Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70401
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李貫銘(Kuan-Ming Li)
dc.contributor.authorLi-Wei Chengen
dc.contributor.author鄭力維zh_TW
dc.date.accessioned2021-06-17T04:27:22Z-
dc.date.available2021-08-14
dc.date.copyright2018-08-14
dc.date.issued2018
dc.date.submitted2018-08-14
dc.identifier.citation1. Ulsoy, A.G., Y. Koren, and F. Rasmussen, Principal developments in the adaptive control of machine tools. ASME Journal of Dynamic Systems, Measurement, and Control, 1983. 105(2): p. 107-112.
2. Liang, S.Y., R.L. Hecker, and R.G. Landers, Machining Process Monitoring and Control: The State–of–the–Art. 2002(3641X): p. 599-610.
3. Milner, D.A., Adaptive control of feedrate in the milling process. International Journal of Machine Tool Design and Research, 1974. 14(2): p. 187-197.
4. Liu, Y., T. Cheng, and L. Zuo, Adaptive Control Constraint of Machining Processes. The International Journal of Advanced Manufacturing Technology, 2001. 17(10): p. 720-726.
5. 邱雅琳 , 等切削力控制系統動態特性建立之研究 等切削力控制系統動態特性建立之研究 等切削力控制系統動態特性建立之研究 等切削力控制系統動態特性建立之研究 等切削力控制系統動態特性建立之研究 等切削力控制系統動態特性建立之研究 等切削力控制系統動態特性建立之研究 等切削力控制系統動態特性建立之研究 等切削力控制系統動態特性建立之研究 等切削力控制系統動態特性建立之研究 等切削力控制系統動態特性建立之研究 等切削力控制系統動態特性建立之研究 等切削力控制系統動態特性建立之研究 等切削力控制系統動態特性建立之研究 等切削力控制系統動態特性建立之研究 等切削力控制系統動態特性建立之研究 等切削力控制系統動態特性建立之研究 , in 機械工程學研究所 機械工程學研究所 機械工程學研究所 機械工程學研究所 機械工程學研究所 機械工程學研究所 機械工程學研究所 機械工程學研究所 . 2017, 國立臺灣大學 : 台北市 . p. 71.
6. Lauderbaugh, L.K. and A.G. Ulsoy, Dynamic Modeling for Control of the Milling Process. Journal of Engineering for Industry, 1988. 110(4): p. 367-375.
7. Altintaş, Y., Direct adaptive control of end milling process. International Journal of Machine Tools and Manufacture, 1994. 34(4): p. 461-472.
8. Rober, S.J. and Y.C. Shin, Modeling and control of cnc machines using a PC-based open architecture controller. Mechatronics, 1995. 5(4): p. 401-420.
9. Stein, J.L., et al., Evaluation of DC Servo Machine Tool Feed Drives as Force Sensors. Journal of Dynamic Systems, Measurement, and Control, 1986. 108(4): p. 279-288.
10. Kim, T.-Y. and J. Kim, Adaptive cutting force control for a machining center by using indirect cutting force measurements. International Journal of Machine Tools and Manufacture, 1996. 36(8): p. 925-937.
11. Landers, R.G. and A.G. Ulsoy, Model-Based Machining Force Control. Journal of Dynamic Systems, Measurement, and Control, 1999. 122(3): p. 521-527.
12. Yang, M.Y., T.M. Lee, and J.G. Choi, A New Spindle Current Regulation Algorithm for the CNC End Milling Process. The International Journal of Advanced Manufacturing Technology, 2002. 19(7): p. 473-481.
13. Kooi, S.B.L. Robust adaptive control for nonlinear end milling process. in American Control Conference, Proceedings of the 1995. 1995.
14. Charbonnaud, P., F.J. Carrillo, and D. Ladevèze, Monitored robust force control
60
of a milling process. Control Engineering Practice, 2001. 9(10): p. 1047-1061.
