸發的反應不利於細胞生存,但還須經實驗加以證實。綜合上述,地衣芽孢桿菌CK能藉由提升抗病毒基因表現來抵抗SBV感染,雖然在抵抗PEDV並沒有一樣的保護效果,但由於細胞平台的不同,其共培養的效果可能不盡相同,未來能以地衣芽孢桿菌CK為實驗對象,針對其抗病毒能力設計相關實驗加以證實。zh_TW
dc.description.abstractDue to the occurrence of respiratory and enteric viruses, the development of novel antiviral-agents is a growing public health concern across the globe. As Bacillus strains have been widely used as probiotic agents in animal feed industry, the aim of this study is to evaluate the potential of three Bacillus strains, including Bacillus licheniformis CK (CK), B. subtilis AC (AC), and B. amyloliquefaciens LN (LN), as antiviral agents. The cytotoxicity of the bacterial preparations, including the extracellular supernatant (ES), intracellular extract (IN), cell wall fraction (CW), and viable whole cell (VC) of the Bacillus strains, toward baby hamster kidney (BHK) cells, human colon epithelial Caco-2 cells, and Chlorocebus aethiops kidney cell (Vero cell) were determined. The antiviral activities of the bacterial preparations were evaluated by determining their inhibitory effect against Sindbis virus (SBV) replication in BHK or Caco-2 cells and against Porcine epidemic diarrhea virus (PEDV) in Vero cells. In the BHK cell model, the IN of CK showed no cytotoxicity but exhibited anti-SBV activity. In the Caco-2 cell model, the ES, IN, and VC of CK showed no cytotoxicity but exhibited anti-SBV activities. The mRNA expression levels of antiviral factors, including IFN-β, IL-6, MX1, and ISG56, of the virus-infected Caco-2 cells were further determined. The results indicated that EX and VC of CK significantly increased the IL-6 expression levels, IN of CK significantly increased the ISG56 expression levels, and VC of CK significantly increased the MX1 expression levels in the SBV-infected Caco-2 cells. Therefore, the inhibitory effect of CK against SBV replication in Caco-2 cells could be attributable to the fact that CK could enhance the expression of cell-intrinsic antiviral factors. However, all the bacterial preparations could not decrease the PEDV infection rate in Vero cell model. These results suggested that further experiments will be need to verify the antiviral activity of B. licheniformis CK before it developed as feed additives with antiviral activity.en
dc.description.provenanceMade available in DSpace on 2021-06-17T04:27:58Z (GMT). No. of bitstreams: 1
ntu-107-R05626017-1.pdf: 2348984 bytes, checksum: 340acd4ff9b437db0abbf9ef77ae7a28 (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents謝誌 i
中文摘要 ii
Abstract iv
目錄 vi
圖目錄 viii
表目錄 ix
序言 1
第一章 文獻探討 2
一、 益生菌 2
(一)益生菌簡介 2
(二)益生菌功能 5
二、 芽孢桿菌 5
(一)芽孢桿菌簡介 5
(二)枯草芽孢桿菌 5
(三)地衣芽孢桿菌 6
(四)液化澱粉芽孢桿菌 6
三、 病毒 7
(一)病毒簡介 7
(二)常見經濟動物RNA病毒性疾病 7
(三)治療方式 10
四、 益生菌抗病毒相關應用 10
(一)直接作用 10
(二)胞外分泌物作用 11
(三)調節宿主免疫 11
五、 研究動機及目的 11
第二章 材料與方法 16
一、 實驗架構 16
二、 芽孢桿菌培養、保存 16
三、 芽孢桿菌前處理 16
四、 細胞株活化、繼代、保存 17
五、 細胞毒性測定 19
六、 病毒製備及感染 20
七、 細胞共培養及抗病毒試驗 22
八、 測定Caco-2抗病毒相關基因表現 23
九、 統計分析 24
第三章 實驗結果 28
一、 芽孢桿菌生長曲線 28
二、 螢光顯微鏡觀察細胞感染情形 28
三、 BHK細胞膜型與SBV 28
四、 Caco-2細胞膜型與SBV 29
五、 Vero細胞膜型與PEDV 30
第四章 討論 47
第五章 結論 51
參考文獻 52
dc.language.isozh-TW
dc.subject益生菌zh_TW
dc.subject芽孢桿菌zh_TW
dc.subject抗病毒zh_TW
dc.subjectSindbis viruszh_TW
dc.subjectPorcine epidemic diarrhea viruszh_TW
dc.subjectProbioticen
dc.subjectBacillusen
dc.subjectAnti-virusen
dc.subjectSindbis virusen
dc.subjectPorcine epidemic diarrhea virusen
dc.title芽孢桿菌抗病毒活性之研究zh_TW
dc.titleStudy of antiviral ability of Bacillus strainsen
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.oralexamcommittee鄭光成,劉啟德,李滋泰
dc.subject.keyword益生菌,芽孢桿菌,抗病毒,Sindbis virus,Porcine epidemic diarrhea virus,zh_TW
dc.subject.keywordProbiotic,Bacillus,Anti-virus,Sindbis virus,Porcine epidemic diarrhea virus,en
dc.relation.page64
dc.identifier.doi10.6342/NTU201801567
dc.rights.note有償授權
dc.date.accepted2018-08-14
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept動物科學技術學研究所zh_TW
顯示於系所單位:動物科學技術學系

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  未授權公開取用
2.29 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved