請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70366完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 張耀乾 | |
| dc.contributor.author | Yu-Ying Chu | en |
| dc.contributor.author | 朱彧瑩 | zh_TW |
| dc.date.accessioned | 2021-06-17T04:26:39Z | - |
| dc.date.available | 2023-08-20 | |
| dc.date.copyright | 2018-08-20 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2018-08-14 | |
| dc.identifier.citation | 么煥英. 2007. 應用Pour-through介質溶液測定法於以水草栽培之蝴蝶蘭. 國立臺灣大學園藝學系碩士論文. 臺北.
李國權、林深林、林慧玲、潘惠純. 1991. 作物缺鐵黃化之形態及生理反應. 台灣果樹之生產及研究發展研討會專刊. 農業試驗所嘉義分所編印. pp.67-75. 李嘉慧、李哖. 1991. 台灣蝴蝶蘭根和葉的形態與解剖的特性. 中國園藝 37:237-248. 林仁安. 2017. 碳氮濃度及碳氮比對蝴蝶蘭及春石斛開花之影響. 國立臺灣大學園藝學系碩士論文. 臺北. 林思佑. 2011. 蝴蝶蘭對介質鹽度之生理反應. 國立臺灣大學園藝學系碩士論文. 臺北. 吳明珊. 2016. 蝴蝶蘭瓶苗分級對出瓶小苗生長與礦物營養含量變化之影響. 國立中興大學園藝學系碩士論文. 臺中. 吳毓紜. 2014. 蝴蝶蘭Phalaenopsis Sogo Yukidan 'V3' 營養芽增殖階段的氮需求與營養動態調查. 國立中興大學園藝學系碩士論文. 臺中. 胡鐘躍. 2017. 建立蝴蝶蘭礦物元素診斷暫定標準與替代介質之評估. 國立中興大學園藝學系碩士論文. 臺中. 陳怡臻. 2014. 蝴蝶蘭瓶苗下位葉黃化成因及組培苗於礦物營養缺乏下之徵狀. 國立臺灣大學園藝學系碩士論文. 臺北. 陳姿翰. 2012. 組織培養之褐化及玻璃質化障害. 臺中區農業改良場特刊 111:252-257. 張允瓊、李哖. 1999. 文心蘭'Gower Ramsey'假球莖與花序之生長、形態與解剖. 中國園藝45:87-99. 張君豪. 2006. 蝴蝶蘭植株耐寒性之快速檢測與耐寒性提升. 國立臺灣大學園藝學系碩士論文. 臺北. 張嘉滿. 2004. 乙烯誘導芥藍葉片老化過程中之抗氧化反應. 國立臺灣大學園藝學系碩士論文. 臺北. 游雅娸. 2012. 蝴蝶蘭於氮磷鉀養分逆境下之生長反應與基因功能分析. 國立臺灣大學園藝學系碩士論文. 臺北. 雷欣怡. 2007. 蝴蝶蘭開花期礦物元素組成變化與肥料需求. 國立臺灣大學園藝學系碩士論文. 臺北. 蔣若珊. 2012. 蝴蝶蘭組培苗品質及礦物元素分析. 國立中興大學園藝學系碩士論文. 臺中. 蔡淑華. 1975. 植物組織切片技術綱要. 茂昌圖書有限公司. 臺北. 臺灣. 戴振洋. 2004. 從番茄尻腐病談鈣的吸收與運移. 臺中區農業改良場特刊 68:1. 羅妙禎. 2014. 大白花蝴蝶蘭’V3’於養分逆境下的生理反應極缺磷下的基因表現. 國立臺灣大學園藝學系碩士論文. 臺北. Ahmad, P., M.A. Ahanger, M.N. Alyemeni, L. Wijaya, and P. Alam. 2018. Exogenous application of nitric oxide modulates osmolyte metabolism, antioxidants, enzymes of ascorbate-glutathione cycle and promotes growth under cadmium stress in tomato. Protoplasma 255:79-93. Ali, M.B., E.-J. Hahn, and K.-Y. Paek. 2005a. Effects of light intensities on antioxidant enzymes and malondialdehyde content during short-term acclimatization on micropropagated Phalaenopsis plantlet. Environ. Expt. Bot. 54:109-120. Ali, M.B., E. J. Hahn, and K. Y. Paek. 2005b. Effects of temperature on oxidative stress defense systems, lipid peroxidation and lipoxygenase activity in Phalaenopsis. Plant Physiol. Biochem. 43:213-223. Argon, D.I. 1949. Copper enzymes in isolated chloroplasts. polyphenoloxidase in Beta vulgaris. Plant Physiol. 24:1-15. Baxter, A., R. Mittler, and N. Suzuki. 2014. Ros as key players in plant stress signalling. J Expt. Bot. 65:1229-1240. Benzing, D.H., D.W. Ott, and W.E. Friedman. 1982. Roots of Sobralia macrantha (orchidaceae) : structure and function of the velamen-exodermis complex. Amer. J. Bot. 69:608-614. Bercu, R., A. Bavaru, and L. Broasca. 2011. Anatomical aspects of Phalaenopsis amabilis (L.) Blume. Ann. Romanian Soc. Cell Bio. 16:102-110. Bichsel, R. G., T. W. Starman, and Y-T. Wang. 2008. Nitrogen, phosphorus, and potassium requirements for optimizing growth and flowering of the nobile dendrobium as a potted orchid. HortScience 43:328-332. Bienfait, H.F. 1985. Regulated redox processes at the plasmalemma of plant root cells and their function in iron uptake. J. Bionerg. Biomembe. 17:73-83. Bienfait, H.F. 1988. Mechanisms in Fe-efficiency reactions of higher plants. J. Plant Nutr. 11:605-629. Bould, D. and E.J. Hewitt. 1984. Diagnosis of mineral disorders in plants. Vol. 1. Principles. Chemical Publishing Co. Inc. New York. Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72:248-254. Briat, J.F. and S. Lobréaux. 