15. Yang, J., D. Zhang, and Z. Li. Modeling and Identification for High-Speed Milling Machines. in 2007 IEEE International Conference on Automation Science and Engineering. 2007.
16. Spence, A. and Y. Altintas, CAD Assisted Adaptive Control for Milling. Journal of Dynamic Systems, Measurement, and Control, 1991. 113(3): p. 444-450.
17. Ma, C.C.H. and Y. Altintas, Direct adaptive cutting force control of milling processes. Automatica, 1990. 26(5): p. 899-902.
18. Tomizuka, M., J. Oh, and D. Dornfeld, Model reference adaptive control of the milling process. Control of Manufacturing Processes and Robotic Systems, 1983: p. 55-63.
19. Fussell, B.K. and K. Srinivasan, Adaptive control of force in end milling operations— an evaluation of available algorithms. Journal of Manufacturing Systems, 1991. 10(1): p. 8-20.
20. Lauderbaugh, L.K. and A.G. Ulsoy, Model Reference Adaptive Force Control in Milling. Journal of Engineering for Industry, 1989. 111(1): p. 13-21.
21. Rober, S.J. and Y.C. Shin, Control of Cutting Force for End Milling Processes Using an Extended Model Reference Adaptive Control Scheme. Journal of Manufacturing Science and Engineering, 1996. 118(3): p. 339-347.
22. Nolzen, H. and R. Isermann. Fast adaptive cutting force control for milling operation. in Proceedings of International Conference on Control Applications. 1995.
23. Rober, S.J., Y.C. Shin, and O.D.I. Nwokah, A Digital Robust Controller for Cutting Force Control in the End Milling Process. Journal of Dynamic Systems, Measurement, and Control, 1997. 119(2): p. 146-152.
24. Kim, S.I., R.G. Landers, and A.G. Ulsoy, Robust Machining Force Control With Process Compensation. Journal of Manufacturing Science and Engineering, 2003. 125(3): p. 423-430.
25. Zuperl, U., F. Cus, and M. Reibenschuh, Neural control strategy of constant cutting force system in end milling. Robotics and Computer-Integrated Manufacturing, 2011. 27(3): p. 485-493.
26. Saikumar, S. and M.S. Shunmugam, Development of a feed rate adaption control system for high-speed rough and finish end-milling of hardened EN24 steel. The International Journal of Advanced Manufacturing Technology, 2012.
61
59(9): p. 869-884.
27. Liu, Y. and C. Wang, Neural Network based Adaptive Control and Optimisation in the Milling Process. The International Journal of Advanced Manufacturing Technology, 1999. 15(11): p. 791-795.
28. Liang, M., et al., Fuzzy control of spindle torque for industrial CNC machining. International Journal of Machine Tools and Manufacture, 2003. 43(14): p. 1497-1508.
29. Jee, S. and Y. Koren, Adaptive fuzzy logic controller for feed drives of a CNC machine tool. Mechatronics, 2004. 14(3): p. 299-326.
30. Zuperl, U., F. Cus, and M. Milfelner, Fuzzy control strategy for an adaptive force control in end-milling. Journal of Materials Processing Technology, 2005. 164-165(Supplement C): p. 1472-1478.
31. Kim, D. and D. Jeon, Fuzzy-logic control of cutting forces in CNC milling processes using motor currents as indirect force sensors. Precision Engineering, 2011. 35(1): p. 143-152.
32. Rehorn, A.G., J. Jiang, and P.E. Orban, State-of-the-art methods and results in tool condition monitoring: a review. The International Journal of Advanced Manufacturing Technology, 2005. 26(7): p. 693-710.
33. Hidayah, M., et al., A Review of Utilisation of Cutting Force Analysis In cutting tool condition monitoring. Int. J. Eng. Tech, 2015. 15(3): p. 28-35.
34. Saunders, L.K.L. Process dynamics models for the control of end milling. in Proceedings of the 2000 American Control Conference. ACC (IEEE Cat. No.00CH36334). 2000.
