請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70364完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 孫志鴻 | |
| dc.contributor.author | Kun-Lin Ho | en |
| dc.contributor.author | 何昆霖 | zh_TW |
| dc.date.accessioned | 2021-06-17T04:26:36Z | - |
| dc.date.available | 2018-08-19 | |
| dc.date.copyright | 2018-08-19 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2018-08-14 | |
| dc.identifier.citation | 水利署 (2010) 台灣水資源經營管理策略,取自:https://www.google.com.tw/url?sa=t&rct=j&q=&esrc=s&source=web&cd=3&cad=rja&uact=8&ved=0ahUKEwjOod2J97fWAhVKQLwKHRlgCPkQFgguMAI&url=https%3A%2F%2Fwww.youthhub.tw%2Fupload%2Ffile%2F20130619103727934.ppt&usg=AFQjCNGdOL21eftE0PFhZpXCn1xExngVGw(擷取日期:20170901)。
王銘博、朱健行 (2012) 氣候變遷下自來水事業供水管理之挑戰,自來水會刊,31(3):43-49。古展帆 (2010) 基於漏水前世改善量之自來水換管規劃優選程序,國立交通大學環境工程研究所碩士論文。 台北自來水事業處 (2016) 供水管網圖面管理運用發展,取自:http://tcgwww.taipei.gov.tw/fp.asp?fpage=lp&ctNode=88310&CtUnit=47753&BaseDSD=7&mp=114001(擷取日期:20180401)。 市區道路及附屬工程設計規範 (2015) 取自: https://www.cpami.gov.tw/kids/filesys/file/chinese/dept/ep/1040810606.pdf(擷取日期:20180401)。 交通部統計處(2017),汽車貨運調查報告,取自: https://www.motc.gov.tw/ch/home.jsp?id=56&parentpath=0%2C6&mcustomize =statistics101.jsp(擷取日期:20180530) 朱健行 (2010) 極端旱災衝擊下自來水有效因應之探討,自來水會刊,29(4):84-88。 李丁來、趙全眀、黃正中、郭得祿 (2016) 供水4.0~智慧水網初探,自來水會刊,35(2):50-53。 杜方、陈跃国、杜小勇 (2013) RDF数据查询处理技术综述,软件学报,24(6):1222- 1242。 周國鼎 (2014) 台水公司管網檢漏策略之建議,自來水會刊,33(01):38-47。 林志傑 (2017) 如何使用 JIEBA 結巴中文分詞程式(部落格文字資料),取自:http://blog.fukuball.com/ru-he-shi-yong-jieba-jie-ba-zhong-wen-fen-ci-cheng-shi/(擷取日期:20180401)。 林繼豪(2006) 自來水管網供水能力之耐震評估以台北市供水系統為例,國立臺北科技大學土木與防災研究所碩士論文。 張志仲 (2010) 自來水漏水防治管理之探討-以大臺北地區小區計量為例,國立臺灣海洋大學河海工程學系碩士論文。 陳舜伶、林珈宏、莊庭瑞 (2013) 藏智於民開放政府資料的原則與現況,台北:中央研究院資訊科技創新研究中心。 項靖 (2014) 政府開放資料加值營運模式之研究,國家發展委員會委託電子治理研究中心研究報告。 黃仕強 (2009) 自來水管網汰管啟發式篩選程序與優選模式,國立交通大學環境工程研究所碩士論文。 黃國永、蘇政賢、蔣丞哲、林于程 (2009) 建置無線傳訊壓力監測系統應用於管網流量與測漏管理-以台灣自來水公司新莊服務所為例,中華民國自來水協會第26屆自來水研究發表會。 黃欽稜 (2010) 漫談北水處漏水控制歷程,自來水會刊,29(4):6-18。 經濟部 (2013) 降低漏水率計畫(102至111年)。取自:http://117.56.91.94/KMPublic/download.aspx?documentId=252784&fileName=3.%E8%A8%88%E7%95%AB%E9%99%84%E4%BB%B6_%E9%99%8D%E4%BD%8E%E6%BC%8F%E6%B0%B4%E7%8E%87%E8%A8%88%E7%95%AB(102%E8%87%B3111%E5%B9%B4)_%E6%A0%B8%E5%AE%9A%E6%9C%AC.pdf&ver=1(擷取日期:20180401)。 鄭依芸 (2015) 跨語言知識本體建置實務之探討—以地理空間資訊領域為例,國立臺灣大學圖書資訊學研究所碩士論文。 賴允政 (2014) 台灣是水資源的過路財神,研院政策中心政策研究指標資料庫,取自:https://pride.stpi.narl.org.tw/topic2/downloadSource/4b1141ad4a0e5ae9014a1344bb5100ba(擷取日期:20170901)。 籃炳樟 (2003) 自來水系統防災之研究,基隆市共同管道系統整體規劃-共同管道與維生線防災研討會論文集,基隆市議會。 Berners-Lee, T., Hendler, J., Lassila, O. (2001). The Semantic Web.Scientific American,284(5),34-43. Bizer, C., Heath, T. and Berners-Lee, T. (2009). Linked Data - the story so far. International Journal on Semantic Web and Information Systems, 5 (3), 1-22. Denig, S. (2012) The Green City Index- A summary of the Green City Index research series.Retrieved from: https://www.siemens.com/entry/cc/features/greencityindex_international/all/en/pdf/gci_report_summary.pdf Duce, E., Musetti, A., Belziti, D., Beach T., Gluhak, A. D., Nalesso, M., Nard, F.(2014). The WISDOM project for smart water monit oring using advanced ICT equipment, data and tools WISDOM project.Water IDEAS , Bologna, Italy Feigenbaum, L., Herman, I., Hongsermeier T., Neumann, E. and Stephens, S.