請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70372完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李宗徽(Tzong-Huei Lee) | |
| dc.contributor.author | Yan-Jie Fu | en |
| dc.contributor.author | 傅彥傑 | zh_TW |
| dc.date.accessioned | 2021-06-17T04:26:47Z | - |
| dc.date.available | 2021-01-22 | |
| dc.date.copyright | 2021-01-22 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2021-01-05 | |
| dc.identifier.citation | Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J. Nat. Prod. 2020, 83, 770-803. Blunt, J.W.; Carroll, A.R.; Copp, B.R.; Davis, R.A.; Keyzers, R.A.; Prinsep, M.R. Marine natural products. Nat. Prod. Rep. 2017, 34, 235-294. Newman, D.J.; Cragg, G.M. Marine natural products and related compounds in clinical and advanced preclinical trials. J. Nat. Prod. 2004, 67, 1216-1238. Holler, U.; Konig, G.M.; Wright, A.D. Three new metabolites from marine-derived fungi of the genera Coniothyrium and Microsphaeropsis. J. Nat. Prod. 1999, 62, 114-118. He, J.; Lion, U.; Sattler, I.; Gollmick, F.A.; Grabley, S.; Cai, J.; Meiners, M.; Schünke, H.; Schaumann, K.; Dechert, U.; Krohn, M. Diastereomeric quinolinone alkaloids from the marine-derived fungus Penicillium janczewskii. J. Nat. Prod. 2005, 68, 1397-1399. Liao, L.; You, M.; Chung, B.K.; Oh, D.C.; Oh, K.B.; Shin, J. Alkaloidal metabolites from a marine-derived Aspergillus sp. fungus. J. Nat. Prod. 2015, 78, 349-354. Liao, L.; Lee, J.H.; You, M.; Choi, T.J.; Park, W.; Lee, S.K.; Oh, D.C.; Oh, K.B.; Shin, J. Penicillipyrones A and B, meroterpenoids from a marine-derived Penicillium sp. fungus. J. Nat. Prod. 2014, 77, 406-410. Julianti, E.; Oh, H.; Jang, K.H.; Lee, J.K.; Lee, S.K.; Oh, D.C.; Oh, K.B.; Shin, J. Acremostrictin, a highly oxygenated metabolite from the marine fungus Acremonium strictum. J. Nat. Prod. 2011, 74, 2592-2594. Jang, J.H.; Kanoh, K.; Adachi, K.; Shizuri, Y. Awajanomycin, a cytotoxic γ-lactone-δ-lactam metabolite from marine-derived Acremonium sp. AWA16-1. J. Nat. Prod. 2006, 69, 1358-1360. Li, C.S.; An, C.Y.; Li, X.M.; Gao, S.S.; Cui, C.M.; Sun, H.F.; Wang, B.G. Triazole and dihydroimidazole alkaloids from the marine sediment-derived fungus Penicillium paneum SD-44. J. Nat. Prod. 2011, 74, 1331-1334. Liu, D.; Li, X.M.; Meng, L.; Li, C.S.; Gao, S.S.; Shang, Z.; Proksch, P.; Huang, C.G.; Wang, B.G. Nigerapyrones A-H, α-pyrone derivatives from the marine mangrove-derived endophytic fungus Aspergillus niger MA-132. J. Nat. Prod. 2011, 74, 1787-1791. Zhang, Y.; Li, X.M.; Shang, Z.; Li, C.S.; Ji, N.Y.; Wang, B.G. Meroterpenoid and diphenyl ether derivatives from Penicillium sp. MA-37, a fungus isolated from marine mangrove rhizospheric soil. J. Nat. Prod. 2012, 75, 1888-1895. Chen, M.; Shao, C.L.; Fu, X.M.; Xu, R.F.; Zheng, J.J.; Zhao, D.L.; She, Z.G.; Wang, C.Y. Bioactive indole alkaloids and phenyl ether derivatives from a marine-derived Aspergillus sp. fungus. J. Nat. Prod. 2013, 76, 547-553. Qi, J.; Shao, C.L.; Li, Z.Y.; Gan, L.S.; Fu, X.M.; Bian, W.T.; Zhao, H.Y.; Wang, C.Y. Isocoumarin derivatives and benzofurans from a sponge-derived Penicillium sp. fungus. J. Nat. Prod. 2013, 76, 571-579. Kong, F.; Wang, Y.; Liu, P.; Dong, T.; Zhu, W. (2014). Thiodiketopiperazines from the marine-derived fungus Phoma sp. OUCMDZ-1847. J. Nat. Prod. 2014, 77, 132-137. Zhu, T.; Lu, Z.; Fan, J.; Wang, L.; Zhu, G.; Wang, Y.; Li, X.; Hong, K.; Piyachaturawat, P.; Chairoungdua, A.; Zhu, W. Ophiobolins from the mangrove fungus Aspergillus ustus. J. Nat. Prod. 2018, 81, 2-9. Choi, B.K.; Phan, T.H.T.; Hwang, S.; Oh, D.C.; Kang, J.S.; Lee, H.S.; Ngo, T.D.N.; Tran, T.T.V.;Shin, H.J. (2019). Resorcinosides A and B, glycosylated alkylresorcinols from a marine-derived strain of the fungus Penicillium janthinellum. J. Nat. Prod. 2019, 82, 3186-3190. El-Elimat, T.; Raja, H.A.; Day, C.S.; Chen, W.L.; Swanson, S.M.; Oberlies, N.H. Greensporones: resorcylic acid lactones from an aquatic Halenospora sp. J. Nat. Prod. 2014, 77, 2088-2098. Hawksworth, D.L.; Lücking, R. Fungal diversity revisited: 2.2 to 3.8 million species. Microbiol spectr. 2017, 5, 10.1128/microbiolspec.FUNK-0052-2016. Mandelare, P.E.; Adpressa, D.A.; Kaweesa, E.N.; Zakharov, L.N.; Loesgen, S. Coculture of two developmental stages of a marine-derived Aspergillus alliaceus results in the production of the cytotoxic bianthrone allianthrone A. J. Nat. Prod. 2018, 81, 1014-1022. Carroll, A.R.; Copp, B.R.; Davis, R.A.; Keyzers, R.A.; Prinsep, M.R. Marine natural products. Nat Prod Rep. 2020, 37, 175-223. Jadulco, R.; Edrada, R.A.; Ebel, R.; Berg, A.; Schaumann, K.; Wray, V.; Steube, K.; Proksch, P. New communesin derivatives from the fungus Penicillium sp. derived from the Mediterranean sponge Axinella verrucosa. J. Nat. Prod. 2004, 67, 78. Garo, E.; Starks, C.M.; Jensen, P.R.; Fenical, W.; Lobkovsky, E.; Clardy, J. Trichodermamides A and B, cytotoxic modified dipeptides from the marine-derived fungus Trichoderma virens. J. Nat. Prod. 2003, 66, 423-426. Gesner, S.; Cohen, N.; Ilan, M.; Yarden, O.; Carmeli, S. Pandangolide 1a, a metabolite of the sponge-associated fungus Cladosporium sp., and the absolute stereochemistry of pandangolide 1 and