請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70362
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 張耀乾 | |
dc.contributor.author | Wan-Yu Chen | en |
dc.contributor.author | 陳婉瑜 | zh_TW |
dc.date.accessioned | 2021-06-17T04:26:33Z | - |
dc.date.available | 2023-08-20 | |
dc.date.copyright | 2018-08-20 | |
dc.date.issued | 2018 | |
dc.date.submitted | 2018-08-14 | |
dc.identifier.citation | 王俊刚、赵婷婷、杨本鹏、冯翠莲、蔡文伟、熊国如、张树珍. 2010. 植物中矽的功能和轉運. 安徽農業科學 38:17359-17361, 17364.
呂晃光. 2007. 揭開抗菌、防腐的神秘面紗-奈米銀. 逢甲大學奈米科技研究中心.奈米科學網 2018. 5. 29. <http:// nano. nchc. org. tw>. 何統作、徐善慧. 2010. 人類內皮細胞在不同濃度奈米金/銀-聚胺酯複合材料上之 行為評估. 中興大學化學工程學系所學位論文. 臺中. 吳宣萱、藤民強、陳福旗. 2009. 培養基添加物及光質對蝴蝶蘭及朵麗蝶蘭芽體誘導不定根之影響. 臺灣園藝 55:127-135. 吴能表. 吴峻岩. 朱利泉. 王小佳. 2003. 低溫對甘藍逆境生理指標和蛋白質磷酸化的影響. 園藝學報 30:530-534. 林思佑. 2011. 蝴蝶蘭對介質鹽度之生理反應. 國立臺灣大學園藝系研究所論文. 臺北. 林瑞松. 1981. 蝴蝶蘭根組織培養之研究. 中華農業研究 30:141-145. 夏奇鈮、楊淑如、陳威臣、蕭翌柱. 2005. 觀賞石斛蘭利用擬原球體大量繁殖. 中國園藝 51:259-266. 孙占育、孙志強、曹斌. 2010. 活性碳在促進組培苗植物生根中的作用. 湖南農業科學 7:3-5. 許謙信. 1989. 蝴蝶蘭設施生產體系之探討. 臺中區農業改良場特刊 18:117-123. 臺中. 許家嘉、陳福旗. 2003. 以蝴蝶蘭白化葉片誘導擬原球體與植株再生. 中國園藝 49:335-342. 廖御靜、陳洵一、黃三元、唐品琦. 2011. 奈米微粒對動物生理之影響. 農林學報 60:171-180. 陳怡臻. 2014. 蝴蝶蘭瓶苗下位葉黃化之成因及組培苗於礦物營養缺乏下之徵狀. 國立臺灣大學園藝系碩士論文. 臺北. 潘貞嫈. 2007. 培養條件對報歲蘭根莖生長分化之影響及培植期間瓶內氣體之變化. 國立臺灣大學園藝系碩士論文. 臺北. 賴思輪、林瑞松. 2005. 培養基活性碳應用對蝴蝶蘭瓶苗生長與瓶內氣體組成之影響. 興大園藝 30:59-71. 蔡能、易自力、李祥. 2003. 改善植物大規模組織培養條件的研究進展. 植物學通報 20:745-751. 蔡淑華. 2008. 植物組織切片技術綱要. 茂昌圖書有限公司. 臺北. 臺灣. Abdel-Mawgoud, A.M.R., A.S. Tantawy, M.A. EI-Nemr, and Y.N. Sassine. Growth and yield responses of strawberry plants to chitosan application. Eur. J. Scientific Res. 39:170-177. Agarie, S. W. Agata, H. Uchida, F. Kubota, and P.B. Kaufman. 1996. Function of silica bodies in the epidermal system of rice (Oryza sativa L.): testing the window hypothesis. J. Exp. Bot. 47:655-660. Arnon, D. I. and P.R. Stout. 1939. The essentiality of certain elements in minute quantity for plants with special reference to copper. Plant Physiol. 14:371-375.. Arora, S., P. Sharma, S. Kumar, R. Nayan, P.K. Khanna, and M.G.H. Zaidi. 2012. Gold-nanoparticle induced enhancement in growth and seed yield of Brassica juncea. Plant Growth Regul. 66:303-310. Asmar, S.A., E.M. Castro, M. Pasqual, F.J. Pereira, and J.D.R. Soares. 2013. Changes in leaf anatomy and photosynthesis of micropropagated banana plantlets under different silicon sources. Scientia Hort. 161:328-332. Atta-aly, M.A., J. M. E. Saltveit, and G.E. Hobson. 1987. Effect of silver ions on ethylene biosynthesis by tomato fruit tissue. Plant Physiol. 83: 44-48. Badawy, M.E.I. and E.I. Rabea. 2009. Potential of biopolymer chitosan with different molecular weights to control postharvest gray mold of tomato fruit. Postharvest Biol. Technol. 51:110-117. Barrena, R., E. Casals, J. Colón, X. Font, A. Sánchez, and V. Puntes. 2009. Evaluation of the ecotoxicity of model nanoparticles. Chemosphere 75:850-857. Batool, M. and R. Asghar. 2013. Seed priming with chitosan improves the germination and growth performance of ajowan (Carum copticum) under salt stress. Eurasia J. Biosci. 7:69-76. Bauer, R. and R. Rick. 1978. Computer analysis of X‐ray spectra (EDS) from thin biological specimens. X‐Ray Spectrometry 7: 63-69. Bautista-Baños, S., A.N. Hernandez-Lauzardo, M.G. Velazquez-Del Valle, M. Hernández-López, E.A. Barka, E. Bosquez-Molina, and C.L. Wilson. 2006. Chitosan as a potential natural compound to control pre and postharvest diseases of horticultural commodities. Crop Prot. 25:108-118. Ben-Shalom, N., R. Ardi, R. Pinto, C. Aki, and E. Fallik. 2003. Controlling gray mould causd by Botrytis cinerea in cucumber plants by means of chitosan. Crop Prot. 22:285-290. Bernstein, L. 1975. Effects of salinity and sodicity on plant growth. Annu. Rev. Phytopathol. 13:295-312. Bernstein, N., W.K. Silk, and A. Läuchli. 1995. Growth and development of sorghum leaves under conditions of NaCl stress: possible role of some mineral elements in growth inhibition. Planta 196:699-705. Bhaskara Reddy, M.V., J. Arul, P. Angers, and L. Couture. 1999. Chitosan treatment of wheat seeds induces resistance to Fusarium graminearum and improves seed quality. J. Agric. Food Chem. 47: 1208-1216. Biddington, N.L. 1992. The influence of ethylene in plant tissue culture. Plant Growth Regulat. 11: 173-187. Bittelli, M., M. Flury, G.S. Campbell, and E.J. Nichols. 2001. Reduction of transpiration through foliar application of chitosan. Agr. For. Meteorol. 107:167-175. Boonlertnirun, S., C. Boonraung, and R. Suvanasara. 2008. Application of chitosan in rice production. J. Metals Materials Minerals 18:47-52. Buddendorf-Joosten, J.M.C. and E.J. Woltering. 