請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70404完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 謝銘鈞 | |
| dc.contributor.author | Chen-Hung Hsieh | en |
| dc.contributor.author | 謝鎮鴻 | zh_TW |
| dc.date.accessioned | 2021-06-17T04:27:26Z | - |
| dc.date.available | 2019-08-15 | |
| dc.date.copyright | 2018-08-15 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2018-08-13 | |
| dc.identifier.citation | 1. Ranganathan, R., et al., Nanomedicine: Towards development of patient-friendly drug-delivery systems for oncological applications. International Journal of Nanomedicine, 2012. 7: 1043–1060
2. Greish, K., et al., Enhanced permeability and retention (EPF) effect for anticancer nanomedicine drug targeting. Methods Mol Biol, 2010. 624: p. 25-37 3. Peer D., et al., Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol, 2007. 2: 751-60 4. Knop K., et al., Poly(ethylene glycol) in drug delivery: pros and cons as well as potential alternatives. Angew Chem Int Edit, 2010. 49: 6288-308 5. Dubey N., et al., Synthesis and evaluation of biodegradable PCL/PEG nanoparticles for neuroendocrine tumor targeted delivery of somatostatin analog. Drug Deliv, 2012. 19: 132-42 6. Jaxel C., et al., Structure-activity study of the actions of camptothecin derivatives on mammalian topoisomerase I: evidence for a specific receptor site and a relation to antitumor activity. Cancer Res, 1989. 49(6): 1465-1469 7. Ning S-T., et al., Targeting Colorectal Cancer Stem-Like Cells with Anti-CD133 Antibody-Conjugated SN-38 Nanoparticles. ACS Appl Mater Interfaces, 2016. 8(28): 17793-17804 8. Davis ME., et al., Nanoparticle therapeutics: An emerging treatment modality for cancer. Nat Rev Drug Discov, 2008. 7:771–782. 9. Peer D, et al. Nanocarriers as an emerging platform for cancer therapy. Nat Nanotechnol, 2007. 2:751–760. 10. Knop K, Hoogenboom R, Fischer D, Schubert US, Poly (ethylene glycol) in drug delivery: Pros and cons as well as potential alternatives. Angew Chem Int Ed Engl, 2010. 49:6288–6308 11. Che-Ming J. Hu., et al., Erythrocyte membrane-camouflaged polymeric nanoparticles as a biomimetic delivery platform. Proc Natl Acad Sci USA, 2011. 108, 10980-10985 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70404 | - |
| dc.description.abstract | 癌症在現今治療中伴隨著很多副作用,為了解決此問題,奈米粒子已被廣泛研究治療腫瘤。在理想的藥物傳輸系統下,奈米粒子應該具有高生物相容性並且能在血液中有長時間循環,在利用高滲透長滯留效應(EPR effect)累積在腫瘤位置增強治療腫瘤效果。在此研究中,利用兩高分子mPEG-PCL作為奈米載體包載化療藥物SN38與超氧化鐵USPIO。此外使用天然的紅血球細胞膜修飾奈米微胞(micelles)表面,利用紅血球細胞膜表面特定蛋白質特性,可以躲避巨噬細胞吞噬與網狀內皮系統(RES system),達到延長血液循環時間效果。透過大小、電位,去鑑定RBC-micelles性質。 | zh_TW |
| dc.description.abstract | Clinically, there are many effective cancer chemo drugs, but they always come with adverse effects due to their non-specific biodistribution. One of the effective approaches for tumor-specific accumulation is using nanoparticle formulation based on the theory of enhanced permeation and retention (EPR) effect. To further enhance tumor accumulation, nanoparticles should be kept in blood with little possibility of being eliminated by reticuloendothelial system (RES). In this study, with the intention of achieving ideal drug delivery in cancer treatment, a theranostic micelle loaded with the chemo drug, SN38 and ultrasmall superparamagnetic iron oxide particles (USPIO) for near infrared irradiation was created and camouflaged with red blood cell (RBC) membrane to prevent from uptake by macrophage and RES. Its structure, size, zeta potential, and the content of RBC-membrane were verified using transmission electron microscopy (TEM), dynamic light scattering (DLS). | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T04:27:26Z (GMT). No. of bitstreams: 1 ntu-107-R05548037-1.pdf: 2371751 bytes, checksum: b5d86cfe0f89d02891cb1ba928124c60 (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | 致謝 i
中文摘要 ii Abstract iii CONTENTS iv LIST OF SCHEMES vi LSIT OF TABLES vii LIST OF FIGURES viii Chapter 1 Introduction 1 Chapter 2 Chapter 2 Material and Methods 3 2.1 Material 3 2.2 Synthesis mPEG-PCL copolymer 3 2.3 Preparation of SN38-loaded NPs and SN38/USPIO loaded NPs 3 2.4 Preparation of RBC membrane vesicles 3 2.5 RBC membrane cloaking on NPs 4 2.6 Characterization of SN38-loaded NPs, SN38/USPIO- loaded NPs, RBC-SN38/USPIO- loaded NPs 4 2.7 Hyperthermia studied 5 2.8 In vitro drug release profile of SN38 5 2.9 Cell culture 5 2.10 Cellular uptake 5 2.11 In vitro cytotoxicity 6 Chapter 3 Results 7 3.1 Characterization of SN38-loaded NPs and SN38/USPIO-loaded NPs 7 3.2 Preparation and characterization of RBC membrane vesicles and RBC-SN38/USPIO-loaded NPs 7 3.3 Transmission electron microscopy 8 3.4 Hyperthermia properties 8 3.5 Drug release profiles 8 3.6 Cellular uptake 9 3.7 In vitro cytotoxicity 9 Chapter4 Conclusion 10 Reference 11 Scheme 13 Table 14 Figure 17 | |
| dc.language.iso | en | |
| dc.subject | 超氧化鐵 | zh_TW |
| dc.subject | 奈米粒子 | zh_TW |
| dc.subject | 紅血球細胞膜 | zh_TW |
| dc.subject | 化學治療 | zh_TW |
| dc.subject | nanoparticle | en |
| dc.subject | red blood cell membrane | en |
| dc.subject | SN38 | en |
| dc.subject | USPIO | en |
| dc.title | 以紅血球細胞膜覆蓋磁性奈米粒子並結合化學治療與熱治療 | zh_TW |
| dc.title | Red Blood Cell Membrane Cloaked Magnetic Nanoparticle For Combined Chemotherapy And Hyperthermia | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林文澧,羅彩月,駱俊良 | |
| dc.subject.keyword | 奈米粒子,紅血球細胞膜,化學治療,超氧化鐵, | zh_TW |
| dc.subject.keyword | nanoparticle,red blood cell membrane,SN38,USPIO, | en |
| dc.relation.page | 24 | |
| dc.identifier.doi | 10.6342/NTU201803274 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2018-08-14 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 醫學工程學研究所 | zh_TW |
| 顯示於系所單位: | 醫學工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-1.pdf 未授權公開取用 | 2.32 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