iso-cladospolide B. J. Nat. Prod. 2005, 68, 1350-1353. Kralj, A.; Kehraus, S.; Krick, A.; Eguereva, E.; Kelter, G.; Maurer, M.; Wortmann, A.; Fiebig, H.H.; König, G.M. Arugosins G and H : prenylated polyketides from the marine-derived fungus Emericellanidulans var. acristata. J. Nat. Prod. 2006, 69, 995-1000. Ohkawa, Y.; Miki, K.; Suzuki, T.; Nishio, K.; Sugita, T.; Kinoshita, K.; Takahashi, K.; Koyama, K. Antiangiogenic metabolites from a marine-derived fungus, Hypocrea vinosa. J. Nat. Prod. 2010, 73, 579-582. Yang, K.L.; Wei, M.Y.; Shao, C.L.; Fu, X.M.; Guo, Z.Y.; Xu, R.F.; Zheng, C.J.; She, Z.G.; Lin, Y.C.; Wang, C.Y. Antibacterial anthraquinone derivatives from a sea anemone-derived fungus Nigrospora sp. J. Nat. Prod. 2012, 75, 935. Xu, D.X.; Sun, P.; Kurtán, T.; Mándi, A.; Tang, H.; Liu, B.; Gerwick, W.H.; Wang, Z.W.; Zhang, W. Polyhydroxy cyclohexanols from a Dendrodochium sp. fungus associated with the sea cucumber Holothuria nobilis Selenka. J. Nat. Prod. 2014, 77, 1179-1184. López-Gresa, M.P.; Cabedo, N.; González-Mas, M.C.; Ciavatta, M.L.; Avila, C.; Primo, J. Terretonins E and F, inhibitors of the mitochondrial respiratory chain from the marine-derived fungus Aspergillus insuetus. J. Nat. Prod. 2009, 72, 1348-1351. Kito, K.; Ookura, R.; Yoshida, S.; Namikoshi, M.; Ooi, T.; Kusumi, T. Pentaketides relating to aspinonene and dihydroaspyrone from a marine-derived fungus, Aspergillus ostianus. J. Nat. Prod. 2007, 70, 2022-2025. Zhang, M.; Wang, W.L.; Fang, Y.C.; Zhu, T.J.; Gu, Q.Q.; Zhu, W.M. Cytotoxic alkaloids and antibiotic nordammarane triterpenoids from the marine-derived fungus Aspergillus sydowi. J. Nat. Prod. 2008, 71, 985-989. Song, F.; Dai, H.; Tong, Y.; Ren, B.; Chen, C.; Sun, N.; Liu, X.; Bian, J.; Liu, M.; Gao, H.; Liu, H.; Chen, X.; Zhang, L. Trichodermaketones A-D and 7-O-methylkoninginin D from the marine fungus Trichoderma koningii. J. Nat. Prod. 2010, 73, 806-810. Abdel-Lateff, A.; König, G.M.; Fisch, K.M.; Höller, U.; Jones, P.G.; Wright, A.D. New antioxidant hydroquinone derivatives from the algicolous marine fungus Acremonium sp. J. Nat. Prod. 2002, 65, 1605-1611. Osterhage, C.; König, G.M.; Höller, U.; Wright, A.D. Rare sesquiterpenes from the algicolous fungus Drechslera dematioidea. J. Nat. Prod. 2002, 65, 306-313. Shi, Z.Z.; Miao, F.P.; Fang, S.T.; Liu, X.H.; Yin, X.L.; Ji, N.Y. Sesteralterin and Tricycloalterfurenes A-D: terpenes with rarely occurring frameworks from the marine-alga-epiphytic fungus Alternaria alternata k21-1. J. Nat. Prod. 2017, 80, 2524-2529. Rateb, M.E.; Ebel, R. Secondary metabolites of fungi from marine habitats. Nat Prod Rep,2011, 28, 290-344. Aparicio-Cuevas, M.A.; Rivero-Cruz, I.; Sánchez-Castellanos, M.; Menéndez, D.; Raja, H.A.; Joseph-Nathan, P.; González, M.D.C.; Figueroa, M. Dioxomorpholines and derivatives from a marine-facultative Aspergillus species. J. Nat. Prod. 2017, 80, 2311-2318. He, F.; Bao, J.; Zhang, X.Y.; Tu, Z.C.; Shi, Y.M.; Qi, S.H. Asperterrestide A, a cytotoxic cyclic tetrapeptide from the marine-derived fungus Aspergillus terreus SCSGAF0162. J. Nat. Prod. 2013, 76, 1182-1186. Meng, L.H.; Liu, Y.; Li, X.M.; Xu, G.M.; Ji, N.Y.; Wang, B.G. Citrifelins A and B, citrinin adducts with a tetracyclic framework from cocultures of marine-derived isolates of Penicillium citrinum and Beauveria felina. J. Nat. Prod. 2015, 78, 2301-2305. Peng, J.; Gao, H.; Zhang, X.; Wang, S.; Wu, C.; Gu, Q.; Guo, P.; Zhu, T.; Li, D. Psychrophilins E-H and versicotide C, cyclic peptides from the marine-derived fungus Aspergillus versicolor ZLN-60. J. Nat. Prod. 2014, 77, 2218-2223. Cao, F.; Meng, Z.H.; Mu, X.; Yue, Y.F.; Zhu, H.J. Absolute configuration of bioactive azaphilones from the marine-derived fungus Pleosporales sp. CF09-1. J. Nat. Prod. 2019, 82, 386-392. Liu, Y.; Li, X.M.; Meng, L.H.; Jiang, W.L.; Xu, G.M.; Huang, C.G.; Wang, B.G. Bisthiodiketopiperazines and acorane sesquiterpenes produced by the marine-derived fungus Penicillium adametzioides AS-53 on different culture media. J. Nat. Prod. 2015, 78, 1294-1299. Wang, C.; Guo, L.; Hao, J.; Wang, L.; Zhu, W. α-Glucosidase inhibitors from the marine-derived fungus Aspergillus flavipes HN4-13. J. Nat. Prod. 2016, 79, 2977-2981. He, F.; Bao, J.; Zhang, X.Y.; Tu, Z.C.; Shi, Y.M.; Qi, S.H. Asperterrestide A, a cytotoxic cyclic tetrapeptide from the marine-derived fungus Aspergillus terreus SCSGAF0162. J. Nat. Prod. 2013, 76, 1182-1186. Hamed, A.; Abdel-Razek, A.S.; Omran, D.A.; El-Metwally, M.M.; El-Hosari, D.G.; Frese, M.; Soliman, H.S.M.; Sewald, N.; Shaaban, M. Terretonin O: a new meroterpenoid from Aspergillus terreus. Nat. Prod. Res. 2020, 34, 965-974. Zaman, K.A.U.; Hu, Z.Q.; Wu, X.H.; Cao, S.G. Tryptoquivalines W and X, two new compounds from a Hawaiian fungal strain and their biological activities. Tetrahedron lett. 2020, 61, 10.1016/j.tetlet.2020.151730. Wu, J.S.; Shi, X.H.; Yao, G.S.; Shao, C.L.; Fu, X.M.; Zhang, X.L.; Guan, H.S.; Wang, C.Y. New thiodiketopiperazine and 3,4-dihydroisocoumarin derivatives from the marine-derived fungus Aspergillus terreus. Mar. Drugs 2020, 18,132-141. Luo, X.W.; Lin, Y.; Lu, Y.J.; Zhou, X.F.; Liu, Y.H. Peptides