1994. Components of the gaseous environment and their effects on plant growth and development in vitro. Plant Growth Regul. 15:1-16. Bystrzejewska-Piotrowska, G., J. Golimowski, and P.L. Urban. 2009. Nanoparticles: their potential toxicity, waste and environmental management. Waste Manag. 29:2587-2595. Chang, C. and Y. Ku. 1995. The adsorption and desorption characteristics of EDTA-chelated copper ion by activated carbon. Sep. Sci. Technol. 30:899-915. Chérif, M., A. Asselin, and R.R. Bélanger. 1994. Defense responses induced by soluble silicon in cucumber roots infected by Pythium spp. Phytopathol. 84:236–242. Chérif, M. J.G. Menzies, N. Benhamou, and R.R. Bélanger. 1992. Studies of silicon distribution in woundrd and Pythium ultimum infected cucumber plants. Physiol. Mol. Plant Pathol. 41:371-385. Chmielewski, A.G., W. Migdal, J. Swietoslawski, J. Swietoslawski, U. Jakubaszek, and T. Tarnowski. 2007. Chemical-radiation degradation of natural oligoamino -polysaccharides for agricultural application. Radiat. Phys. Chem. 76:1840-1842. Cho, M.H., H.K. No, and W. Prinyawiwatkul. 2008. Chitosan treatments affect growth and selected quality of sunflower sprouts. J. Food Sci. 73:70-77. Choi, O. and Z.Q. Hu. 2008. Size dependent and reactive oxygen species related nanosilver toxicity to nitrifying bacteria. Environ. Sci. Technol. 42:4583-4588. Chung, Y.C. and C.Y. Chen. 2008. Antibacterial characteristics and activity of acid-soluble chitosan. Bioresource Technol. 99:2806-2814. Colombo, R.C., V. Favetta, R.T. de Faria, F.A. de Andrade, and V.M. Melem. 2016. Response of Cattleya forbesii orchid to increasing silicon concentrations in vitro. Rev. Caatinga 29:18-24. Constantin, M.J., R.R. Henke, and M.A. Mansur. 1977. Effect of activated charcoal on callus growth and shoot organogenesis in tobacco. In Vitro 13:293-296. Cooke, J and M.R. Leishman. 2011. Is plant ecology more siliceous than we realise? Trends Plant Sci. 16:61-68. Currie, H.A. and C.C. Perry. 2007. Silica in plants: biochmical and chemical studies. Ann. Bot. 100:1383-1389. Dinsdale, D. and A.H. 1979. Gordon. Silica in the mesophyll cell walls of Italian rye grass (Lolium multiflorum Lam. cv. RvP). Ann. Bot. 44:73-77. Duan, X., M. Tang, and W. Wang. 2013. Effects of silicon on physiology and biochemistry of Dendrobium moniliforme plantlets under cold stress. Agr. Biotechnol. 2:18-21. Dumas, E. and O. Monteuuis. 1995. In vitro rooting of micropropagated shoots from juvenile and mature Pinus pinaster explant: influence of activated charcoal. Plant Cell, Tissue, Organ Culture 40:231-235. Dzung, N.A. 2005. Application of chitin, chitosan and their derivatives for agriculture in Vietnam. J. Chitin Chitosan 10:109-113. Dzung, N.A., V.T.P. Khanh, and T.T. Dzung. 2011. Research on impact of chitosan oligomers on biophysical characteristics, growth, development and drought resistance of coffee. Carbohydrate Polymers. 84:751-755. EI-Sawy, N.M., H.A.A. EI-Rehim, A.M. Elbarbary, and E.A. Hegazy. 2010. Radiation-induced degradation of chitosan for possible use as a growth promoter in agricultural purposes. Carbohydr. Polymers 79:555-562. Epstein, E. 1994. The anomaly of silicon in plant biology. Proc. Natl. Acad. Sci. 91:11-17. Fabrega, J., S.N. Luoma, C.R. Tyler, T.S. Galloway, and J.R. Lead. 2011. Silver nanoparticles: Behaviour and effects in the aquatic environment. Environ. Intl. 37:517-531. Fauteux, F., W. Rémus-Borel, J.G. Menzies, and R.R. Bélanger. 2005. Silicon and plant disease resistance against pathogenic fungi. FEMS Microbiol. Lett. 249:1–6. Fawe, A., M. Abou-Zaid, J.G. Menzies, and R.R. Bélanger. 1998. Silicon-mediated accumulation of flavonoid phytoalexins in cucumber. Phytopathol. 88:396–401. Feichtmeier, N.S., P. Walther, P., and K. Leopold. 2015. Uptake, effects, and regeneration of barley plants exposed to gold nanoparticles. Environ. Sci. Pollut. Res. 22:8549-8558. Ferro-Garcia, M.A., J. Rivera-Utrillo, J. Rodriguez-Gordillo, and I. Bautisa-Toledo. 1988. Adsorption of zinc, cadmium, and copper on activated carbons obtained from agricultural by-products. Carbon 26:363-373. Fitzgerald, R., K. Keil, and F.K.J. Heinrich. 1968. Solid-state energy-dispersion spectrometer for electron-microprobe X-ray analysis. Sci. 159:528-530. Fridborg, G., M. Pedersen, L. Landstrom, and T. Eriksson. 1978. The effect of activated charcoal on tissue cultures: adsorption of metabolites inhibiting morphogenesis. Physiol. Plant 43:104-106. Gabaldón, C., P. Marzal, J. Ferrer, and A. Seco. 1996. Single and competitive adsorption of Cd and Zn onto a granular activated carbon. Water Res. 30:3050-3060. Gaspar, T., C. Kevers, C. Penel, H. Greppin, D.M. Reid, and T.A. Thorpe. 