1997. Iron transport and storage in plants. Trends Plant Sci. 2:187-193. Brinch-Pedersen, H., L.D. Sorensen, and P.B. Holm. 2002. Engineering crop plants: getting a handle on phosphate. Trends Plant Sci. 7:118-125. Cakmak, I. 1994. Activity of ascorbate-dependent H2O2-scavenging enzymes and leaf chlorosis are enhanced in magnesium-and potassium-deficient leaves, but not in phosphorus-deficient leaves. J. Expt. Bot. 45:1259-1266. Cakmak, I., C. Hengeler, and H. Marschner. 1994. Partitioning of shoot and root dry matter and carbohydrates in bean plants suffering from phosphorus, potassium and magnesium deficiency. J. Expt. Bot. 45:1245-1250. Cao, X., C. Chen, D. Zhang, B. Shu, J. Xiao, and R. Xia. 2013. Influence of nutrient deficiency on root architecture and root hair morphology of trifoliate orange (Poncirus trifoliata L. Raf.) seedlings under sand culture. Scientia Hort. 162:100-105. Chin, T.T. 1966. Effect of major nutrient deficiencies in Dendrobium Phalaenopsis hybrids. Amer. Orchid Soc. Bul. 35:549-554. Choudhury, F.K., R.M. Rivero, E. Blumwald, and R. Mittler. 2017. Reactive oxygen species, abiotic stress and stress combination. Plant J. 90:856-867. Xu, C., Ru Z., Li L., Zeng B., Huang J., Huang W., and Hu O. 2015. The effects of polyphenol oxidase and cycloheximide on the early stage of browning in Phalaenopsis explants. Hort Plant J. 1:172-180. Chen, G., D. Chen, T. Wang, C. Xu, and L. Li. 2012. Analysis of the proteins related to browning in leaf culture of Phalaenopsis. Scientia Hort.141:17-22. Cibes, H.R., N.F. Childers, and A. J. Loustalot. 1946. Influence of mineral deficiency on growth and composition of vanilla vines. Plant Physiol. 22:291-299. Conn, S. and M. Gilliham. 2010. Comparative physiology of elemental distributions in plants. Ann. Bot. 105:1081-1102. de Beer, D., E. Joubert, W. Gelderblom, and M. Manley. 2017. Phenolic compounds: A review of their possible role as in vivo antioxidants of wine. S. Afr. J. Enol. Viticult. 23:48-61. Dycus, A.M. and L. Knudson. 1957. The role of the velamen of the aerial roots of orchids. Bot. Gaz. 119:78-87. Eshel, A. 1985. Response of Sueda aegyptiaca to KCl, NaCl and Na2SO4 treatments. Physiol. Plant. 64:308-315. Franceschi, V.R. and P.A. Nakata. 2005. Calcium oxalate in plants: formation and function. Annu. Rev. Plant Biol. 56:41-71. Foster, J.G. and J.L. Hess. 1980. Response of superoxide dismutase and glutathione reductase activities in cotton leaf tissue exposed to an atmosphere enriched in oxygen. Plant Physiol. 66:482-487. Gibson, J. L., D.S. Pitchay, A.L. Williams-Rhodes, B.E. Whipker, P.V. Nelson, and J.M. Dole 2007. Nutrient deficiencies in bedding plants: a pictorial guide for identification and correction. Ball Publishing. New York. Gill, S.S. and N. Tuteja. 2010. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem. 48:909-930. Gilliham, M., M. Dayod, B.J. Hocking, B. Xu, S.J. Conn, B.N. Kaiser, R.A. Leigh, and S.D. Tyerman. 2011. Calcium delivery and storage in plant leaves: exploring the link with water flow. J. Expt. Bot. 62:2233-2250. Gruber, B.D., R.F. Giehl, S. Friedel, and N. von Wirén. 2013. Plasticity of the Arabidopsis root system under nutrient deficiencies. Plant Physiol. 163:161-179. Guan, Z., T. Chai, Y. Zhang, J. Xu, and W. Wei. 2009. Enhancement of cd tolerance in transgenic tobacco plants overexpressing a Cd-induced catalase cDNA. Chemosphere 76:623-630. Heath, R.L. and L. Packer. 1968. Photoperoxidation in isolated chloroplasts. Aechives Biochem. Biophysics 125:189-198. Herman, E.M. and B.A. Larkins. 1999. Protein storage bodies and vacuoles. The Plant Cell, 11: 601-613. Hermans, C. and N. Verbruggen. 2005. Physiological characterization of Mg deficiency in Arabidopsis thaliana. J. Expt. Bot. 56:2153-2126. Hermans, C., F. Bourgis, M. Faucher, S. Delrot, R.J. Strasser, and N. Verbruggen. 2005. Magnesium deficiency in sugar beet alters sugar partitioning and phloem loading in young mature leaves. Planta 220:541-549. Hernández-Nistal, J., B. Dopico, and E. Labrador. 2002. Cold and salt stress regulates the expression and activity of a chickpea cytosolic Cu/Zn superoxide dismutase. Plant Sci. 163:507-514. Hew, C.S., L.Y. Lim, and C.M. Low. 1993. Nitrogen uptake by tropical orchids. Environ. Expt. Bot. 33:273-281. Hew, C.S., G.L. Lee, and S.C. Wong. 1980. Occurrence of non-functional stomata in the flowers of tropical orchids. Ann. Bot. 46:195-201. Hew, C.S. and J.W.H. Yong. 2004. The physiology of tropical orchids in relation to the industry. World Scientific Press, Singapore. Higaki, T. and J.S. Imamura. 1987. NPK requirements of Vanda Miss Joaquim orchid plants. Research Extension Series 087, 5 pp. College of Tropical Agriculture and Human Resources, University of Hawaii, Honolulu. Hocking, P.J. 1994. Dry‐matter production, mineral nutrient concentrations, and nutrient distribution and redistribution in irrigated spring wheat. J. Plant Nutr. 17:1289-1308. Hope, A.B. and P.G. Stevens. 1952. Electric potential differences in bean roots and their relation to salt uptake. Austral. J. Biol. Sci. B. 5:335-343. Hsu, H.F., W.H. Hsu, Y.I. Lee, W.T. Mao, J.Y. Yang, J.Y. Li, and C.H. Yang. 2015. Model for perianth formation in orchids. Nature Plants 1:1-8. Ishikawa, S., N. Ae, M. Murakami, and T. Wagatsuma. 2006. Is Brassica juncea a suitable plant for phytoremediation of cadmium in soils with moderately low cadmium contamination? Possibility of using other plant species for Cd-phytoextraction. Soil Sci. Plant Nutr. 52:32-42. Jakobsen, S.T. 1992 Interaction between plant nutrients: II. effect of chloride on activities of cations in soil solution and on nutrient uptake by plants. Acta Agri. Scandinavica B-Plant Soil Sci. 42:213-217, Jakobsen, S.T. 1993. Interaction between plant nutrients: III. antagonism between potassium, magnesium and calcium. Acta Agri. Scandinavica B-Plant Soil Sci. 43:1-5. Jana, S. and M.A. Choudhuri. 1982. Glycolate metabolism of three submersed aquatic angiosperms during ageing. Aquatic Bot. 12:345-354. Jimenez, A., J.A. Hernandez, L.A. del Río, and F. Sevilla. 1997. Evidence for the presence of the ascorbate-glutathione cycle in mitochondria and peroxisomes of pea leaves. Plant Physiol. 114:275-284. Jing, H., X. Tan, J. Xu, G. Zhou, and G. Li. 2011. Cinnamaldehyde prolongs the vase life of cut rose through alleviating oxidative stress. Europ. J. Hort. Sci. 76:69-74. Joca, T.A.C., D.C. de Oliveira, G. Zotz, U. Winkler, and A.S.F.P. Moreira. 2017. The velamen of epiphytic orchids: variation in structure and correlations with nutrient absorption. Flora 230:66 ̶ 14. Kafkafi, U., M.Y. Siddiqi, R.J. Ritchie, A.D.M. Glass, and T.J. Ruth. 1992. Reduction of nitrate (13NO3) influx and nitrogen (13N) translocation by tomato and melon varieties after short exposure to calcium and potassium chloride salts. J. Plant Nutr. 15:959-975. Kandlbinder, A., I. Finkemeier, D. Wormuth, M. Hanitzsch and K.-J. Dietz. 2004. The antioxidant status of photosynthesizing leaves under nutrient eficiency: redox regulation, gene expression and antioxidant activity in Arabidopsis thaliana. Physiol. Plant. 