35. Lee, K.-J., T.-M. Lee, and M.-Y. Yang, Tool wear monitoring system for CNC end milling using a hybrid approach to cutting force regulation. The International Journal of Advanced Manufacturing Technology, 2007. 32(1): p. 8-17.
36. Pintelon, R. and J. Schoukens, System identification: a frequency domain approach. 2012: John Wiley & Sons.
37. Gloth, G. and M. Sinapius, Analysis of swept-sine runs during modal identification. Mechanical Systems and Signal Processing, 2004. 18(6): p. 1421-1441.
38. Adams, O., et al., Model-based Predictive Force Control in Milling – System Identification. Procedia Technology, 2016. 26(Supplement C): p. 214-220.
62
39. Ewins, D.J. and Ewins, Modal testing : theory, practice, and application.
40. Phillips, et al., Digital Control System Analysis & Design, Global Edition.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70401-
dc.description.abstract在電子技術日趨成熟的發展下,加工過程中的即時監控可行性增加,切削監控最常見的方式是以切削力做為加工狀態參考,本研究應用等切削力控制系統,提升加工效率。文獻當中對於等切削力控制系統,多集中於討論控制器演算方法的設計,也預期此方法能夠對刀具壽命有正向影響,然而較少針對刀具磨耗影響的探討。本研究討論銑削加工中,設計等切削力控制系統,利用掃頻系統識別方法,建立系統動態特性與設計等切削力控制器,並討論等切削力控制技術對刀具磨耗的影響。
本研究提出以掃頻訊號輸入,進行系統鑑別取得系統動態方程式,由主軸電流負載取代傳統動力計量測切削力,透過控制理論,設計等切削力PI控制器,並利用根軌極法找出系統穩定控制參數範圍。實驗結果在變動切削條件與刀具磨耗情況下,主軸電流負載可以於1秒內到達設定參考值,並穩定控制。此方法大量減少系統識別流程,並能夠快速設計控制器,對於機台老化等因素,需要重新了解系統動態時,有顯著的幫助。
比較等切削力控制下與無控制切削加工,觀察磨耗量測結果發現,兩者在加工時間與刀具磨耗關係中,沒有差異,與過去文獻不同,在刀具受力穩定下,等切削力控制無減緩刀具磨耗的效果。觀察控制器輸出訊號發現,隨著刀具磨耗增加,不同的參考電流附載值,有明顯訊號特徵,可做為刀具磨耗量的判斷依據。
zh_TW
dc.description.abstractThe ACC (adaptive control system with constraint) system is developed with cutting dynamics model and the cutting tool wear is investigated under the ACC system. A process of building ACC systems is present in this work including modeling the dynamics of cutting process and design of PI controller. It has been proposed that the measurement of cutting force by using dynamometer can be replaced by the spindle current of the machine tool. Therefore, dynamics models which relate the feedrate and spindle current are modeled by system identification method with swept sine input signal during cutting processes. With the model, the PI controller is designed for the ACC system. The experiment of control performance is compared with simulation results. On the other hand, to investigate effects on tool wear with the ACC system, tool wear is measured at predefined intervals. It turns out that the performance of the adaptive controller is good fits with simulation and stable under the cutting condition. However, with the ACC system, there is no significant effect on reducing the tool wear, and setpoints of reference spindle current in ACC system is important parameters for tool life.en
dc.description.provenanceMade available in DSpace on 2021-06-17T04:27:22Z (GMT). No. of bitstreams: 1
ntu-107-R05522703-1.pdf: 5393007 bytes, checksum: 6353652e7651167f78b68849dbf66128 (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents口試委員審定書 ................................................................................................................................ I
致謝 .................................................................................................................................................. II
中文摘要 ......................................................................................................................................... III
ABSTRACT ....................................................................................................................................... IV
目錄 ................................................................................................................................................. V
表目錄 .......................................................................................................................................... VIII
圖目錄 .............................................................................................................................................IX
一、 緒論 .................................................................................................................................... 1
1.1 研究背景 ............................................................................................................................... 1
1.2 研究動機與目的 ................................................................................................................... 3
二、 文獻回顧 .............................................................................................................................. 5
2.1. 等切削力技術 ....................................................................................................................... 5
2.1.1 動態系統建立 .................................................................................................................. 5
2.1.2 控制器設計 ...................................................................................................................... 6
2.2. 主軸電流刀具磨耗診斷 ....................................................................................................... 7
2.3. 等切削力與刀具磨耗 ........................................................................................................... 8
2.4. 系統識別 ............................................................................................................................... 8
2.5. 小結 ...................................................................................................................................... 9
三、 研究方法 ............................................................................................................................ 11