1996. Plant hormones and plant growth regulators in plant tissue culture. In Vitro Cell. Dev. Biol. Plant 32:272-289. Geisler-Lee, J., Q. Wang, Y. Yao, W. Zhang, M. Geisler, K. Li, Y. Huang, Y. Chen, A. Kolmakov and X. Ma. 2012. Phytotoxicity, accumulation and transport of silver nanoparticles by Arabidopsis thaliana. Nanotoxicology 7:323-337. George, E.F. 2008. Plant tissue culture procedure-background, p. 1-28. In: E.F. George, M.A. Hall, and G.J. de Klerk (eds.). Plant propagation by tissue culture. 3rd ed. Springer, Dordrecht, The Netherlands. Gomes, F.B., J.C. Moraes, C.D. Santos, and M.M. Goussain. 2005. Resistance induction in wheat plants by silicon and aphids. Sci. Agricola 62:547–551. Guan, Y.J., J. Hu, X.J. Wang, and C.X. Shao. 2009. Seed priming with chitosan improves maize germination and seedling growth in relation to physiological changes under low temperature stress. J. Zhejiang University Sci. B 10:427-433. Hafner, B. 2006. Energy dispersive spectroscopy on the SEM: a primer. Charact. Facility Univ. Minnesota May 31st 2018 <http:// charfac. umn.edu>. Hayward, D. and D.W. Parry. 1973. Electron-probe microanalysis studies of silica distribution in barley (Hordeum sativum L.). Ann. Bot. 37:579-591. Hirano, S. 1997. Applications of chitin and chitosan in the ecological and environment fields, p. 31-54. In: M.F.A. Goosen (Ed.), Application of chitin and chitosan. CRC Press. Baco Raton. USA. Hodson, M.J. and A.G. Sangster. 1988. Observations on the distribution of mineral elements in the leaf of wheat (Triticum aestivum L.), with particular reference to silicon. Ann. Bot. 62:463-471. Hong, F., J. Zhou, C. Liu, F. Yang, C. Wu, L. Zheng, and P. Yang. 2005. Effects of nano-TiO2 on photochemical reaction of chloroplasts of Spinach. Biol. Trace Elem. Res. 105:269-279. Howard, D.G. 1988. Mossbauer study of cobalt ions adsorbed from solution onto activated carbon. Carbon 26:559-563. Ishizuka, Y. 1971. Physiology of the rice plant. Adv. Agron. 23:241-315. Islam, M.O., M. Akter, and A.K.M.A. Prodhan. 2011. Effect of potato extract on in vitro seed germination and seedling growth of local Vanda roxburgii orchid. J. Bangladesh Agril. Univ. 9:211-215. Jacobsen, J.V. and W.B. McGlasson. 1969. Ethylene production by autoclaved rubber injection caps used in biological systems. Plant Physiol. 45: 631. Kananont, N., R. Pichyangkura, S. Chanprame, S. Chadchawan, and P. Limpanavech. 2010. Chitosan specificity for the in vitro seed germination of two Dendrobium orchids (Asparagales: Orchidaceae). Scientia Hort. 124:239-247. Katiyar, D., A. Hemantaranjan, and B. Singh. 2015. Chitosan as a promising natural compound to enhance potential physiological responses in plant: a review. Ind. J. Plant. Physiol. 20:1-9. Katiyar, D., A. Hemantaranjan, B. Singh, and A.N. Bhanu. 2014. A future perspective in crop protection: Chitosan and its oligosaccharides. Adv. Plants Agr. Res. 1:1-8. Kaufman, P.B., P. Dayanandan, C.I. Franklin, and Y. Takeoka. 1985. Structure and function of silica bodies in the epidermal system of grass shoots. Ann. Bot. 55:487-507. Kendra, D.F. and A.H. Lee. 1984. Characterization of the smallest chitosan oligomer that is maximally antifungal to Fusarium solani and elicits pisatin formation in Pisum sativum. Exp. Mycol. 8:276-281. Kim, S., J.E. Choi, J. Choi, K.H. Chung, K. Park, J. Yi, D.Y. Ryu. 2009. Oxidative stress-dependent toxicity of silver nanoparticles in human hepatoma cells. Toxicol. In Vitro. 23:1076-1084. Kim, S.K., Y.J. Jeon, and H.C. Zan. 2000. Antibacterial effect of chitooligosaccharides with different molecular weights prepared using membrance bioreactor. J. Chitin Chitosan 5:1-8. Lavid N, A. Schwartz , O. Yarden , and E. Tel-Or. 2001. The involvement of polyphenols and peroxidase activities in heavy-metal accumulation by epidermal glands of the waterlily (Nymphaeaceae). Planta 212: 323-331. Lee, Y.S., Y.H. Kim, and S.B. Kim. 2005. Changes in the respiration, growth, and vitamin C content of soybean sprouts in response to chitosan of different molecular weights. HortScience 40:1333-1335. Lewin, J. and B.E.F. Reimann. 1969. Silicon and plant growth. Annu. Rev. Plant Physiol. 20:289-304. Li, Q., E.T. Dunn, E.W. Grandmaison, and M.F.A. Goosen. 1992. Applications and properties of chitosan. J. Bioactive Compatible Polym. 7:370-397. Limpanavech, P., S. Chaiyasuta, R. Vongpromek, R. Pichyangkura, C. Khunwasi, S. Chadchawan, P. Lotrakul, R. Bunjongrat, A. Chaidee, and T. Bangyeekhun. 2008. Chitosan effects on floral production, gene expression, and anatomical changes in the Dendrobium orchid. Sci. Hort. 116:65-72. Lin, D. and B. Xing. 2007. Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. Environ. Pollut. 150:243-250. Lin, D. and B. Xing. 2008. Root uptake and phytotoxicity of ZnO nanoparticles. Environ. Sci. Technol. 42:5580-5585. Luan, L.Q., N. Nagasawa, M. Tamada, and T.M. Nakanishi. 2006. Enhancement of plant growth activity of irradiated chitosan by molecular weight fractionation. Radioisotopes 55:21-27. Luan, L.Q., V.T.T. Ha, N. Nagasawa, T. Kume, F. Yoshii, and T.M. Nakanishi. 2005. Biological effect of irradiated chitosan on plants in vitro. Biotechnol. Appl. Biochem. 41:49-57. Ma, J.F. and N. Yamaji. 2008. Functions and transport of silicon in plants. Cell. Mol. Life Sci. 65:3049-3057. Ma, L., Y. Li, C. Yu, Y. Wang, X. Li, N. Li, Q. Chen, and N. Bu. 2012. Alleviation of exogenous oligochitosan on wheat seedlings growth under salt stress. Protoplasma 249:393-399. Maas, E.V., J.A. Poss, and G.J. Hoffman. 1986. Salinity sensitivity of sorghum at three growth stages. Irr. Sci. 7:1-11. Mahna, N., S.Z. Vahed, and S. Khani. 2013. Plant in vitro culture goes nano: nanosilver-mediated decontamination of ex vitro explants. J. Nanomed Nanotechol 4:161-164. Manjunatha, G., K.S. Roopa, G.N. Prashanth, and S.H. Shekar. 2008. Chitosan enhances disease resistance in pearl millet against downy mildew caused by Sclerospora graminicola and defence-related enzyme activation. Pest Manag. Sci. 64:1250-1257. Matsuda, K. and A. Riazi. 1981. Stress-induced osmotic adjustment in growing regions of barley leaves. Plant Physiol. 68:571–576. Miao, A.J., K.A. Schwehr, C. Xu, S.J. Zhang, Z.P. Luo, A. Quigg, and P.H. Santschi. 2009. The algal toxicity of silver engineered nanoparticles and detoxification by exopolymeric substances. Environ. Pollut. 157:3034-3041. Mirzajani F, H. Askari, S. Hamzelou, M. Farzaneh, and A. Ghassempour. 2013. Effect of silver nanoparticles on Oryza sativa L. and its rhizosphere bacteria. Ecotoxicol. Environ. Saf. 88:48–54. Mitsui, S and H. Takatoh. 1963. Nutritional study of silicon in Graminaceous crops. Soil Sci. Plant Nutr. 9:7-11. MØller, J.D. and H. Rasmussen. 1984. Stegmata in Orchidales: character state distribution and polarity. Bot. J. Linn. Soc. 89:53-76. Morel, G.M. 1960. Producing virus free cymbidiums. Amer. Orch. Soc. Bull. 29:495-497. Munns, R. and M. Tester. 2008. Mechanisms of salinity tolerance. Annu. Rev. Plant Biol. 59:651-681. Nahar, S.J., S. Kazuhiko, and S.M. Haque. 2012. Effect of polysaccharides including elicitors on organogenesis in protocorm-like body (PLB) of Cymbidium insigne in vitro. J. Agron. Sci. Technol. 2:1029-1033. Nair, R., S.H. Varghese, B.G. Nair. T. Maekawa, Y. Yoshida, and D.S. Kumar. 2010. Nanoparticulate material delivery to plants. Plant Sci. 179:154-163. Nambiar, N., C.S. Tee, and M. Maziah. 2012. Effects of organic additives and different carbohydrate sources on proliferation of protocorm-like bodies in Dendrobium Alya Pink. Plant Omics J. 5:10-18. Nejatzadeh-Barandozi, F., F. Darvishzadeh, and A. Aminkhani. 2014. Effect of nano silver and silver nitrate on seed yield of (Ocimum basilicum L.). Org. Med. Chem. Lett. 4:11-16. Nge, K.L., N. Nwe, S. Chandrachang, and W. F. Stevens. 2006. Chitosan as a growth stimulator in orchid tissue culture. Plant Sci. 170:1185-1190. Nissen, S.J. and E.G. Sutter. 1990. Stability of IAA and IBA in nutrient medium to several tissue procedures. HortScience 25:800-802. Ohta, K., A. Taniguchi, N. Kobayashi, and T. Hosoki. 1999. Chitosan treatment affects plant growth and flower quality in Eustoma grandiflorum. HortScience 34:233-234. Ohta, K., S. Morishita, K. Suda, N. Kobayashi, and T. Hosoki. 2004. Effects of chitosan soil mixture treatment in the seeding stage on the growth and flowering of several ornamental plants. J. Jpn. Soc. Hort. Sci. 73:66-68. Omidi, M., A. Yadollahi, and M. Eftekhari. 2016. Comparative study of Rosa damascenes Mill. and R. Gallica micro-propagation. Intl. J. Biol. Forum 8:135-145. O’Reagain, P.J. and M.T. Mentis. 1989. Leaf silicification in grasses-A review. J. Grassl. Soc. South Afr. 6:37-43. Osorio, J., M.L. Osorio, M.M. Chaves, and J.S. Pereira. 1998. Water deficits are more important in delaying growth than in changing patterns of carbon allocation in Eucalyptus globulus. Tree Physiol. 18:363-373. Ota, M., H. Kobayashi., and Y. Kawaguchi. 1957. The effects of slag on paddy rice. Part II. Influence of different nitrogen and slag levels on growth and composition of rice plant. Soil Plant Food 3:104-107. Pan, M.J. and J. van Staden. 1998. The use of charcoal in vitro culture – A review. Plant Growth Regul. 26:155-163. Papp, J.C., M.C. Ball, and N. Terry. 1983. A comparative study of the effects of NaCl salinity on respiration, photosynthesis, and leaf extension growth in Beta vulgaris L. (sugar beet). Plant Cell Environ. 6:675-677. Park, Y.S, S.T. Jung, S.G. Kang, B.G. Heo, P. Arancibia-Avila, F. Toledo, J. Drzewiecki, J. Namiesnik, and S. Gorinstein. 2008. Antioxidants and proteins in ethylene-treated kiwifruits. Food Chem. 107: 640-648. Parry, D.W. and F. Smithson. 1964. Types of opaline silica depositions in the leaves of British Grasses. Ann. Bot. 28:169-185. Parry, D.W., M.J. Hodson, and A.G. Sangster. 1984. Some recent advances in studies of silicon in higher plants. Phil. Trans. R. Soc. Lond. B 304:537-549. Parveen, A., B.B.Z. Mazhari, and S. Rao. 2016. Impact of bio-nanogold on seed germination and seedling growth in Pennisetum glaucum. Enzyme Microb. Technol. 95:107-111. Pellegrineschi, A., R.M. Brito, S. McLean, and D. Hoisington. 2004. Effect of 2,4-dichlorophenoxyacetic acid and NaCl on the establishment of callus and plant regeneration in durum and bread wheat. Plant Cell Tissue Organ Cult. 77:245-250. Pornpienpakdee, P., R. Singhasurasak, P. Chaiyasap, R. Pichyangkura, R. Bunjongrat, S. Chadchawan, and P. Limpanavech. 2010. Improving the micropropagation efficiency of hybrid Dendrobium orchids with chitosan. Scientia Hort. 124:490-499. Pozveh, Z.T., R. Razavizadeh, and F. Rostami. 2014. Changes occurring in canola (Brassica napus L.) in response silver nanoparticles treatment under in vitro conditions. Indian J. Fundam. Appl. Life Sci.4:797-807. Rajasekharreddy, P., P.U., Rani, and B., Sreedhar. 2010. Qualitative assessment of silver and gold nanoparticle synthesis in various plants: a photobiological approach. J. Nanopart. Res. 12:1711-1721. Ramamurthy, N. and S. Kannan. 2009. SEM-EDS analysis of soil and plant (Calotropis gigantea Linn) collected from an industrial village, Cuddalore Dt, Tamil Nadu, India. Romanian J. Biophys. 19:219-226. Reddy, B.M.V., K.Belkacemi, R. Corcuff, F. Castaigne, and J. Arul. 2000. Effect of pre-harvest chitosan sprays on post-harvest infection by Botrytis cinerea and quality of strawberry fruit. Postharvest Biol. Technol. 20:39-51. Reynolds, O.L., M.G. Keeping, and J.H. Meyer. 2009. Silicon-augmented resistance of plants to herbivorous insects: a review. Ann. Appl. Biol. 155:171-186. Rinaudo, M. 2006. Chitin and chitosan: properties and applications. Prog. Polym. Sci. 31:603-632. Rodríguez, P., A. Torrecillas, M.A. Morales, M.F. Ortuño, and Sánchez-Blanco. 2005. Effects of NaCl salinity and water stress on growth and leaf water relations of Asteriscus maritimusplants. Environ. Expt. Bot. 53:113-123. Rostami A.A. and A. Shahsavar. 2009. Nano-silver particles eliminate the in vitro contaminations of olive ‘Mission’ explant. Asian J. Plant Sci. 8:505-509. Ruffini Castiglione, M. and R. Cremonini. 2009. Nanoparticles and higher plants. Intl. J. Cytol. Cytosystematics Cytogenet. 62:161-165. Sabo-Attwood, T., J.M. Unrine, J.W. Stone, C.J. Murphy, S. Ghoshory, D. Blom, P.M. Bertsch, and L.A. Newman. 2012. Uptake, distribution and toxicity of gold nanoparticles in tobacco (Nicotiana xanthi) seedlings. Nanotoxicology 6: 353-360. Salama, H.M.H. 2012. Effects of silver nanoparticles in some crop plants, common bean (Phaseolus vulgaris L.) and corn (Zea mays L.). Intl. Res. J. Biotechnol. 3:190–197. Samarfard, S., M.A. Kadir, S.B. Kadzimin, H.M. Saud, S.A. Ravanfar, and M. Danaee. 2014. In vitro propagation and detection of somaclonal variation in Phalaenopsis gigantea as affected by chitosan and thidiazuron combinations. HortScience 49:82-88. Santana-Buzzy, N., A. Canto-Flick, L.G. Iglesias-Andreu, M.d.C. Montalvo-Peniche, G. Lopez-Puc, and F. Barahona-Perez. 2006. Improvement of in vitro culturing of Habanero pepper by inhibition of ethylene effects. HortScience 41:405-409. Savant, N.K., G.H. Snyder, and L.E. Datnoff. 1997. Silicon management and sustainable rice production. Adv. Agronomy 58:151-199. Seif, S.M, A. Sorooshzadeh, H. Rezazadeh, and H.A. Naghdibadi. 2011. Effect of nano silver and silver nitrate on seed yield of borage. J. Med. Plants Res. 5:706-710. Sharathchandra, R.G., S.N. Raj, N.P. Shetty, K.N. Amruthesh, and H.S. Shetty. 2004. A Chitosan formulation Elexa™ induces downy mildew disease resistance and growth promotion in pearl millet. Crop Prot. 23: 881-888. Sharma, P., D. Bhatt, M.G.H. Zaidi, P.P. Saradhi, P.K. Khanna, and S. Arora. 2012. Silver nanoparticle-mediated enhancement in growth and antioxidant status of Brassica juncea. Appl. Biochem. Biotechnol. 167:2225-2233. Sharp, R.E., T.C. Hsiao, and W.K. Wilk. 1990. Growth of the maize primary root at low water potentials. II. Role of growth and deposition of hexose and potassium in osmotics adjustment. Plant Physiol. 93:1337-1346. Shi, Q., Z. Zhu, M. Xu, Q. Qian, and J.Yu. 2006. Effect of excess manganese on the antioxidant system in Cucumis sativus L. under two light intensities. Environ. Exp. Bot. 58:197-205. Shokri, S., A. Babaei, M. Ahmadian,. M.M. Arab, and S. Hessami. 2015. The effects of different concentrations of nano-silver on elimination of bacterial contaminations and phenolic exudation of Rose (Rosa hybrida L.) in vitro culture. Acta Hort. 1083:391-396. Sopalun, K., K. Thammasiri, and K. Ishikawa. 2010. Effects of chitosan as the growth stimulator for Grammatophyllum speciosum in vitro culture. Intl. Scholary Sci. Res. Innovation 4:828-830. Soundararajan, P., I. Sivanesan, E.H. Jo, and B.R. Jeong. 2013. Silicon promotes shoot proliferation and shoot growth of Salvia splendens under salt stress in vitro. Hort. Environ. Biotechnol. 54:311-318. Steponkus, P.L. and F.O. Lanphear. 1967. Refinement of the triphenyl tetrazolium chloride method of determining cold injury. Plant Physiol., 42:1423-1426. Stout, M.J., J. Workman, and S.S. Duffey. 1994. Differential induction of tomato foliar proteins by arthropod herbivores. J. Chem. Ecol. 20:2575–2594. Srilatha, B. 2011. Nanotechnology in agriculture. J. Nanomedic Nanotechnol 2:7-11. Subbarao, G.V., O. Ito, W.L. Berry, and R.M. Wheeler. 2003. Sodium—a functional plant nutrient. Crit. Rev. Plant Sci. 22:391-416. Syu, Y.Y., J.H. Hung, J.C. Chen, and H.W. Chuang. 2014. Impacts of size and shape of silver nanoparticles on Arabidopsis plant growth and gene expression. Plant Physiol. Biochem. 83:57-64. Taiz, L., E. Zeiger, I.M. Møller, and A. Murphy. 2015. Plant physiology and development. 6rd ed. Sinauer Associates, Sunderland, USA. Takayama, S. and M. Misawa. 1980. Effects of activated charcoal physiological age of bulbs and sucrose concentration on differentiation and scale leaf formation in vitro. Physiol. Plant 48:121-125. Tanaka, A. and Y.D. Park. 1966. Significance of the absorption and distribution of silica in the growth of the rice plant. Soil Sci. Plant Nutr. 41:23-28. Tawaro, S., P. Suraninpong, and S. Chanprame. 2008. Germination and regeneration of Cymbidium findlaysonianum Lindl. on a medium supplemented with some organic sources. Walailak J. Sci. Tech. 5:125-135. Uthairatanakij, A., J.A.T. da Silva, K. Obsuwan. 2007. Chitosan for improving orchid production and quality. Orchid Sci. Biotechnol. 1:1-5. van Winkle, S.C., S. Johnson, G.S. Pullman. 2003. The impact of gelrite and activated carbon on the elemental composition of two conifer embryogenic tissue initiation media. Plant Cell Rpt. 21:1175-1182. Vasyukova, N.I., S.V. Zinov’eva, L.I. Il’inskaya, E.A. Perekhod, G.I. Chalenko, N.G. Gerasimova, A.V. Il’ina, V.P. Varlamov, and O.L. Ozeretskovskaya. 2001. Modulation of plant resistance to diseases by water-soluble chitosan. Appl. Biochem. Microbiol. 37:103-109. Walker-Simmons, M., H. Lee, and A.R. Clarence. 1983. Chitosans and pectic polysaccharides both induce the accumulation of the antifungal phytoalexin pisatin in pea pods and antinutrient proteinase inhibitions in tomato leaves. Biochem. Biophys. Res. Commun. 110:194-199. Weatherhead, M.A., J. Burdon, and G.G. Henshaw. 1978. Some effects of activated charcoal as an additive to plant tissue culture media. Z. Pflanzenphysiol Bd. 89:141-147. Wilczak, A. and T.M. Keinath. 1993. Kinetics of sorption and desorption of copper (II) and lead (II) on activated carbon. Water Environ. Sci. Technol. 29:59-68. Woolley, J.T. 1957. Sodium and silicon as nutrients for the tomato plant. Plant Physiol. 32:317-321. Wyroba, E., S. Suski, K. Miller, and R. Bartosiewicz. 2015. Biomedical and agricultural applications of energy dispersive X-ray spectroscopy in electron microscopy. Cell. Mol. Biol. Lett. 20:488-509. Xue, H., L. Sigg, and F.G. Kari. 1995. Speciation of EDTA in natural waters: exchange kinetics of Fe-EDTA in river water. Environ. Sci. Technol. 29:59-68. Yang, S.F. and N.E. Hoffman. 1984. Ethylene biosynthesis and its regulation in higher plants. Annu. Rev. Plant Physiol. 35:155-189. Yin, L., S. Wang, K. Tanaka, S. Fujihara, A. Itai, X. Den, and S. Zhang. 2016. Silicon-mediated changes in polyamines participate in silicon-induced salt tolerance in Sorghum bicolor L. Plant Cell Environ. 39:245-258. Yin L, Y. Cheng, B. Espinasse, B.P. Colman, M. Auffan, M. Wiesner, J. Rose, J. Liu, and E.S. Bernhardt. 2011. More than the ions: the effects of silver nanoparticles on Lolium multiflorum. Environ. Sci. Technol. 45:2360–2367. Yoshida, S., Y. Ohnishi, and K. Kitagishi. 1959. Role of silicon in rice nutrition. Soil Sci. Plant Nutr. 9:49-53. Yoshida, S., Y. Ohnishi, and K. Kitagishi. 1962. Chemical forms, mobility and deposition of silicon in rice plant. Soil Sci. Plant Nutr. 8:15-21. Zargar, V., M. Asghari, and A, Dashti. 2015. A review on chitin and chitosan polymers: structure, chemistry, solubility, derivatives, and applications. ChemBioEng Rev. 2:204-226. Zhang, K., J. Yuan, W. Kong, and Z. Yang. 2013. Genotype variations in cadmium and lead accumulations of leafy lettuce (Lactuca sativa L.) and screening for pollution-safe cultivars for food safety. Environ. Sci. Process Impacts 15:1245-1255. Zhang, L., F. Hong, S. Lu, and C. Liu. 2005. Effect of nano-TiO2 on strength of naturally aged seeds and growth of Spinach. Biol. Trace Elem. Res. 105:83-91. Zhou, T.S. 1995. The detection of the accumulation of silicon in Phalaenopsis (Orchidaceae). Ann. Bot. 75:605-607. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70362 | - |
dc.description.abstract | 本研究主要使用蝴蝶蘭‘V3’ (Phalaenopsis Sogo Yukidian ‘V3’) 約帶3片葉之中母瓶苗為材料,而在奈米銀第二次試驗中則採用不易發根蝴蝶蘭Phalaenopsis Mei Dar Green ‘Shih-hua Green Apple’。在1/2 MS基礎培養基添加不同物質 (殼聚醣、氯化鈉、矽酸鹽、奈米銀及奈米金),探討其對蝴蝶蘭組培苗之生長與發育的影響,期能獲得高品質瓶苗。
添加殼聚醣之試驗中使用的濃度為5-40 mg•L-1。組培苗培養至第12週後,以添加5 mg•L-1之處理可增加蝴蝶蘭‘V3’ (Phalaenopsis Sogo Yukidian ‘V3’) 組培苗根長度。另外於培養基中添加50-400 mg•L-1氯化鈉之試驗中,於培養第12週時,各處理之組培苗生長量並無顯著差異。 在0.33-12 μM矽酸鉀 (K2SiO3)、矽酸鈣 (CaSiO3) 與矽酸鈉 (Na2SiO3) 之試驗中,培養12週後,在培養基添加0.33 μM CaSiO3之處理可增加組培苗葉片硬度;而培養基中添加9.0 μM CaSiO3可顯著增加組培苗根徑。另外透過顯微觀察,組培苗葉片中具晶體累積,其晶體含有矽元素,且由數個小顆粒晶體聚集成球狀結構。在組培苗第一片葉中,1.0 μM CaSiO3之處理其葉片矽晶體形成率大於50%,且此處理可提高葉片中矽晶體分布程度、矽晶體直徑與矽晶體數量。 添加0.125-320 mg•L-1奈米銀之試驗中,蝴蝶蘭‘V3’組培苗在培養至第12週時,80 mg•L-1奈米銀處理可增加組培苗葉片數與根數;20和80 mg•L-1 奈米銀則可提高組培苗地下部鮮乾重。另外,添加奈米銀於不易發根蝴蝶蘭 Phalaenopsis Mei Dar Green ‘Shih-hua Green Apple’品種的培養基中,組培苗培養至第12週時,添加奈米銀顯著增加組培苗根數、葉片數與新生葉片數,且減少組培苗葉片黃化的徵狀。但各濃度處理並無顯著影響組培苗發根率,且奈米銀處理皆降低組培苗葉片長、根長與根尖活性。 於有或無活性碳之培養基中分別添加濃度0、3.75 × 10-4、1.13 × 10-3、3.39 × 10-3、1.01 × 10-2和3.03 × 10-2 nM奈米金。培養至第12週,無添加活性碳且奈米金濃度為3.39 × 10-3 nM之處理略促進根數、根徑與地下部鮮重。添加活性碳則可有效增加組培苗地下部之生長發育,其增加組培苗之根徑與地下部乾鮮重,但奈米金各濃度處理並無顯著差異。整體而言,添加活性碳處理有助於組培苗地下部生長,其影響效果較添加奈米金處理顯著。 於培養基中添加殼聚醣 (5-40 mg•L-1)、氯化鈉 (50-400 mg•L-1) 與奈米金 (3.75 × 10-4至 3.03 × 10-2 nM) 並未有效提升組培苗生長。矽酸鹽 (0.33-12 μM) 雖對組培苗整體生長量並無顯著影響,但透過顯微鏡可觀察1.0 μM CaSiO3之處理提高第一片葉片矽晶體形成率、矽晶體分布程度、矽晶體直徑與矽晶體數量。此外,添加低濃度奈米銀可增加組培苗根數,但奈米銀添加則降低根尖活性,使組培苗有較短根長和側根之發生。 | zh_TW |
dc.description.abstract | In this study, the subculturing flask plantlets of Phalaenopsis Sogo Yukidian ‘V3’ with 3 leaves were mainly used as material, while Phalaenopsis Mei Dar Green ‘Shih-hua Green Apple’, which is a difficult rooting cultivar, was used in the second experiment of nanosilver addition. The plantlets were cultured in 1/2 MS with different additives (chitosan, sodium chloride, silicate, nanosilver, and nanogold). The effects of these different additives in medium on the growth and development of plantlets was explored in order to improve the quality of plantlets in vitro.
In the experiment of adding 5-40 mg•L-1 chitosan, the root length of plantlets increased in the 5 mg•L-1 chitosan treatment after cultured for 12 weeks. In addition, in the experiment of adding 50-400 mg•L-1 NaCl, the growth increment of plantlet was not significantly different among all treatments after cultured 12 weeks. In the experiment of adding 0.33-12 μM K2SiO3, CaSiO3, or Na2SiO3, the leaf firmness of plantlets increased in 0.33 μM CaSiO3 treatment, and the root diameter of plantlets significantly increased in 9.0 μM Na2SiO3 treatment. Furthermore, the silicon-containing crystals which accumulated in leaves of plantlets were observed by microscope. These silica bodies were assembled by a lot of small particles and formed as spherical bodies. In the 1.0 μM CaSiO3 treatment, formation of silica bodies was above 50%, and index of silica bodies distributions, diameter of silica bodies, and number of silica bodies of the first leaf were increased. In the experiment of adding 0.125-320 mg•L-1 nanosilver, the number of leaf and number of root of plantlests increased in the 80 mg•L-1 nanosilver treatment after cultured for 12 weeks. The root fresh and dry weight increased in 20 and 80 mg•L-1 nanosilver treatments. Another experiment tested on a difficult-rooting cultivar, Phalaenopsis Mei Dar Green ‘Shih-hua Green Apple’, was designed. The number of root, leaf and new leaf significantly increased and the symptom of leaf yellowing reduced in adding nanosilver treatments. However, adding nanosilver treatments did not significantly affect rooting rate of plantlet and reduced the leaf length, root length and acitivity of root tip after cultured for 12 weeks. The experiment of adding nanogold was divided into two parts, with or without activated charcoal. Both parts were added with 0, 3.75 × 10-4, 1.13 × 10-3, 3.39 × 10-3, 1.01 × 10-2 and 3.03 × 10-2 nM of nanogold. Without activated charcoal, the number of roots, root diameter, and root fresh weight increased in the 3.39 × 10-3 nM nanogold treatment. In addition, with activated charcoal, the growth and development of root were promoted. Adding activated charcoal increased root diameter, root fresh weight, and dry weight, but there were not significant difference among various nanogold concentrations. As a whole, the root growth of plantles was improved in the medium with activated charcoal and the effects of adding activated charcoal were more significant than various concentrations of nanogold. The growth of plantlets was not significantly promoted in various concentrations of chitosan (5 to 40 mg•L-1), NaCl (50 to 400 mg•L-1), and nanogold (3.75 × 10-4 to 3.03 × 10-2 nM). Although there was no significant increase in the growth of plantlets in adding silicate (0.33 to 12 μM) medium, the formation and distribution of silica bodies, number of silica bodies, and diameter of silica bodies in the first leaf of plantlets were increased in 1.0 μM CaSiO3 treatment. In addition, number of roots increased in low concentration of nanosilver treatment, but high concentration of nanosilver treatments reduced the activity of the root tip, promoted lateral root formation, and decreased the root length. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T04:26:33Z (GMT). No. of bitstreams: 1 ntu-107-R05628110-1.pdf: 110657536 bytes, checksum: f24b95cd43682b56a9f1bee43056263a (MD5) Previous issue date: 2018 | en |
dc.description.tableofcontents | 摘要 i
Abstract iii 第一章 前言 (Introduction) 1 第二章 前人研究 (Literature Review) 2 一、培養基添加物對組培苗生長發育之影響 2 (一) 殼聚醣 (chitosan) 3 (二) 氯化鈉 (sodium chloride) 6 (三) 矽 (silicon) 7 (四) 奈米銀與奈米金 (nanosilver and nanogold) 9 二、能量色散X-射線光譜 (energy dispersive X-ray analysis spectra; EDS) 原理與應用 12 第三章 材料方法 (Material and methods) 13 一、試驗材料 13 二、基礎培養基和培養環境 14 三、試驗設計 14 試驗一:殼聚醣 (chitosan) 對蝴蝶蘭 (Phalaenopsis Sogo Yukidian ‘V3’) 組培苗生長發育之影響 14 試驗二:氯化鈉 (sodium chloride) 對蝴蝶蘭 (Phalaenopsis Sogo Yukidian ‘V3’) 組培苗生長發育之影響 15 試驗三:矽酸鉀、矽酸鈣與矽酸鈉對蝴蝶蘭 (Phalaenopsis Sogo Yukidian ‘V3’) 組培苗生長發育之影響 15 試驗四:矽酸鈣與矽酸鈉對蝴蝶蘭 (Phalaenopsis Sogo Yukidian ‘V3’) 組培苗生長發育之影響 16 試驗五:奈米銀對蝴蝶蘭 (Phalaenopsis Sogo Yukidian ‘V3’) 組培苗生長發育之影響 16 試驗六:奈米銀對不易發根蝴蝶蘭 (Phalaenopsis Mei Dar Green ‘Shih-hua Green Apple’) 品種之影響 17 試驗七:奈米金對蝴蝶蘭 (Phalaenopsis Sogo Yukidian ‘V3’) 組培苗生長發育之影響 17 四、調查項目 18 (1)生長性狀 18 (2)硬度測量 18 (3)電子顯微鏡 (scanning electron microscope; SEM) 與能量色散X-射線光譜 (energy dispersive X-ray analysis spectra; EDS) 19 (4)透明法觀察葉片組織 19 (5)矽晶體累積調查 19 (6)根部活性測定 20 五、統計分析 21 第四章 結果 (Result) 22 一、殼聚醣 (chitosan) 對蝴蝶蘭 (Phalaenopsis Sogo Yukidian ‘V3’) 組培苗生長發育之影響 22 二、氯化鈉 (sodium chloride) 對蝴蝶蘭 (Phalaenopsis Sogo Yukidian ‘V3’) 組培苗生長發育之影響 22 三、矽酸鉀 (potassium silicate)、矽酸鈣 (calcium silicate) 與矽酸鈉 (sodium silicate) 對蝴蝶蘭 (Phalaenopsis Sogo Yukidian ‘V3’) 組培苗生長發育之影響 23 四、矽酸鈣與矽酸鈉對蝴蝶蘭 (Phalaenopsis Sogo Yukidian ‘V3’) 組培苗生長發育之影響 24 五、奈米銀對蝴蝶蘭 (Phalaenopsis Sogo Yukidian ‘V3’) 組培苗生長發育之影響 25 六、奈米銀對蝴蝶蘭 (Phalaenopsis Mei Dar Green ‘Shih-hua Green Apple’) 組培苗生長與發育之影響 27 七、奈米金對蝴蝶蘭 (Phalaenopsis Sogo Yukidian ‘V3’) 組培苗生長發育之影響 28 第五章、討論 (Discussion) 30 一、殼聚醣 (chitosan) 對蝴蝶蘭 (Phalaenopsis Sogo Yukidian ‘V3’) 組培苗生長發育之影響 30 二、氯化鈉 (sodium chloride) 對蝴蝶蘭 (Phalaenopsis Sogo Yukidian ‘V3’) 組培苗生長發育之影響 31 三、矽酸鹽類對蝴蝶蘭 (Phalaenopsis Sogo Yukidian ‘V3’) 組培苗生長發育之影響 32 四、奈米銀對蝴蝶蘭Phalaenopsis Sogo Yukidian ‘V3’與Phalaenopsis Mei Dar Green ‘Shih-hua Green Apple’組培苗生長發育之影響 34 五、奈米金對蝴蝶蘭 (Phalaenopsis Sogo Yukidian ‘V3’) 組培苗生長發育之影響 37 表 40 圖 63 參考文獻 93 | |
dc.language.iso | zh-TW | |
dc.title | 培養基添加物對蝴蝶蘭組培瓶苗生長發育之影響 | zh_TW |
dc.title | Effect of Medium Additives on the Growth and Development of Phalaenopsis Plantlets in vitro | en |
dc.type | Thesis | |
dc.date.schoolyear | 106-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 陳香君,高建元 | |
dc.subject.keyword | 殼聚醣,氯化鈉,矽酸鹽類,奈米銀,奈米金, | zh_TW |
dc.subject.keyword | chitosan,sodium chloride,silicate,nanosilver,nanogold, | en |
dc.relation.page | 110 | |
dc.identifier.doi | 10.6342/NTU201803354 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2018-08-14 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 園藝暨景觀學系 | zh_TW |
顯示於系所單位: | 園藝暨景觀學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-107-1.pdf 目前未授權公開取用 | 108.06 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。