and polyketides isolated from the marine sponge-derived fungus Aspergillus terreus SCSIO 41008. Chin. J. Nat. Med. 2019, 17, 149-154. Liu, M.T.; He, Y.; Shen, L.; Anbari, W.H.A.; Li, H.Q.; Wang, J.P.; Qi, C.X. Asperteramide A, an unusual N‐phenyl‐carbamic acid methyl ester trimer isolated from the coral‐derived fungus Aspergillus Terreus. Eur. J. Org. Chem. 2019, 2019, 2928-2932. Gubiani, J.R.; Oliveira, M.C.S.; Neponuceno, R.A.R.; Camargo, M.J.; Garcez, W.S.; Biz, A.R.; Soares, M.A.; Araujo, A.R.; Bolzani, V.S.; Lisboa, H.C.F.; Sousa, P.T.; Vasconcelos, L.G.; Ribeiro, T.A.N.; Oliveira, J.M. ; Banzato, T.P.; Lima, C.A.; Longato, G.B.; Batista, J.M.; Berlinck, R.G.S.; Teles, H.L. Cytotoxic prenylated indole alkaloid produced by the endophytic fungus Aspergillus terreus P63. Phytochem. Lett. 2019, 32, 162-167. Sun, K.L.; Zhu, G.L.; Hao, J.J.; Wang, Y.; Zhu, W.M. Chemical-epigenetic method to enhance the chemodiversity of the marine algicolous fungus, Aspergillus terreus OUCMDZ-2739. Tetrahedron 2018, 74, 83-87. Bai, J.; Guo, F.; Wang, R.; Chen, G.; Li, Z.; Shao, M.; Xue, C.M.; Hua, H.M. Asperterzine, a symmetric aromatized derivative of epipolythiodioxopiperazine, from the endophytic fungus Aspergillus terreus PR-P-2. Chinese Chem. Lett. 2018, 29, 535-537. Liu, M.; Sun, W.; Wang, J.; He, Y.; Zhang, J.; Li, F.; Qi, C.; Zhu, H.; Xue, Y.; Hu, Z.; Zhang, Y. Bioactive secondary metabolites from the marine-associated fungus Aspergillus terreus. Bioorg. chem. 2018, 80, 525-530. Zhang, Q.; Li, Y.; Xu, F.; Zheng, M.; Xi, X.; Zhang, X.; Han, C. Optimization of submerged fermentation medium for matrine production by Aspergillus terreus, an endophytic fungus harboring seeds of sophora flavescens, using response surface methodology. Microbiology 2017, 45, 90-96. Guo, F.; Li, Z.; Xu, X.; Wang, K.; Shao, M.; Zhao, F.; Wang, H.; Hua, H.; Pei, Y.; Bai, J. Butenolide derivatives from the plant endophytic fungus Aspergillus terreus. Fitoterapia 2016, 113, 44-50. Wu, C.J.; Cui, X.; Xiong, B.; Yang, M.S.; Zhang, Y.X.; Liu, X.M. Terretonin D1, a new meroterpenoid from marine-derived Aspergillus terreus ML-44. Nat. Prod. Res. 2019, 33, 2262-2265. Shen, L.; Zhu, L.; Luo, Q.; Li, X.W.; Xi, J.Q.; Kong, G.M.; Song, Y.C. Fumigaclavine I, a new alkaloid isolated from endophyte Aspergillus terreus. Chin. J. Nat. Med. 2015 13, 937-941. Guo, C.J.; Yeh, H.H.; Chiang, Y.M.; Sanchez, J.F.; Chang, S.L.; Bruno, K.S.; Wang, C.C. Biosynthetic pathway for the epipolythiodioxopiperazine acetylaranotin in Aspergillus terreus revealed by genome-based deletion analysis. J. Am. Chem. Soc. 2013, 135, 7205-7213. Shen, Y.; Zou, J.; Xie, D.; Ge, H.; Cao, X.; Dai, J. Butyrolactone and cycloheptanetrione from mangrove-associated fungus Aspergillus terreus. Chem. Pharm. Bull. 2012, 60, 1437-1441. Ge, H.M.; Peng, H.; Guo, Z.K.; Cui, J.T.; Song, Y.C.; Tan, R.X. Bioactive alkaloids from the plant endophytic fungus Aspergillus terreus. Planta Med. 2010, 76, 822-824. Kagamizono, T.; Sakai, N.; Arai, K.; Kobinata, K.; Osada, H. Terpeptin, a novel mammalian cell cycle inhibitor, produced by Aspergillus terreus 95F-1. Tetrahedron lett. 1997, 38, 1223-1226. Zeng, Q.; Zhong, W.M.; Chen, Y.C.; Xiang, Y.; Chen, X.Y.; Tian, X.P.; Zhang, W.M.; Zhang, S.; Wang, F.Z. A new butenolide derivative from the deep-sea fungus Aspergillus terreus SCSIO FZQ028. Nat. Prod. Res. 2019, 33, 1-8. Cheng, Z.; Li, Y.; Liu, W.; Liu, L.; Liu, J.; Yuan, W.; Luo, Z.; Xu, W.; Li, Q. Butenolide derivatives with α-glucosidase inhibitions from the deep-sea-derived fungus Aspergillus terreus YPGA10. Mar. Drugs 2019, 17, 332-340. Kang, H.S.; Kim, J.P. Butenolide derivatives from the fungus Aspergillus terreus and their radical scavenging activity and protective activity against glutamate-induced excitotoxicity. Appl. Biol. Chem. 2019, 62, 43-47. Sun, Y.; Liu, J.; Li, L.; Gong, C.; Wang, S.; Yang, F.; Hua, H.; Lin, H. New butenolide derivatives from the marine sponge-derived fungus Aspergillus terreus. Bioorg. Med. Chem Lett. 2018, 28, 315-318. Hühner, E.; Backhaus, K.; Kraut, R.; Li, S.M. Production of α-keto carboxylic acid dimers in yeast by overexpression of NRPS-like genes from Aspergillus terreus. Appl. Microbiol. Biot. 2018, 104, 1663-1672. Liu, M.T.; Zhou, Q.; Wang, J.P.; Liu, J.J.; Qi, C.X.; Lai, Y.J.; Zhu, H.C.; Xue, Y.B.; Hu, Z.X.; Zhang, Y.H. Anti-inflammatory butenolide derivatives from the coral-derived fungus Aspergillus terreus and structure revisions of aspernolides D and G, butyrolactone VI and 4′,8′′-diacetoxy butyrolactone VI. RCS Adv. 2018, 8, 13040-13047. Liao, G.; Wu, P.; Xue, J.; Liu, L.; Li, H.; Wei, X. Asperimides A-D, anti-inflammatory aromatic butenolides from a tropical endophytic fungus Aspergillus terreus. Fitoterapia 2018, 131, 50-54. Qi, C.; Gao, W.; Guan, D.; Wang, J.; Liu, M.; Chen, C.; Zhu, H.; Zhou, Y.; Lai, Y.; Hu, Z.; Zhou, Q.; Zhang, Y. Butenolides from a marine-derived fungus Aspergillus terreus with antitumor activities against pancreatic ductal adenocarcinoma cells. Bioorg. Med. Chem. Lett. 2018, 26, 5903-5910. Ibrahim, S.R.M.; Mohamed, G.A.; Khedr, A.I.M. γ-Butyrolactones from Aspergillus species: structures, biosynthesis, and biological activities. Nat. Prod. Commun. 