3.1. 研究流程 ............................................................................................................................. 11
3.2. 系統設備規格 ..................................................................................................................... 12
3.2.1. 五軸加工機 .................................................................................................................... 12
3.2.2. 訊號擷取卡 .................................................................................................................... 13
3.2.3. 數位類比轉換器 ............................................................................................................ 14
3.3. 控制系統架構 ..................................................................................................................... 15
3.4. 建立系統動態特性 ............................................................................................................. 17
3.2.4. 掃頻輸入訊號與系統輸出 ............................................................................................ 18
3.4.1. 訊號前處理 .................................................................................................................... 19
3.4.2. 系統識別 ........................................................................................................................ 20
3.5. 控制器設計 ......................................................................................................................... 21
3.5.1. PI控制器 ........................................................................................................................ 23
3.5.2. 根軌跡法(Root locus) ..................................................................................................... 24
3.5.3. Labview code .................................................................................................................. 26
3.6. 磨耗量測 ............................................................................................................................. 27
四、 實驗規劃 ............................................................................................................................ 28
4.1. 系統識別實驗 ..................................................................................................................... 29
4.2. 系統驗證 ............................................................................................................................. 30
4.3. 控制實驗驗證 ..................................................................................................................... 31
4.4. 磨耗研究實驗 ..................................................................................................................... 32
五、 實驗結果與討論 ................................................................................................................ 33
5.1. 掃頻實驗 ............................................................................................................................. 33
5.2. 系統動態 ............................................................................................................................. 36
5.3. 控制器設計 ......................................................................................................................... 39
5.4. 系統動態特性驗證 ............................................................................................................. 41
5.5. 控制效果實驗 ..................................................................................................................... 42
5.5.1. 變動切削條件下控制 .................................................................................................... 42
5.5.2. 小結 ............................................................................................................................... 43
5.5.3. 刀具磨耗下控制實驗 .................................................................................................... 44
5.5.4. 小結 ............................................................................................................................... 44
5.6. 磨耗實驗 ............................................................................................................................. 47
5.7. 討論 .................................................................................................................................... 54
六、 總結與未來展望 ................................................................................................................ 57
6.1. 總結 .................................................................................................................................... 57
6.2. 未來展望 ............................................................................................................................. 57
參考文獻 ........................................................................................................................................ 59
dc.language.isozh-TW
dc.title工具機等切削力控制與刀具磨耗關係之探討zh_TW
dc.titleInvestigation of Tool Wear Behavior under Constant Cutting Forcesen
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.oralexamcommittee楊宏智(Hong-Tsu Young),蔡孟勳(Meng-Shiun Tsai),盧銘詮(Ming-Chyuan Lu)
dc.subject.keyword等切削力控制,主軸電流負載,刀具磨耗,系統識別,zh_TW
dc.subject.keywordAdaptive control,spindle current,cutting tool wear,system identification,en
dc.relation.page62
dc.identifier.doi10.6342/NTU201802569
dc.rights.note有償授權
dc.date.accepted2018-08-14
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept機械工程學研究所zh_TW
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  目前未授權公開取用
5.27 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved