請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70413完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林恭如(Gong-Ru Lin) | |
| dc.contributor.author | Yen-Wei Hsueh | en |
| dc.contributor.author | 薛硯維 | zh_TW |
| dc.date.accessioned | 2021-06-17T04:27:39Z | - |
| dc.date.available | 2023-08-15 | |
| dc.date.copyright | 2018-08-15 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2018-08-13 | |
| dc.identifier.citation | [1] G. T. Reed, G. Mashanovich, F. Y. Gardes, and D. J. Thomson, “Silicon optical modulators,” Nat. Photonics, vol. 4, pp. 518–526, 2010.
[2] R. Kirchain, and L. Kimerling, “A roadmap for nanophotonics,” Nat. Photonics, vol. 1, pp. 303–305, 2007. [3] A. Densmore, S. Janz, R. Ma, J. H. Schmid, D.-X. Xu, A. Delâge, J. Lapointe, M. Vachon, and P. Cheben, “Compact and low power thermo-optic switch using folded silicon waveguides,” Opt. Express, vol. 17, pp. 10457-10465, 2009. [4] W. Bogaerts, P. D. Heyn, T. V. Vaerenbergh, K. De Vos., S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. V. Thourhout, and R.Baets, “Silicon microring resonators,” Laser Photonics Rev., vol. 6, pp. 47–73, 2012. [5] Y. Zhang, C. Husko, S. Lefrancois, I. H. Rey, T. F. Krauss, J. Schröder, and B. J. Eggleton, “Non-degenerate two-photon absorption in silicon waveguides: analytical and experimental study,” Opt. Express, vol. 23, pp. 17101-17110, 2015. [6] R. A. Soref, and B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron., vol. 23, pp. 123-129, 1987. [7] Q. Xu, B. Schmidt, S. Pradhan and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature, vol. 435, pp. 325–327, 2005 [8] M.-K. Hsieh, K.-N. Ku, and M.-C. M. Lee, “Enhanced photon-induced carrier density in silicon-on-insulator via surface recombination suppression for increasing plasma dispersion effect,” J. Appl. Phys., vol. 105, pp. 074510, 2009. [9] L. Liao, D. Samara-Rubio, M. Morse, A. Liu, D. Hodge, D. Rubin, U. D. Keil, and T. Franck, “High speed silicon Mach Zehnder modulator,” Opt. Express, vol. 13, pp. 3129-3135, 2005. [10] Q. Xu and M. Lipson, “All-optical logic based on silicon m-ring,” Opt. Express, vol. 15, pp. 924-929, 2007. [11] Y.-D. Wu, T.-T. Shih, and M.-H. Chen, “New all-optical logic gates based on the local nonlinear Mach-Zehnder interferometer,” Opt. Express, vol. 16, pp. 248-257, 2008. [12] D.K. Schroder, “Carrier lifetimes in silicon,” IEEE Trans. Electron Devices, vol. 44, pp. 160-170, 1997. [13] C. Manolatou, and M. Lipson, “All-Optical Silicon Modulators Based on Carrier Injection by Two-Photon Absorption,” J. Light. Technol., Vol. 24, pp. 1433-1439, 2006. [14] H. Rong, A. Liu, R. Jones, O. Cohen, D. Hak, R. Nicolaescu, A. Fang and M. Paniccia, “An all-silicon Raman laser,” Nature, vol. 433, pp. 292–294, 2005. [15] N. M. Wright, D. J. Thomson, K .L. Litvinenko, W. R. Headley, A. J. Smith, A. P. Knights, J. H. B. Deane, F. Y. Gardes, G. Z. Mashanovich, R. Gwilliam, and G. T. Reed, “Free carrier lifetime modification for silicon waveguide based devices,” Opt. Express, vol. 16, pp. 19779-19784, 2008. [16] A. C. Turner-Foster, M. A. Foster, J. S. Levy, C. B. Poitras, R. Salem, A. L. Gaeta, and M. Lipson, “Ultrashort free-carrier lifetime in low-loss silicon nanowaveguides,” Opt. Express, vol. 18, pp. 3582-3591, 2010. [17] C.-L. Wu and G.