120:63-73. Kannan, S. 1985. Fe-deficiency tolerance in papaya (Carica papaya L.) pH reduction and chlorosis recovery in response to stress. J. Plant Nutr. 8:1191-1197. Kato, M. and S. Shimizu. 1985. Chlorophyll metabolism in higher plants VI. involvement of peroxidase in chlorophyll degradation. Plant Cell Physiol. 26:1291-1301. Kuehny, J.S., M.M. Peet, P.V. Nelson, and D.H. Willits. 1991. Nutrient dilution by starch in CO2-enriched chrysanthemum. J. Expt. Bot. 42:711-711. Kumagai, E., T. Araki, and O. Ueno. 2010. Comparison of susceptibility to photoinhibition and energy partitioning of absorbed light in photosystem II in flag leaves of two rice (Oryza sativa L.) cultivars that differ in their responses to nitrogen-deficiency. Plant Prod. Sci. 13:11-20. Law, M.Y., S.A. Charles, and B. Halliwell. 1983. Glutathione and ascorbic acid in spinach (Spinacia oleracea) chloroplasts. The effect of hydrogen peroxide and of paraquat. Biochem. J. 210:899-903. Leigh, R.A., A.D. Tomos. 1993. Ion distribution in cereal leaves: pathways and mechanisms. Philosophical Trans. Royal Soc. London Ser. B-Biological Sci. 341:75-86. Leigh, R.A. 1997. Solute composition of vacuoles. Advances in Botanical Research 25:171-194. Lopez, M.V., S.M.E. Satti. 1996. Calcium and potassium-enhanced growth and yield of tomato under sodium chloride stress. Plant Sci. 114:19-27 Maathuis, F.J.M. and E. Diatloff. 2013. Roles and functions of plant mineral nutrients, p. 1-21. In: F.J.M. Maathuis (eds.). Plant mineral nutrients: methods and protocols. Humana Press, New York. Mackinney, G. 1940. Criteria for purity of chlorophyll preparations. J. Biol. Chem. 132:91-109. Mackinney, G. 1941. Absorption of light by chlorophyll solutions. J. Biol. Chem. 140:315-322. Mäder, M. and R. Füssl. 1982. Role of peroxidase in lignification of tobacco cells. II. Regulation by phenolic compounds. Plant Physiol. 70:1132–1134. Marinos, N.G. 1962. Studies on submicroscopic aspects of mineral deficiencies. I. Calcium deficiency in the shoot apex of barley. Amer. J. Bot. 49:834-841. Marschner, H. 1995. Mineral nutrition of higher plants, 2nd ed. Academic Press, London. Marschner, H., Römheld, V. and Kissel, M. 1986a. Different strategies in higher plants in mobilization and uptake of iron. J. Plant Nutr. 9:695–713. Marshner, H., E.A. Kirkby, and I. Cakmak. 1996. Effect of mineral nutritional status on shoot-root partitioning of photoassmilates and cycling of mineral nutrients. J. Expt. Bot. 47:1255-1263. Møller, J.D. and H. Rasmussen. 1984. Stegmata in orchidales: character state distribution and polarity. Bot. J. Linnean Soc. 89:53-76. Moreira, A.S.F.P. and R.M.D.S. Isaias. 2008. Comparative anatomy of the absorption roots of terrestrial and epiphytic orchids. Brazilian Arch. of Biol. and Technol. 51:83-93. Naik, S. K., R. Devadas, T. Ushabharathi, D. Barman, and R. P. Medhi. 2011. Changes in nutrient content and iron deficiency in growing media of Cymbidium hybrid 'Pine Clash Moon Venus'. Indian J. Agr. Sci. 81:764-766. Nakano, Y. and K. Asada. 1981. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Can. J. Bot. 65:729-735. Neales, T.F. and C.S. Hew. 1975. Two types of carbon fixation in tropical orchids. Planta 123:303-306. Nelson, P.V. 1991. Greenhouse operations and management. 4th ed. Prentice Hall, Englewood Cliffs, N.J. Novais, S.V., R.F. Novais, V.H. Alvarez V., E.M. de A. Villani, and M.D.O. Zenero. 2016. Phosphorus-zinc interaction and iron and manganese uptake in the growth and nutrition of Phalaenopsis (Orchidaceae). Rev. Bras. Cienc. Solo 40:e0160054. Ohki, K. 1984. Manganese deficiency and toxicity effects on growth, development, and nutrient composition in wheat. Agron. J. 76:213-218. Oliveira, V.C. and M.G. Sajo. 1999. Root anatomy of nine orchidaceae species. Brazilian Arch. of Biol. and Technol. 42:405-413. Osawa, T. 1962. Studies on the sodium chloride injury of vegetable crops in relation to the form of nitrogen supplied and the calcium nutrition in sand culture. J. Jap. Soc. Hort. Sci. 31:227-234. O'toole, J.C., K. Treharne, M. Turnipseed, K. Crookston, and J. Ozbun. 1980. Effect of potassium nutrition on leaf anatomy and net photosynthesis of Phaseolvs vulgaris L. New phytologist 84:623-630. Paoletti, F., D. Aldinucci, A. Mocali, and A. Caparrini. 1986. A sensitive spectrophotometric method for the determination of superoxide dismutase activity in tissue extracts. Anal. Biochem. 154:536-541. Poole, H.A. and J.G. Seeley. 1978. Nitrogen, potassium and magnesium nutrition of three orchid genera. J. Amer. Soc. Hort. Sci. 130:11-17. Poole, H.A. and T.J. Sheehan. 1974. Chemical composition of plant parts of Phalaenopsis orchid. Amer. Orchid Soc. Bull. 43:242-247. Pottier, M., C. Masclaux-Daubresse, K. Yoshimoto, and S. Thomine. 2014. Autophagy as a possible mechanism for micronutrient remobilization from leaves to seeds. Frontiers Plant Sci. 5:1-8. Raja, V., U. Majeed, H. Kang, K.I. Andrabi, and R. John. 2017. Abiotic stress: Interplay between ros, hormones and mapks. Environ. Expt. Bot. 137:142-157. Rao, A.C. and A.R. Reddy. 2008. Glutathione reductase: A putative redox regulatory system in plant cells, p. 111-147. In: N.A. Khan and S. Singh (eds.). Sulfur assimilation and abiotic stress in plants. Springer. Berlin, Heidelberg. Reuveni, O. and H.L. Kipnis. 1974. Studies of the in vitro culture of date palm (Phoenix dactylifera L.) tissues and organs. Pamphlet 145:40. Rossato, L., P. Lainé, and A. Ourry. 2001. Nitrogen storage and remobilization in Brassica napus L. during the growth cycle: nitrogen fluxes within the plant and changes in soluble protein patterns. J. Expt. Bot. 52:1655-1663. Sarker, B.C., J.L. Karmoker, and P. Rashid. 2010. Effects of phosphorus deficiency on anatomical structures in maize (Zea mays L.). Bangladesh J. Bot. 39:57-60. Shin, R., R.H. Berg, and D.P. Schachtman. 2005. Reactive oxygen species and root hairs in Arabidopsis root response to nitrogen, phosphorus and potassium deficiency. Plant Cell Physiol. 46:1350-1357. Shushan, T. 1949. Anatomical study of a Cattleya hybrid. Rutgers University thesis. NJ. Staswick, P.E. 1994. Stroage protein of vegetative plant tissues. Annu. Rev. Plant Physiol. Plant Mol. Biol. 45:303-22. Stern, W.L. and M.W. Morris. 1992. Vegetative anatomy of Stanhopea (Orchidaceae) with special reference to pseudobulb water-storage cells. Lindleyana 7:34-53. Stern, W.L. and W.M. Whitten. 1999. Comparative vegetative anatomy of Stanhopeinae (Orchidaceae). Bot. J. Linnean Soc. 129:87-103. Susilo, H., Y.-C. Peng, and Y-C. A. Chang. 2014. Nitrogen source for inflorescence development in Phalaenopsis: I. relative significance of stored and newly absorbed nitrogen. J. Amer. Soc. Hort. Sci. 139:69-75. Swamy, B.G.L. 1948. Vascular anatomy of orchid flowers. Botanical Museum Leaflets 13:61-95. Taiz, L., E. Zeiger, I.M. Møller, and A. Murphy. 2014. Plant physiology and development. Sinauer Associates, Incorporated. Sunderland, CT. Tewari, R.K., P. Kumar, P.N. Sharma. 