(2007).The Semantic Web in Action. Scientific American, 297(6),90-97. Khan, M. S., Park, D. and Kim, D. (2016). System Modelling Approach Based on Data Acquisition and Analysis for Underground Facility Surveillance. International Journal of Smart Home , 10(3),93-102. Klyne, G. and Carroll, J. J. (2004). Resource Description Framework (RDF): Concepts and Abstract Syntax. Retrieved from : http://www.w3.org/TR/2004/REC-rdfconcepts-20040210/ Kwak, P. J., Park, S.bH., Cho C. H., LeeH Y. D., Kang J. M., Lee I. H. (2015). IoT(Internet of Things)-based Underground Risk Assessment System Surrounding Water ,Advanced Science and Technology Letters, 99, 23-26. Marzou M., Hamid, S. A., El-Said, M.(2015). A methodology for prioritizing water mains rehabilitation in Egypt. HBRC Journal,11,114–128. McCann, J., Ellis, K., Rezgui, Y. and Zarli, A. (2014). Optimised Water Demand Management Through Intelligent Sensing and Analytics: The WISDOM Approach.11th International Conference on Hydroinformatics , New York City, USA. Open Seamntic Framework(2009). OSF Wiki page.Retrieved from:http://wiki.opensemanticframework.org/index.php/Main_Page Seo, J., Koo, M., Kim K., Koo J. (2015). A Study on the Probability of Failure Model Based on the Safety Factor for Risk Assessment in a Water Supply Network. Procedia Engineering,119,206 – 215. Shadbolt, N., Hall, W., and Berners-Lee, T. (2006). The semantic web revisited. Intelligent Systems, 21(3), 96-101. Vladeanu, G., Matthews, J. C. (2018). Analysis of risk management methods used in trenchless renewal decision making ,Tunnelling and Underground Space Technology,72,272-280. Zarli, A., Rezgui, Y., Belziti, D. and Duce, E. (2014). Water analytics and intelligent sensing for demand optimised management: the WISDOM vision and approach.Procedia Engineering, 89,1050-1057. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70364 | - |
| dc.description.abstract | 各國供水管理單位的共同目標為降低漏水率,在目前的解決方案中,主要針對供水管網設施,以監測設備即時監控,再結合分區計量方法,進行漏水推估後,由相關專業人員逐一進行管線檢修漏作業,以及計畫性老舊管線汰換。台灣地區供水管線總長達逾6 萬公里,面對如此龐大的供水系統,若缺乏有效的管線檢漏及汰換方案,除了須耗費高額的維護成本,更造成大量的資源浪費。
據台灣自來水公司統計資料,「荷重振動」是造成管線漏水的首要因子,其指地下管線因路面長期受重型車輛行駛輾壓,及道路工程反覆挖修,間接導致損壞的情形。然而此類資訊因較難以量化分析,經常被忽略,故本研究以大型建築工程之興建為案例,收集建築興造期間,建材經由重型車輛之運輸過程中,產生荷重振動之相關資訊,經標準結構化處理後,以鏈結資料技術進行異質性數據的整合及串流,並建置分析模組,推估工程期間內,路面外力對於管線造成的影響量,找出可能因路面重壓,間接造成管線損壞的區域,輔助供水管理單位管線發掘漏水潛勢區,提供管線檢漏及汰換作業之參考。 | zh_TW |
| dc.description.abstract | Reducing the water leakage rate is the main goal for water supply corporations all over the world. In the current solutions, the leakage rates in the water supply network were estimated by using district metered areas(DMA) and wireless pressure monitoring system. After that, the professionals will conduct leak detection for the high leakage rate area one by one, and plan the replacement for the old pipeline and facilities routinely. In Taiwan, the total length of water supply pipelines has reached more than 60,000 kilometers. To face such a huge water supply system, if there is no effective solutions for leak detection and replacement, it will cost a lot of budgets for maintenance, and a large amount of water resources will be wasted.
According to the statistics of the Taiwan Water corporation, 'load vibration' is the primary factor causing water leakage in pipelines. It refers to the situation in which underground pipelines are indirectly damaged due to the long-term driving pressure of heavy vehicles and the repairs of roads repeatedly. However, these information is often difficult to quantify and is often overlooked. Therefore, this study takes large-scale building construction projects as a case to collect information on load vibrations during the transportation of building materials through heavy vehicles, and proposes a structure for data standardization. In this structure, the heterogeneous data from different domain will be standardized, integrated and republished by introducing into semantic-web concept and linked data technology. In addition, there is also a spatial analysis module designed for estimating the influence of the external loads on the pipeline during the construction period, and trying to find out the potential areas where might be heavily stressed and broken indirectly. These information and result will finally provide to the water supply corporation improving on leak detection and tasks of pipeline replacement . | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T04:26:36Z (GMT). No. of bitstreams: 1 ntu-107-R05228010-1.pdf: 8841340 bytes, checksum: 563be4f778bcaacc309f64640169a002 (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | 摘要 i
目錄 iv 圖目錄 iv 表目錄 vii 第一章 前言 1 1.1研究背景及動機 1 1.2研究目的 2 第二章 文獻回顧 3 2.1臺灣供水系統管理概況 3 2.2 鏈結資料及語意網技術 15 2.3 開放資料及應用 24 第三章 研究方法 27 3.1 研究流程 27 3.2 研究範圍 28 3.3 資料說明 29 3.4分析流程 34 3.5研究限制 45 第四章 研究成果及討論 46 4.1開放資料加值應用 46 4.2 交通荷重分析及成果 50 第五章 結論及建議 66 5.1 結論 66 5.2 建議 66 參考文獻 68 附錄一 RDF轉換工具開發 71 附錄二 管線檢漏及汰換流程 72 附錄三 汰換管線實施要點 73 | |
| dc.language.iso | zh-TW | |
| dc.subject | 語意網 | zh_TW |
| dc.subject | 漏水潛勢 | zh_TW |
| dc.subject | 自來水管線 | zh_TW |
| dc.subject | 鏈結資料 | zh_TW |
| dc.subject | Semantic Web | en |
| dc.subject | Water leakage potential | en |
| dc.subject | Water Supply Network | en |
| dc.subject | Linked-data | en |
| dc.title | 應用異質性資料及開放資料架構於自來水管線漏水潛勢推估 | zh_TW |
| dc.title | Using Heterogeneous Data and Open Data Framework to Estimate the Potential Leakage of Water Pipelines | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 蔡博文,周學政 | |
| dc.subject.keyword | 鏈結資料,語意網,自來水管線,漏水潛勢, | zh_TW |
| dc.subject.keyword | Linked-data,Semantic Web,Water Supply Network,Water leakage potential, | en |
| dc.relation.page | 74 | |
| dc.identifier.doi | 10.6342/NTU201803357 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2018-08-14 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 地理環境資源學研究所 | zh_TW |
| 顯示於系所單位: | 地理環境資源學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-1.pdf 未授權公開取用 | 8.63 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