-R. Lin, “Inhomogeneous linewidth broadening and radiative lifetime dispersion of size dependent direct bandgap radiation in Si quantum dot,” AIP Adv., vol. 2, pp. 042162, 2012. [18] C.-L. Wu, Y.-H. Lin, C.-H. Cheng, S.-P. Su, B.-J. Huang, J.-H. Chang, C.-I Wu, C.-K. Lee and G.-R. Lin, “Enriching Si quantum dots in a Si-rich SiNx matrix for strong χ(3) optical nonlinearity,” J. Mater. Chem. C, vol. 4, pp. 1405-1413, 2016. [19] R. Spano, N. Daldosso, M. Cazzanelli, L. Ferraioli, L. Tartara, J. Yu, V. Degiorgio, E. Jordana, J. M. Fedeli, and L. Pavesi, “Bound electronic and free carrier nonlinearities in Silicon nanocrystals at 1550 nm,” Opt. Express, vol.17, pp.3941-3950, 2009. [20] C.‐L. Wu, S.‐P. Su and G.-R. Lin, “All-optical modulation based on silicon quantum dot doped SiOx Si-QD waveguide,” Laser Photonics Rev., vol. 8, pp. 766–776, 2014. [21] C.-H. Cheng, C.-L. Wu, Y.-H. Lin, W.-L. Yan, M.-H. Shih, J.-H. Chang, C.-I Wu, C.-K. Lee and G.-R. Lin, “Strong optical nonlinearity of the nonstoichiometric silicon carbide,” J. Mater. Chem., vol. 3, pp. 10164-10176, 2015. [22] F. Demichelis, G. Crovini, C. F. Pirri, E. Tresso, R. Galloni, R. Rizzoli, C. Summonte, F. Zignani, P. Rava and A. Madan, “The influence of hydrogen dilution on the optoelectronic and structural properties of hydrogenated amorphous silicon carbide films,” Philos. Mag., vol. 2, pp. 377-386, 1994. [23] G.-R. Lin, T.-C. Lo, L.-H. Tsai, Y.-H. Pai, C.-H. Cheng, C.-I Wu, and P.-S. Wang, “Finite Silicon Atom Diffusion Induced Size Limitation on Self-Assembled Silicon Quantum Dots in Silicon-Rich Silicon Carbide,” J. Electrochem. Soc., vol. 159, pp. K35-K41, 2012. [24] J. Lefèvre, J.-M. Costantini, S. Esnouf, and G. Petite, “Thermal stability of irradiation-induced point defects in cubic silicon carbide,” J. Appl. Phys., vol. 106, pp. 083509, 2009. [25] T. Okuda, T. Miyazawa, H. Tsuchida, T. Kimoto and J. Suda, “Enhancement of carrier lifetime in lightly Al-doped p-type 4H-SiC epitaxial layers by combination of thermal oxidation and hydrogen annealing,” Appl. Phys. Express, vol. 7, pp. 085501, 2014. [26] E. Saito, J. Suda and T. Kimoto, “Control of carrier lifetime of thick n-type 4H-SiC epilayers by high-temperature Ar annealing,” Appl. Phys. Express, vol. 9, pp. 061303, 2016. [27] B.‐J. Huang, C.‐L. Wu, Y.‐H. Lin, H.‐Y. Wang, C.‐T. Tsai, C.‐H. Cheng, Y.‐C. Chi, P.‐H. Chang, C.‐I Wu, R. A. Soref, and G.‐R. Lin, “Two‐Photon Absorption‐Free Ultrafast Optical Switching in Carbon‐Rich SixC1−x Microring,” Adv. Mater. Technol., vol. 2, pp. 1700095, 2017 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70413 | - |
| dc.description.abstract | 近年來,在矽光子積體光學中運用四族半導體材料來達到高速資料處理與傳輸已經吸引了許多關注。在本文中,製備了富矽碳化矽薄膜來分析其材料特性與製備微米環波導元件,並藉由雙光子吸收誘發自由載子吸收機制,進一步達成全光波長轉換強度調變的訊號處理。在第2章中,運用了雙光子吸收誘發自由載子吸收機制,在富矽碳化矽微米環波導中首次進行正交振幅調變-正交分頻多工訊號(QAM-OFDM)的全光調變。將調變頻寬由100 MHz 增加至 1.5 GHz時,經由波長轉換後的4-QAM OFDM訊號可通過前向錯誤更正碼的標準,其訊雜比、誤差向量幅度以及位元誤碼率分別為9.49 dB、1.4×10-3 以及33.5%,使得全光調變速率可以達到3 Gbit/s。在第三章中,利用了正交振幅調變-正交分頻多工訊號(QAM-OFDM)以及通用濾波組多載波處理(UFMC),於富矽碳化矽直線波導中運用自由載子吸收機制進行波長轉換的訊號調變,並且比較了頻寬分別在1.2 GHz與1.5 GHz的前端放大時,載有8-QAM UFMC的訊號可分別達到傳輸速率為3.6 Gbit/s以及4.5 Gbit/s,且其訊雜比/位元誤碼率分別為12.3 dB/2.9x10-3以及12.2 dB/3.3x10-3,皆可以滿足前向錯誤更正碼的標準。在第四章中,首次利用了多頻帶的正交振幅調變-正交分頻多工訊號(QAM-OFDM)以及通用濾波組多載波處理(UFMC),經由富矽碳化矽直線波導中的自由載子吸收機制,使得全光波長轉換的訊號調變速率可以達到7.2 Gbit/s。在1.2 GHz以及1.4 GHz的可使用頻寬下,頻帶分別被分段成6段與7段以自由載子吸收機制於富矽碳化矽直線波導中進行調變,經由分析接收到的在每個頻帶下的訊號,其全光調變速率分別可以達到5.6 Gbit/s與7.2Gbit/s。相較於傳統寬頻的傳輸,平均的訊雜比整體提升了約5~6 dB。經由運用此多頻帶的QAM-UFMC訊號,可以更加有效利用富矽碳化矽直線波導中的自由載子吸收的有限頻寬,進一步提升訊號傳輸的容量。 | zh_TW |