2006. Magnesium deficiency induced oxidative stress and antioxidant responses in mulberry plants. Sci. Hort. 108:7-14. Tewari, R.K., P. Kumar, P.N. Sharma. 2007. Oxidative stress and antioxidant responses in young leaves of mulberry plants grown under nitrogen, phosphorus or potassium deficiency. J. Integrative Plant Biol. 49:313-322. Tohma, H., İ. Gülçin, E. Bursal, A. C. Gören, S. H. Alwasel, and E. Köksal. 2017. Antioxidant activity and phenolic compounds of ginger (Zingiber officinale Rosc.) determined by HPLC-MS/MS. J. Food Measurement Characterization 11:556-566. Wang, Y.-T. 2007. Potassium nutrition affects Phalaenopsis growth and flowering. HortScience 42:1563–1567. Wintermans, J.F.G.M. and A. de Mots. 1965. Spectrophotometric characteristics of chlorophylls a and b and their phenophytins in ethanol. Biochem. Biophy. Acta 109:448-453. Wu, C.C., S.-J. Chen, T.-B. Yen, and L.-L. Kuo-Huang. 2006. Influence of calcium availability on deposition of calcium carbonate and calcium oxalate crystals in the idioblasts of Morus australis Poir. leaves. Bot. Stud. 47:119-127. Yeh, D.M., L. Lin, and C.J. Wright. 2000. Effects of mineral nutrient deficiencies on leaf development, visual symptoms and shoot–root ratio of Spathiphyllum. Scientia Hort. 86:223-233. Yoneda, K., M. Usui, and S. Kubota. 1997. Effect of nutrient deficiency on growth and flowering of Phalaenopsis. J. Jpn. Soc. Hort. Sci 66:141-147. Yoneda, K., N. Suzuki, and I. Hasegawa. 1999. Effects of macroelement concentrations on growth, flowering, and nutrient absorption in an Odontoglossum hybrid. Scientia Hort. 80:259-265. Zaid, A., 1987. In vitro browning of tissues and media with special emphasis to date palm cultures. A review. Acta Hort. 212:561-566. Zhao, D., D.M. Oosterhuis, and C.W. Bednarz. 2001. Influence of potassium deficiency on photosynthesis, chlorophyll content, and chloroplast ultrastructure of cotton plants. Photosynthetica 39:103-109. Zhao, F.-J., K.L. Moore, E. Lombi, and Y.-G. Zhu. 2014. Imaging element distribution and speciation in plant cells. Trends Plant Sci. 19:183-192. Zimmermann, P. and U. Zentgraf. 2005. The correlation between oxidative stress and leaf senescence during plant development. Cell. Mol. Biol. 10:515. Zotz, G. and W. Uwe. 2013. Aerial roots of epiphytic orchids: the velamen radicum and its role in water and nutrient uptake. Oecologia 171:733-741. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70366 | - |
| dc.description.abstract | 蝴蝶蘭 (Phalaenopsis spp.) 為附生蘭,具肥厚之葉片與肉質根,對養分逆境之耐受性強,反應所需時間長,因此研究相對困難。蘭科植物耐營養逆境之機制未明,有一說法為蘭科植物對養分的分配利用效率高,因此可長時間存活於養分逆境下,但相關研究少。為瞭解蝴蝶蘭於養分逆境下之生存機制,本研究以儲存養分較少之蝴蝶蘭瓶苗為材料,給予氮、磷、鉀、鈣、鎂及鐵元素之缺乏逆境後,從生長調查、元素分析、切片解剖及抗氧化系統酵素分析來探討蝴蝶蘭於養分逆境下之反應與體內元素之動態變化。
本研究將蝴蝶蘭 (Phalaenopsis Sogo Yukidian ‘V3’) 中母瓶苗植入氮、磷、鉀、鈣、鎂或鐵元素缺乏的培養基中誘導缺乏徵狀,植入培養基後新生葉片定義為上位葉。對照組培養於以1/2 MS為基礎培養基,其中含有30.0 mM氮、0.62 mM磷、10.1 mM鉀、1.5 mM鈣、0.75 mM鎂與0.1 mM鐵。將基本培養基中的氮、磷、鉀、鈣、鎂及鐵元素分別移除,其他營養元素濃度不變,即為各缺乏處理所使用之培養基。於培養0、1.5、3、4.5及6個月後取樣,探討蝴蝶蘭養分逆境下之生長、體內元素、生理之動態變化。 大白花蝴蝶蘭於缺氮環境下根長增加,且根部分配到較多的氮,相較於上位葉為較強的積貯。缺氮亦使植株總蛋白質含量下降。缺磷植株外觀未見明顯徵狀,下位葉呈紫紅化,且作為磷之主要供源。缺鉀處理外觀雖與對照組類似但少部分植株有側根生長或根尖壞死之情形。除對照組及缺氮處理外,其餘處理植株之鉀元素會優先分配至上位葉。缺鈣處理根部萎縮或壞死,解剖後可見其維管束細胞與皮層細胞萎縮,維管束末端接近根尖處可觀察到細胞死亡。缺鈣植株之上位葉在培養3個月後開始出現水浸狀或黃化掉落之徵狀,嚴重者擴散至植株頂芽或全株黃化死亡。缺鈣處理之葉片及根部之丙二醛 (malondialdehyde,MDA) 濃度較對照組高。缺鎂處理有上位葉黃化之徵狀,根尖形態與缺鈣相似,且植株總抗壞血酸和抗壞血酸含量增加。缺鐵植株初期根長增加,根域附近之培養基顏色變成黃褐色,4.5個月後有上位葉黃化情形。缺鐵處理下位葉鐵濃度由118 µg·g-1減少至38 µg·g-1,鐵含量由7.5 µg減少至3.1 µg;但對照組與其餘缺乏處理之下位葉鐵濃度及含量均呈上升趨勢。鐵為不易移動之元素,在有外源鐵供應之環境中,下位葉亦為鐵元素積貯之一;無外源鐵之缺鐵環境下,下位葉則為上位葉與根部的鐵之供源。