2017, 12, 791-800. El-Sayed, A.S.A.; Safan, S.; Mohamed, N.Z.; Shaban, L.; Ali, G.S.; Sitohy, M.Z. Induction of taxol biosynthesis by Aspergillus terreus, endophyte of Podocarpus gracilior Pilger, upon intimate interaction with the plant endogenous microbes. Process Biochem. 2018, 71, 31-40. Wu, Z.; Li, D.; Zeng, F.; Tong, Q.; Zheng, Y.; Liu, J.; Zhou, Q.; Li, X.N.; Chen, C.; Lai, Y.; Zhu, H.; Zhang, Y. Brasilane sesquiterpenoids and dihydrobenzofuran derivatives from Aspergillus terreus [CFCC 81836]. Phytochem. 2018, 156, 159-166. Xia, X.K.; Qi, J.; Liu, C.H.; Zhang, M.S. Polyketones from Aspergillus terreus associated with Apostichopus japonicus. Mod. Food Sci. tech. 2014, 30,10-14. Macedo, F.C.; Marsaioli, A.J. Total structural assignment and absolute configuration of terreinol by 13C and 1H NMR. Magn. Reson. Chem. 2005, 43, 251-255. Yang, Z.; Kaliaperumal, K.; Zhang, J.; Liang, Y.; Guo, C.; Zhang, J.; Yang, B.; Liu, Y. Antifungal fatty acid derivatives against Penicillium italicum from the deep-sea fungus Aspergillus terreus SCSIO 41202. Nat. Prod. Res. 2020, 34, 1-8. Li, W.; Ma, Z.; Chen, L.; Yin, W.B. Synthesis and production of the antitumor polyketide aurovertins and structurally related compounds. Appl. Microbiol Biotechnol. 2018, 102, 6373-6381. Zhang, X.; Wu, Z.; Lai, Y.; Li, D.; Wang, J.; Luo, Z.; Xue, Y.; Zhu, H.; Chen, C.; Zhang, Y. (±)-Terreinlactone A, a pair of 3-substituted δ-lactone enantiomers derived from terrein from the fungus Aspergillus terreus. Chem Pharm. Bull. 2018, 66, 764-767. Devi, S.I.; Lotjem, H.; Devi, E.J.; Potshangbam, M.; Ngashangva, N.; Bora, J.; Sahoo, D.; Sharma, C. Bio-mining the forest ecosystem of north east India for identification of antimicrobial metabolites from fungi through submerged fermentation. Bioresour. Technol. 2017, 241, 1168-1172. Boruta, T.; Bizukojc, M. Culture-based and sequence-based insights into biosynthesis of secondary metabolites by Aspergillus terreus ATCC 20542. J. Biotechnol. 2014, 175, 53-62. Elyashberg, M.; Blinov, K.; Molodtsov, S.; Williams, A.J. Structure revision of asperjinone using computer-assisted structure elucidation methods. J. Nat. Prod. 2013, 76, 113-116. Haroon, M.H.; Premaratne, S.R.; Choudhry, M.I.; Dharmaratne, H.R. A new β-glucuronidase inhibiting butyrolactone from the marine endophytic fungus Aspergillus terreus. Nat. Prod. Res. 2013, 27, 1060-1166. Deng, C.; Huang, C.; Wu, Q.; Pang, J.; Lin, Y. A new sesquiterpene from the mangrove endophytic fungus Aspergillus terreus (No. GX7-3B). Nat. Prod. Res. 2013, 27, 1882-1887. Hirota, A.; Nakagawa, M.; Sakai, H.; Isogai, A. Terrecyclic acid A, a new antibiotic from Aspergillus terreus. J. Antibiot. 1982, 35, 778-782. Qi, C.; Liu, M.; Zhou, Q.; Gao, W.; Chen, C.; Lai, Y.; Hu, Z.; Xue, Y.; Zhang, J.; Li, D.; Li, X.N.; Zhang, Q.; Wang, J.; Zhu, H.; Zhang, Y. BACE1 inhibitory meroterpenoids from Aspergillus terreus. J. Nat. Prod. 2018, 81, 1937-1945. Tang, Y.; Liu, Y.; Ruan, Q.; Zhao, M.; Zhao, Z.; Cui, H. Aspermeroterpenes A-C: three meroterpenoids from the marine-derived fungus Aspergillus terreus GZU-31-1. Org. Lett. 2020, 22, 1336-1339. Wu, C.J.; Cui, X.; Xiong, B.; Yang, M.S.; Zhang, Y.X.; Liu, X.M. Terretonin D1, a new meroterpenoid from marine-derived Aspergillus terreus ML-44. Nat. Prod. Res. 2019, 33, 2262-2265. Li, H.L.; Li, X.M.; Li, X.; Yang, S.Q.; Wang, B.Q. Structure, absolute configuration and biological evaluation of polyoxygenated meroterpenoids from the marine algal-derived Aspergillus terreus EN-539. Phytochem. Lett. 2019, 32, 138-142. Feng, W.; Chen, C.; Mo, S.; Qi, C.; Gong, J.; Li, X.N.; Zhou, Q.; Zhou, Y.; Li, D.; Lai, Y.; Zhu, H.; Wang, J.; Zhang, Y. Highly oxygenated meroterpenoids from the antarctic fungus Aspergillus terreus. Phytochem. Lett. 2019, 164, 184-191. Qi, C.; Zhou, Q.; Gao, W.; Liu, M.; Chen, C.; Li, X.N.; Lai, Y.; Zhou, Y.; Li, D.; Hu, Z.; Zhu, H.; Zhang, Y. Anti-BACE1 and anti-AchE activities of undescribed spiro-dioxolane-containing meroterpenoids from the endophytic fungus Aspergillus terreus Thom. Phytochem. 2019, 165, 112041. Shaaban, M.; El-Metwally, M.M.; Abdel-Razek, A.A.; Laatsch, H. Terretonin M: a new meroterpenoid from the thermophilic Aspergillus terreus TM8 and revision of the absolute configuration of penisimplicins. Nat. Prod. Res. 2018, 32, 2437-2446. Qi, C.; Qiao, Y.; Gao, W.; Liu, M.; Zhou, Q.; Chen, C.; Lai, Y.; Xue, Y.; Zhang, J.; Li, D.; Wang, J.; Zhu, H.; Hu, Z.; Zhou, Y.; Zhang, Y. New 3,5-dimethylorsellinic acid-based meroterpenoids with BACE1 and AchE inhibitory activities from Aspergillus terreus. Org. Biomol. Chem. 2018, 16, 9046-9052. Qi, C.; Bao, J.; Wang, J.; Zhu, H.; Xue, Y.; Wang, X.; Li, H.; Sun, W.; Gao, W.; Lai, Y.; Chen, J.G.; Zhang, Y. Asperterpenes A and B, two unprecedented meroterpenoids from Aspergillus terreus with BACE1 inhibitory activities. Chem. Sci. 2016, 7, 6563-6572. Yoo, I.D.; Cho, K.M.; Lee, C.K.; Kim, W.G. Isoterreulactone A, a novel meroterpenoid with anti-acetylcholinesterase activity produced by Aspergillus terreus. Bioorg. Med Chem. Lett. 2005, 15, 353-356. Tang, S.; Zhang, W.; Li, Z.; Li, H.; Geng, C.; Huang, X.; Lu, X. Discovery and characterization of a PKS-NRPS hybrid in Aspergillus terreus by genome mining. J. Nat. Prod.2020, 83, 473-480. Lu, Y.H.; Jin, L.P.; Kong, L.C.; Zhang, Y.L. Phytotoxic, antifungal and immunosuppressive metabolites from Aspergillus terreus QT122 isolated from the gut of dragonfly. Curr. Microbiol. 