| dc.description.abstract | Developing the group IV semiconductor material in silicon photonics integrated circuits has obtained a lot of attraction for the high-speed data switching, processing and transmission in recent years. In this thesis, the silicon excessive SiCx based micro-ring resonator waveguide was simulated, fabricated and analyzed to achieve all-optical intensity modulation wavelength conversion by two-photon absorption (TPA) induced free-carrier absorption (FCA).In Chapter 2, the all-optical cross-wavelength quadrature amplitude modulation orthogonal frequency-division multiplexing (QAM-OFDM) data switching in the silicon rich silicon carbide (Si-rich SiC) micro-ring (m-ring) waveguide is demonstrated for the first time by using the two-photon absorption (TPA) induced free carrier absorption (FCA) process. With enlarging allowable the 4-QAM OFDM data bandwidth to 1.5 GHz, the wavelength-converted probe data can successfully satisfies the FEC criterion with qualified SNR, BER and EVM of 9.49 dB, 1.4×10-3 and 33.5%, respectively, making the all-optical switching data rate approaching 3 Gbit/s. In Chapter 3, the all-optical 8-QAM UFMC pump-to-probe wavelength conversion via TPA induced FCA mechanism in the Si-rich SiC bus waveguide is demonstrated. Under the 1.2-GHz and 2.5-GHz wideband pre-amplification, the converted probe carried with 8-QAM UFMC data can be respectively achieved up to 3.6 and 4.5 Gbps with their SNR/BER of 12.3 dB/2.9x10-3 and 12.2 dB/3.3x10-3, both satisfying the FEC criterion of 12.04 dB/3.8x10-3. In Chapter 4, the high-speed free carrier absorption mechanism in Si-rich SiC bus waveguide is employed to demonstrate the all-optical wavelength-converted switching of multi-band bit-loading QAM-UFMC data at 7.2 Gbps. Pre-amplifying the bit-loading QAM UFMC data at allowable bandwidth of 1.2/1.4 GHz achieves a receiving raw data rate of 5.6/7.2 Gbit/s when performing the pump-to-probe conversion in the Si-rich SiC waveguide by slicing into six/seven bit-loaded sub-bands. In comparison with the typical wideband 8-QAM UFMC data, the average SNR of the bit-loaded 16-64 QAM UFMC data is greatly enhanced by at least 5-6 dB under 2.5 GHz wideband electrical pre-amplification. These observations reveal that the discrete sub-band bit-loading M-QAM UFMC format can greatly improve the data transmission capacity of the TPA-FCA induced wavelength conversion in the Si-rich SiCx bus waveguide, which fully use the finite FCA bandwidth to switch the data at high bit rate in the Si-rich SiC waveguide. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T04:27:39Z (GMT). No. of bitstreams: 1 ntu-107-R05941057-1.pdf: 32939082 bytes, checksum: 8b01e1d959bd71c15a1df321524941b3 (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | 口試委員會審定書 #