缺鐵處理3個月後葉片過氧化氫酶 (catalase, CAT) 活性減少為0.96 unit·g-1,對照組為1.18 unit·g-1,而由於CAT之中心原子為鐵,葉片CAT活性下降應與鐵供應減少有關。與此同時,葉片抗壞血酸過氧化酶 (ascorbate peroxidase, APX) 活性提高至2.53 unit·g-1,對照組為0.90 unit·g-1。 蝴蝶蘭瓶苗體內元素之動態變化為上位葉及根部為兩個主要的積貯互相競爭的結果。在所有處理中,上位葉元素含量隨培養時間增加而增加,下位葉除鈣及鐵元素外,其餘元素濃度隨培養時間增加呈減少趨勢 (下位葉鈣含量持平,鐵含量除缺鐵處理減少外,其餘處理呈增加趨勢)。根部元素濃度及含量隨繼代週期而變化,在同一週期內元素含量隨培養時間而上升。鈣和鐵此二不易移動的元素,蝴蝶蘭植株下位葉之元素含量佔植株總體含量之比例高。在缺乏處理中,無外源元素供應時,植株僅依靠下位葉所貯藏之元素進行生長,因此影響植體對元素的分配與使用。蝴蝶蘭體內之抗氧化酵素系統於本研究中之變化幅度小,原因可能為元素缺乏並非短時間作用之逆境,植株可以慢慢適應,或並未取樣到植體劇烈變化之時期。 | zh_TW |
| dc.description.abstract | Phalaenopsis spp., which is an epiphyte orchid, has thick leaves and fleshy roots with velamen. Phalaenopsis have a high capacity for nutrient storage, hence they are highly tolerant to nutrient stress and thus it takes a long time for them to exhibit deficiency symptoms. Therefore, studying on phalaenopsis mineral nutrition is relatively difficult. The mechanism of tolerance to nutrient stress in orchids remains unknown. One theory is that orchids can utilize nutrients efficiently; therefore, they can survive for a long time under nutrient stress. However, there is little research to support it. to understand the mechanism, we investigated the dynamic changes of growth, nutrient partitioning, tissue anatomy, and antioxidant system responses under nutrient deficiency stresses.
In this study, tissue-cultured plantlets from intermediate cultures of Phalaenopsis Sogo Yukidian ‘V3’ were planted into various nutrient deficiency media to introduce nitrogen (N), phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), and iron (Fe) deficiency stresses. The newly grown leaves after subculture were defined as upper leaves. Control plants were subcultured in basal medium which mainly contains ½ Murashige and Skoog medium with 30.0 mM N, 0.62 mM P, 10.1 mM K, 1.5 mM Ca, 0.75 mM Mg, and 0.1 mM Fe. Specific nutrient elements were removed from basal media to produce nutrient-deficient media, while concentration of other elements remained the same. Destructive analyses were conducted after 0, 1.5, 3, 4.5, and 6 months. Phalaenopsis Sogo Yukidian ‘V3’ plants have longer roots under N deficiency stress, and as root was a stronger sink, they gained more N. Total protein concentration decreased under N deficiency stress. Lower leaves of P-deficient plantlets acted as a main source of P and turned purple after culture for 6 months. Some K-deficient plantlets developed lateral roots or exhibited root tip necrosis symptom. Except for control and N-deficient plantlets, nutrient-deficient plantlets translocated most of their K into upper leaves. Calcium-deficient plantlets exhibited atrophied or necrosed roots with atrophied cells at the apical meristem. Calcium-deficient plantlets exhibited water soaked or yellowing upper leaves after culture for 3 to 6 months. The symptoms even spread over entire plantlets. In addition, malondialdehyde (MDA) concentration of Ca-deficient plantlets increased. Magnesium-deficient plantlets also exhibited yellowing upper leaves, and the root tip symptom was similar to that of Ca-deficient plantlets. Total ascorbate and ascorbate concentration of Mg-deficient plantlets increased. Root length of Fe-deficient plantlets increased. Iron-deficient plantlets made the medium turn tawny and exhibited yellowing upper leaves after 4.5 months. In lower leaves of Fe-deficient plantlets, Fe concentration decreased from 118 µg·g-1 to 38 µg·g-1 and Fe content decreased from 7.5 µg to 3.1 