2017, 74, 84-89. Arakawa, N.S.; Gobbo-Neto, L.; Ambrosio, S.R.; Antonucci, G.A.; Sampaio, S.V.; Pupo, M.T.; Said, S.; Schmidt, T.J.; Costa, F.B. Unusual biotransformation products of the sesquiterpene lactone budlein A by Aspergillus species. Phytochem. 2013, 96, 92-100. Dewi, R.T.; Tachibana, S.; Itoh, K.; Ilyas, M. Isolation of antioxidant compounds from Aspergillus terreus LS01. J. Microbial Biochem. Technol. 2012, 4, 10-14. Hamed, A.; Ismail, M.; El-Metwally, M.M.; Frese, M.; Stammler, H G.; Sewald, N.; Shaaban, M. X-ray, structural assignment and molecular docking study of dihydrogeodin from Aspergillus Terreus TM8. Nat. Prod. Res. 2019, 33, 117-121. Wang, Q.; Yang, Y.B.; Yang, X.Q.; Miao, C.P.; Li, Y.Q.; Liu, S.X.; Luo, N.; Ding, Z.T.; Zhao, L.X. Lovastatin analogues and other metabolites from soil-derived Aspergillus terreus YIM PH30711. Phytochem. 2018, 145, 146-152. Huang, X.; Liang, Y.; Yang, Y.; Lu, X. Single-step production of the simvastatin precursor monacolin J by engineering of an industrial strain of Aspergillus terreus. Metab. Eng. 2017, 42, 109-114. Chan, J.K.; Moore, R.N.; Nakashima, T.T.; Vederas, J.C. Biosynthesis of mevinolin. Spectral assignment by double-quantum coherence NMR after high carbon-13 incorporation. J. Am. Chem. Soc. 1983, 105, 3334-3336. Zaman, K.A.U.; Hu, Z.; Wu, X.; Hou, S.; Saito, J.; Kondratyuk, T.P.; Pezzuto, J.M.; Cao, S. NF-κB inhibitory and antibacterial helvolic and fumagillin derivatives from Aspergillus terreus. J. Nat. Prod. 2020, 83, 730-737. Ibrahim, S.R.M.; Elkhayat, E.S.; Mohamed, G.A.; Khedr, A.I.M.; Fouad, M.A.; Kotb, M.H.R.; Ross, S.A. Aspernolides F and G, new butyrolactones from the endophytic fungus Aspergillus terreus. Phytochem. Lett. 2015, 14, 84-90. Faramarzi, M.A.; Yazdi, M.T.; Amini, M.; Mohseni, F.A.; Zarrini, G.; Shafiee, A. Microbial production of testosterone and testololactone in the culture of Aspergillus terreus. World J. Microb. Biot. 2004, 20, 657-660. Li, Y.; Liu, W.; Xu, Q.; Zeng, X.; Cheng, Z.B.; Li, Q. Aspterrics A and B, new sesquiterpenes from deep sea-derived fungus Aspergillus terreus YPGA10. Rec. Nat. Prod. 2020, 14, 18-22. Li, H.L.; Li, X.M.; Yang, S.Q.; Cao, J.; Li, Y.H.; Wang, B.G. Induced terreins production from marine red algal-derived endophytic fungus Aspergillus terreus EN-539 co-cultured with symbiotic fungus Paecilomyces lilacinus EN-531. J. Antibiot. 2020 73, 108-111. Awaad, A.S.; Al-Mudhayyif, H.A.; Al-Othman, M.R.; Zain, M.E.; El-Meligy, R.M. Amhezole, a novel fungal secondary metabolite from Aspergillus terreus for treatment of microbial mouth infection. Phytother. Res. 2017, 31, 395-402. Ukwatta, K.M.; Lawrence, J.L.; Wijayarathne, C.D. Antimicrobial, anti-cancer, anti-filarial and anti-inflammatory activities of Cowabenzophenone A extracted from the endophytic fungus Aspergillus terreus isolated from a mangrove plant Bruguiera gymnorrhyza. Mycology 2019, 10, 39-48. Arabatzis, M.; Velegraki, A. Sexual reproduction in the opportunistic human pathogen Aspergillus terreus. Mycologia 2013, 105, 71-79. Ye, Y.Q.; Xia, C.F.; Yang, J.X.; Yang, Y.C.; Qin, Y.; Gao, X.M.; Du, G.; Li, X.M.; Hu, Q.F. Butyrolactones derivatives from the fermentation products of an endophytic fungus Aspergillus versicolor. B. Korean Chem. Soc. 2014, 35, 3059-3062. Zhang, Y.Y.; Zhang, Y.; Yao, Y.B.; Lei, X.L.; Qian, Z.J. Butyrolactone-I from coral-derived fungus Aspergillus terreus attenuates neuro-inflammatory response via suppression of NF-κB pathway in BV-2 cells. Mar. Drugs 2018, 16, 202-214. Qi, C.; Bao, J.; Wang, J.; Zhu, H.; Xue, Y.; Wang, X.; Li, H.; Sun, W.; Gao, W.; Lai, Y.; Chen, J.G.; Zhang, Y. Asperterpenes A and B, two unprecedented meroterpenoids from Aspergillus terreus with BACE1 inhibitory activities. Chem. Sci. 2016, 7, 6563-6572. Chaiyosang, B.; Kanokmedhakul, K.; Boonmak, J.; Youngme, S.; Kukongviriyapan, V.; Soytong, K.; Kanokmedhakul, S. A new lumazine peptide penilumamide E from the fungus Aspergillus terreus. Nat. Prod. Res. 2016, 30, 1017-1024. Yoo, D.H.; Kim, I.S.; Le, T.K.V.; Jung, H.; Yoo, H.H.; Kim, D.H. Gut microbiota-mediated drug interactions between lovastatin and antibiotics. Drug Metab. Dispos. 2014, 42, 1508-1513. Qiao, L.R.; Xie, D.; Liu, Q.; Zou, J.H.; Shen, Z.H.; Dai, J.G. Microbial transformation of lovastatin by Beauveria bassiana. Acta Pharm. Sin. B. 2012, 2, 300-305. Guo, C.; Knox, B.P.; Chiang, Y.; Lo, H.; Sanchez, J.F.; Lee, K.; Oakley, B.R.; Bruno, K.S.; Wang, C.C. Molecular genetic characterization of a cluster in A. terreus for biosynthesis of the meroterpenoid terretonin. Org. Lett. 2012, 14, 5684-5687. Li, G.Y.; Li, B.G.; Yang, T.; Yin, J.H.; Qi, H.Y.; Liu, G.Y.; Zhang, G.L. Sesterterpenoids, terretonins A−D, and an alkaloid, asterrelenin, from Aspergillus terreus. J. Nat. Prod. 2005, 68, 1243-1246. Haritakun, R.; Rachtawee, P.; Chanthaket, R.; Boonyuen, N.; Isaka, M. Butyrolactones from the fungus Aspergillus terreus BCC 4651. Chem. Pharm. Bull. 2010 58, 1545-1548. Nuclear, P.; Sommit, D.; Boonyuen, N.; Pudhom, K. Butenolide and furandione from an endophytic Aspergillus terreus. Chem. Pharm. Bull. 2010, 58, 1221-1223. Zhang, L.H.; Feng, B.M.; Zhao, Y.Q.; Sun, Y.; Liu, B.; Liu, F.; Chen, G.; Bai, J.; Hua, H.M.; Wang, H.F.; Pei, Y.H. Polyketide butenolide, diphenyl ether, and benzophenone derivatives from the fungus Aspergillus flavipes PJ03-11. Bioorg. Med. Chem. Lett. 2016, 26, 346-350. Gao, H.; Guo, W.; Wang, Q.; Zhang, L.; Zhu, M.; Zhu, T.; Gu, Q.; Wang, W.; Li, D. Aspulvinones from a mangrove rhizosphere soil-derived fungus Aspergillus terreus Gwq-48 with anti-influenza A viral (H1N1) activity. Bioorg. Med. Chem. Lett. 2013, 23, 1776-1778. Campbell, A.C.; Maidment, M.S.; Pick, J.H.; Stevenson, D.F.M. Synthesis of (E)- and (Z)-pulvinones. J. Chem. Soc. Perkin Trans. I 1985, 1, 1567-1576. Cruz, P.G.; Auld, D.S.; Schultz, P.J.; Lovell, S.; Battaile, K.P.; MacArthur, R.; Shen, M.; Tamayo-Castillo, G.; Inglese, J.; Sherman, D.H. Titration-based screening for evaluation of natural product extracts: identification of an aspulvinone family of luciferase inhibitors. Chem. Biol. 2011, 18, 1442-1452. Zhang, P.; Li, X.M.; Wang, J.N.; Li, X.; Wang, B.G. New butenolide derivatives from the marine-derived fungus Paecilomyces variotii with DPPH radical scavenging activity. Phytochem. Lett. 2015, 11, 85-88. Manchoju, A.; Annadate, R.A.; Desquien, L.; Pansare, S.V. Functionalization of diazotetronic acid and application in a stereoselective modular synthesis of pulvinone, aspulvinones A-E, G, Q and their analogues. Org. Biomol. Chem. 2018, 16, 6224-6238. Mikina, M.L Mikolajczyk, M. A general approach to the synthesis of functionalized cycloalkenones. Total synthesis of iso-terrein. Phosphorus sulfur 1993, 75, 39-42. Khalifa, Al, Trabolsy, Z.B.; Anouar, E.H.; Zakaria, N.S.S.; Zulkeflee, M.; Hasan, M.H.; Zin, M.M.; Ahmad, R.; Sultan, S.; Weber, J.F.E. Antioxidant activity, NMR, X-ray, ECD and UV/vis spectra of (+)-terrein: experimental and theoretical approaches. J. Mol. Struct. 2014, 1060, 102-110. Zhou, Q.; Wang, Y.N.; Guo, X.Q.; Zhu. X.H.; Li, Z.M.; Hou, X.F. Imino-N-heterocyclic carbene palladium(II) complex-catalyzed direct arylation of electron-deficient fluoroarenes with “on and off” chelating effect assistance. Organometallics 2015, 34, 1021-1028. Ojima, N.; Takenaka, S.; Seto S. Structures of pulvinone derivatives from Aspergillus terreus. Phytochem. 1975, 14, 573-576. Bernier, D.; Brüeckner, R. Novel synthesis of naturally occurring pulvinones: a heck coupling, transesterification, and dieckmann condensation strategy. Synth. 2007, 15, 2249-2272. Kiriyama, N.; Nitta, K.; Sakaguchi, Y.; Taguchi, Y.; Yamamoto, Y. Studies on the metabolic products of Aspergillus terreus. III. metabolites of the strain IFO 8835. Chem. Pharm. Bull. 1977, 25, 2593-2601. Niu, X.; Dahse, H.M.; Menzel, K.D.; Lozach, O.; Walther, G.; Meijer, L.; Grabley, S.; Sattler, I. Butyrolactone I derivatives from Aspergillus terreus carrying an unusual sulfate moiety. J. Nat. Prod. 2008, 71, 689-692. Springer, J.P.; Dorner, J.W.; Cole, R.J.; Cox, R.H. Terretonin, a toxic compound from Aspergillus terreus. J. Nat. Prod. 1979, 44, 4852-4854. Liao, W.Y.; Shen, C.N.; Lin, L.H.; Yang, Y.L.; Han, H.Y.; Chen, J.W.; Kuo, S.C.; Wu, S.H.; Liaw, C.C. Asperjinone, a nor-neolignan, and terrein, a suppressor of ABCG2-expressing breast cancer cells, from thermophilic Aspergillus terreus. J. Nat. Prod. 2012, 75, 630-635. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70372 | - |
| dc.description.abstract | 本研究利用病原菌篩選平台 (Escherichia coli, Staphylococcus aureus, Cryptococcus neoformans和Candida albicans) 來篩選具有抗菌潛力的海藻源真菌株。實驗結果顯示,由石蓴 (Ulva lactuca) 單離出之衍生真菌株Aspergillus terreus NTU243之粗萃物具有抗S. aureus和C. albicans的效果,後續選擇土麴黴A. terreus NTU243進行天然物研究,以液態和糙米固態培養之後,分離並純化此株真菌的次級代謝物。共計獲得16個化合物,藉由各種光譜資料解析其結構。其中4個為新化合物,分別為aspulvinones S - V (10 - 13),另外12個為已知化合物,分別為butyrolactone I (1)、terretonin D (2)、lovastatin acid (3)、monacolin K methyl ester (4)、(+)-terretonin (5)、(+)-terretonin-A (6)、butyrolactone V (7)、butyrolactone IV (8)、butyrolactone II (9)、aspulvinone G (14)、(+)-terrein (15) 和4,4'-dihydroxybiphenyl (16)。所有純物質在各種活性平台的評估上,得知化合物1、13和15具有抑制小鼠神經膠細胞BV-2產生一氧化氮的效果,於10 µM下抑制NO產生的比例分別為34.5%、45.0%和49.2%;所有化合物對人類急性骨髓性白血病單核球細胞THP-1皆不具顯著的細胞毒性;化合物12和13可以抑制MMP-9蛋白的表現與活性,於10 µM下抑制基質金屬蛋白酶MMP-9產生的比例分別為56.0%和67.8%。 | zh_TW |
| dc.description.abstract | Marine fungi have been regarded as an under-explored source of structurally interesting and bioactive natural products with the potential to provide attractive lead compounds for drug discovery. In this study, a number of alga-derived fungal strains were isolated from marine algae collected from northeastern coast of Taiwan. In the preliminary antimicrobial screening against bacteria and fungi, including Escherichia coli, Staphylococcus aureus, Candida albicans and Cryptococcus neoformans, the ethyl acetate extract of solid (brown rice) fermented products of Aspergillus terreus NTU243, a fungus derived from a marine green alga Ulva lactuca, was found to exhibit significant antimicrobial activities against S. aureus and C. albicans. Therefore, bioassay-guided separations of the active principle from liquid and solid fermented products of Aspergillus terreus NTU243 was undertaken, which has resulted in the isolation and purification of 16 compounds. Their structures were elucidated by spectroscopic analysis to be four new aspulvinones S - V (10 - 13) as well as butyrolactone I (1), terretonin D (2), lovastatin acid (3), monacolin K methyl ester (4), (+)-terretonin (5), (+)-terretonin-A (6), butyrolactone V (7), butyrolactone IV (8), butyrolactone II (9), aspulvinone G (14), (+)-terrein (15), and 4,4'-dihydroxybiphenyl (16). All the isolates were assessed for anti-inflammatory activity by measuring the amount of NO production in LPS-induced BV-2 cells, and compounds 1, 13, 15 inhibited 34.5, 45.0 and 49.2%, respectively, of NO production under the concentration of 10 µM. All the compounds showed no cytotoxicity toward human monocytic cell THP-1 derived from an acute monocytic leukemia, and compounds 12 and 13 inhibited 56.0 and 67.8 % of MMP-9 production in THP-1 cells under the concentration of 10 µM, respectively. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T04:26:47Z (GMT). No. of bitstreams: 1 U0001-2407202009145000.pdf: 21253213 bytes, checksum: 9447b90c7ef8aadf4709cc5fb88bfda3 (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 致謝.................................................................................................................................i 中文摘要........................................................................................................................ii 英文摘要.......................................................................................................................iii 目錄...............................................................................................................................vi 表目錄...........................................................................................................................ix 圖目錄...........................................................................................................................xi 縮寫表.........................................................................................................................xvi 第一章 緒論與研究目的..............................................................................................1 第二章 文獻回顧..........................................................................................................6 2.1 菌株分類學和介紹.............................................................................................6 2.2土麴黴 (Aspergillus terreus) 真菌成分之文獻回顧.........................................6 第三章 實驗結果........................................................................................................47 3.1 真菌液態發酵及固態發酵萃取液分離流程...................................................47 3.1.1 真菌株Aspergillus terreus NTU243液態發酵培養液分離流程............47 3.1.2 真菌株Aspergillus terreus NTU243固態發酵萃取液分離流程............49 3.2 天然物結構解析...............................................................................................51 3.2.1 Butyrolactone I (1) 之結構解析................................................................51 3.2.2 Terretonin D (2) 之結構解析.....................................................................62 3.2.3 Lovastatin acid (3) 與Monacolin K methyl ester (4) 之結構解析..........73 3.2.4 (+)-terretonin (5) 與 (+)-terretonin-A (6) 之結構解析............................93 3.2.5 Butyrolactone V (7) 之結構解析.............................................................110 3.2.6 Aspernolde D (8) 之結構解析.................................................................120 3.2.7 Butyrolactone II (9) 之結構解析.............................................................130 3.2.8 Aspulvinone S (10) 之結構解析..............................................................138 3.2.9 Aspulvinone T (11) 之結構解析..............................................................148 3.2.10 Aspulvinone U (12) 之結構解析...........................................................157 3.2.11 Aspulvinone V (13) 之結構解析...........................................................165 3.2.12 Aspulvinone G (14) 之結構解析...........................................................173 3.2.13 (+)-Terrein (15) 之結構解析..................................................................180 3.2.14 4,4'-Dihydroxybiphenyl (16) 之結構解析.............................................187 3.3 各成分之物理數據.........................................................................................191 3.4 化合物活性平台測試.....................................................................................195 3.4.1 一氧化氮抑制與細胞存活率之實驗結果..............................................195 3.4.2 細胞毒性試驗..........................................................................................196 3.4.3 電泳酵素分析..........................................................................................196 第四章 實驗部分......................................................................................................195 4.1 