誌謝 i 中文摘要 ii ABSTRACT iv CONTENTS vi LIST OF FIGURES ix LIST OF TABLES xvi Chapter 1 Introduction 1 1.1 Historical review of Si Photonics 1 1.2 Motivation 2 1.3 Organization of thesis 3 Chapter 2 All-optical 4-QAM OFDM data switching via free-carrier absorption in Si-rich SiCx m-ring waveguide 5 2.1 Introduction 5 2.2 Experimental Setup 5 2.2.1 Material aspects of the Si-rich SiCx film with buried Si-QDs 5 2.2.2 Structure and fabrication of Si-rich SiCx bus and -ring waveguide 8 2.2.3 Characteristic of the high-power DFBLD based optical pumping source and electrical amplifiers for pre- and post- amplification 9 2.2.4 All-optical wavelength conversion system setup 12 2.3 Results and discussions 13 2.3.1 Optimization of pump stream via pre-amplified modulation and DC biased current of DFBLD 13 2.3.2 Performances of enlarging the operated bandwidth from 100 MHz to 1.16 GHz 16 2.3.3 Comparison between Pump/Probe wavelength located in or out of Transmittance Dip 19 2.3.4 Received probe power and injected pumping power vs. QAM-OFDM transmission performances and FCD effect 25 2.3.5 Improving 4-QAM OFDM modulated bandwidth through electrical pre-amplification 30 2.4 Summary 33 Chapter 3 All-optical 8-QAM OFMC data switching via free-carrier absorption in Si-rich SiCx waveguide up to 4.5 Gbps 35 3.1 Introduction 35 3.2 Experimental setup 35 3.2.1 Fabrication of Si-rich SiCx bus waveguide Fabrication of Si-rich SiCx bus waveguide 35 3.2.2 Encoding/decoding algorithms for UFMC processing. 37 3.2.3 All-optical pump-to-probe wavelength system setup 39 3.3 Result and Discussion 40 3.3.1 The 1.2-GHz and 2.5-GHz wideband pre-amplified electrical, modulated pump and converted probe results of the encoding 8-QAM OFDM data with UFMC processing 40 3.3.2 Comparison on 8-QAM UFMC data transmission with enlarging modulation bandwidth under 1.2-GHz and 2.5-GHz wideband pre-amplification. 48 3.4 Summary 51 Chapter 4 High-Speed free-carrier absorption in Si-rich SiCx waveguide for bit-loading multi-band all-optical data switching at 7.2 Gbit/s 52 4.1 Introduction 52 4.2 Experimental setup 52 4.2.1 Fabrication of Si-rich SiCx bus waveguide. 52 4.2.2 Encoding/decoding M-QAM UFMC bit-loading and UFMC processing algorithms 54 4.2.3 Setup of the all-optical pump-to-probe wavelength conversion system for data switching. 56 4.3 Result and Discussion 58 4.3.1 The 1.2-GHz and 2.5-GHz wideband pre-amplified electrical, modulated pump and converted probe results of the encoding bit-loading QAM-OFDM data with UFMC processing 58 4.3.2 Comparison on RF and SNR spectral performances between multi-band bit-loading and broadband UFMC data streams 65 4.4 Summary 68 Chapter 5 Conclusion 70 REFERENCE 73 | |
| dc.language.iso | en | |
| dc.subject | 富矽碳化矽 | zh_TW |
| dc.subject | 全光調變 | zh_TW |
| dc.subject | 自由載子吸收 | zh_TW |
| dc.subject | 光波導元件 | zh_TW |
| dc.subject | 微米環共振腔 | zh_TW |
| dc.subject | optical waveguide | en |
| dc.subject | all-optical switching | en |
| dc.subject | free-carrier absorption | en |
| dc.subject | Si-rich SiCx | en |
| dc.subject | micro-ring resonator | en |
| dc.title | 富矽碳化矽微米環波導之全光調變 | zh_TW |
| dc.title | All-optical Data Switching in the Si-rich SiCx m-ring Waveguide | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 張書維(Shu-Wei Chang),徐世祥(Shih-Hsiang Hsu),黃定洧(Ding-Wei Huang) | |
| dc.subject.keyword | 富矽碳化矽,微米環共振腔,光波導元件,自由載子吸收,全光調變, | zh_TW |
| dc.subject.keyword | Si-rich SiCx,micro-ring resonator,optical waveguide,free-carrier absorption,all-optical switching, | en |
| dc.relation.page | 78 | |
| dc.identifier.doi | 10.6342/NTU201803253 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2018-08-14 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-1.pdf 未授權公開取用 | 32.17 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