µg, while Fe concentration and content increased in other treatments. Lower leaves was one of the sinks of Fe when external Fe was existed but acted as the only source while there was no external Fe supplement. Catalase (CAT) activity of leaves in Fe-deficient plantlets decreased to 0.96 unit·g-1 after 3 months, while control group was 1.18 unit·g-1, which may be attributed to that the central atom of CAT is Fe. Meanwhile, ascorbate peroxidase (APX) activity of Fe-deficient plantlets increased to 2.53 unit·g-1, while control was 0.90 unit·g-1. The dynamic changes of nutrients in phalaenopsis were the results of the competition of two sinks, upper leaves and roots. In all treatments, nutrient contents of upper leaves increased with time. Except for Ca and Fe, the nutrient concentration of lower leaves decreased with time, while Ca did not change with time and Fe increased. Nutrient content of roots increased within the same subcultured cycle. Calcium and iron were considered to be less mobile, hence the content of lower leaves accounted for a high proportion in whole plants content. Within nutrient deficiency treatments, which were without specific nutrient supplement, lower leaves acted as the only source to support the growth of plants, and, therefore, the partitioning pattern of nutrient elements in plants was changed. In this study, changes of antioxidant system in phalaenopsis were little. The reason may be that plants can adapt to nutrient deficiency gradually or the sampling times did not meet the severely changing period. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T04:26:39Z (GMT). No. of bitstreams: 1 ntu-107-R05628103-1.pdf: 67880288 bytes, checksum: f6a0559f70f457ff82b34afea253c86e (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | 致謝 i
摘要 ii Abstract iv 目錄 vii 表目錄 ix 圖目錄 xi 一、 前言 (Introduction) 1 二、 前人研究 (Literature review) 3 (一) 植物體中礦物元素的貯存與分配 3 (二) 蘭科植物對礦物元素缺乏之反應 7 (三) 蘭科植物的解剖構造 9 (四) 抗氧化酵素系統 12 三、 材料與方法 (Materials and methods) 15 (一) 試驗材料 15 (二) 基本培養基及培養環境 15 (三) 試驗方法 15 (四) 統計分析 24 四、 結果 (Results) 25 試驗一 蝴蝶蘭瓶苗於礦物元素缺乏環境下體內元素的動態變化及缺乏徵狀表現 25 試驗二 蝴蝶蘭瓶苗於礦物元素缺乏環境下體內組織之形態變化 36 試驗三 蝴蝶蘭瓶苗之抗氧化酵素系統於礦物元素缺乏下之反應 37 五、 討論 (Discussion) 114 試驗一 蝴蝶蘭瓶苗於礦物元素缺乏環境下體內元素的動態變化及缺乏徵狀表現 114 (一) 蝴蝶蘭營養元素缺乏徵狀 114 (二) 蝴蝶蘭在礦物元素缺乏環境下體內元素之分配情形 118 試驗二 蝴蝶蘭瓶苗於礦物元素缺乏環境下體內組織之形態變化 125 試驗三 蝴蝶蘭瓶苗之抗氧化酵素系統於礦物元素缺乏下之反應 127 參考文獻 (References) 130 七、 附錄 (Appendix) 143 | |
| dc.language.iso | zh-TW | |
| dc.subject | 抗氧化系統 | zh_TW |
| dc.subject | 氮元素 | zh_TW |
| dc.subject | 磷元素 | zh_TW |
| dc.subject | 鉀元素 | zh_TW |
| dc.subject | 鈣元素 | zh_TW |
| dc.subject | 鎂元素 | zh_TW |
| dc.subject | 鐵元素 | zh_TW |
| dc.subject | antioxidant system | en |
| dc.subject | Mg | en |
| dc.subject | Fe | en |
| dc.subject | Ca | en |
| dc.title | 蝴蝶蘭瓶苗於礦物元素缺乏下之元素動態變化與生理反應 | zh_TW |
| dc.title | Dynamic Changes of Mineral Nutrients and Physiological Responses of Phalaenopsis Plantlets in vitro under Mineral Nutrient Deficiency Conditions | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林慧玲,羅筱鳳,陳香君 | |
| dc.subject.keyword | 氮元素,磷元素,鉀元素,鈣元素,鎂元素,鐵元素,抗氧化系統, | zh_TW |
| dc.subject.keyword | N,P,K,Ca,Mg,Fe,antioxidant system, | en |
| dc.relation.page | 149 | |
| dc.identifier.doi | 10.6342/NTU201803355 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2018-08-14 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 園藝暨景觀學系 | zh_TW |
| 顯示於系所單位: | 園藝暨景觀學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-1.pdf 未授權公開取用 | 66.29 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