儀器設備與試劑.............................................................................................197 4.1.1 化合物之物理性質測定儀器..................................................................197 4.1.2 管柱層析膠體..........................................................................................197 4.1.3 試劑耗材與溶劑......................................................................................197 4.1.4 真菌培養基..............................................................................................198 4.1.5 細菌培養基..............................................................................................198 4.2 實驗材料.........................................................................................................198 4.2.1 真菌材料..................................................................................................198 4.2.2 細菌材料..................................................................................................199 4.2.3 菌種分子鑑定..........................................................................................199 4.2.4 真菌菌株分離與篩選..............................................................................200 4.3 抗菌活性篩選.................................................................................................201 4.3.1 檢測原理..................................................................................................201 4.3.2 測試菌種..................................................................................................201 4.3.3 實驗步驟..................................................................................................202 4.4 真菌培養及成分分離.....................................................................................202 4.4.1 培養基配置..............................................................................................202 4.4.2 真菌菌種保存..........................................................................................203 4.4.3 真菌液態發酵液萃取..............................................................................203 4.4.4 真菌液態發酵液之成分分離與純化......................................................203 4.4.5 真菌固態發酵液萃取..............................................................................204 4.4.6 真菌固態發酵液之成分分離與純化......................................................205 4.5 抗發炎活性評估.............................................................................................207 4.5.1 細胞培養..................................................................................................207 4.5.2 Griess reagent assay...................................................................................208 4.6 細胞毒性試驗.................................................................................................208 4.6.1 目的及原理..............................................................................................208 4.6.2 細胞培養..................................................................................................209 4.6.3 MTT assay.................................................................................................209 4.7 電泳酵素分析.................................................................................................210 4.7.1 目的及原理..............................................................................................210 4.7.2 細胞培養..................................................................................................210 4.7.3 zymography...............................................................................................210 第五章 討論..............................................................................................................212 第六章 參考文獻......................................................................................................214 | |
| dc.language.iso | zh-TW | |
| dc.subject | aspulvinone | zh_TW |
| dc.subject | Aspergillus terreus | zh_TW |
| dc.subject | 基質金屬蛋白酶 | zh_TW |
| dc.subject | 細胞毒性 | zh_TW |
| dc.subject | 抗發炎 | zh_TW |
| dc.subject | 藻源真菌 | zh_TW |
| dc.subject | Aspergillus terreus | en |
| dc.subject | matrix metalloproteinase | en |
| dc.subject | aspulvinone | en |
| dc.subject | alga-derived fungi | en |
| dc.subject | cytotoxicity | en |
| dc.subject | anti-inflammation | en |
| dc.title | 石蓴衍生真菌株Aspergillus terreus NTU243之成分研究 | zh_TW |
| dc.title | Chemical Constituents from a Fungal Strain Aspergillus terreus NTU243 Derived from Ulva lactuca | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 109-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳日榮(Jih-Jung Chen),蕭哲志(Che-Chih Hsiao),宋秉鈞(Ping-Jun Sung) | |
| dc.subject.keyword | 藻源真菌,抗發炎,細胞毒性,基質金屬蛋白酶,Aspergillus terreus,aspulvinone, | zh_TW |
| dc.subject.keyword | alga-derived fungi,Aspergillus terreus,aspulvinone,anti-inflammation,cytotoxicity,matrix metalloproteinase, | en |
| dc.relation.page | 232 | |
| dc.identifier.doi | 10.6342/NTU202001813 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2021-01-06 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 漁業科學研究所 | zh_TW |
| 顯示於系所單位: | 漁業科學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-2407202009145000.pdf 未授權公開取用 | 20.76 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
