Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 醫療器材與醫學影像研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70357
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor曾文毅
dc.contributor.authorI-Ju Chungen
dc.contributor.author鍾宜儒zh_TW
dc.date.accessioned2021-06-17T04:26:27Z-
dc.date.available2023-08-31
dc.date.copyright2018-08-31
dc.date.issued2018
dc.date.submitted2018-08-14
dc.identifier.citationReferences
1. von Schwarzenberg, K. and A.M. Vollmar, Targeting apoptosis pathways by natural compounds in cancer: marine compounds as lead structures and chemical tools for cancer therapy. Cancer Lett, 2013. 332(2): p. 295-303.
2. Jayne, D.G., et al., Five-year follow-up of the Medical Research Council CLASICC trial of laparoscopically assisted versus open surgery for colorectal cancer. Br J Surg, 2010. 97(11): p. 1638-45.
3. Clough, K.B., et al., Improving breast cancer surgery: a classification and quadrant per quadrant atlas for oncoplastic surgery. Ann Surg Oncol, 2010. 17(5): p. 1375-91.
4. D'Amico, A.V., et al., Biochemical outcome after radical prostatectomy, external beam radiation therapy, or interstitial radiation therapy for clinically localized prostate cancer. JAMA, 1998. 280(11): p. 969-74.
5. Khan, F. M., The physics of radiation therapy. Wolters Kluwer Health, 2012.
6. Darby, S.C., et al., Risk of ischemic heart disease in women after radiotherapy for breast cancer. N Engl J Med, 2013. 368(11): p. 987-98.
7. Van Putten, L.M. and R.F. Kallman, Oxygenation status of a transplantable tumor during fractionated radiation therapy. J Natl Cancer Inst, 1968. 40(3): p. 441-51.
8. Adelstein, D.J., et al., An intergroup phase III comparison of standard radiation therapy and two schedules of concurrent chemoradiotherapy in patients with unresectable squamous cell head and neck cancer. J Clin Oncol, 2003. 21(1): p. 92-8.
9. Kuerer, H.M., et al., Clinical course of breast cancer patients with complete pathologic primary tumor and axillary lymph node response to doxorubicin-based neoadjuvant chemotherapy. J Clin Oncol, 1999. 17(2): p. 460-9.
10. Muller, I., et al., Effect of concentration on the cytotoxic mechanism of doxorubicin--apoptosis and oxidative DNA damage. Biochem Biophys Res Commun, 1997. 230(2): p. 254-7.
11. Mizutani, H., et al., Mechanism of apoptosis induced by doxorubicin through the generation of hydrogen peroxide. Life Sci, 2005. 76(13): p. 1439-53.
12. Gaber, M.H., et al., Thermosensitive sterically stabilized liposomes: formulation and in vitro studies on mechanism of doxorubicin release by bovine serum and human plasma. Pharm Res, 1995. 12(10): p. 1407-16.
13. Mitra, S., et al., Tumour targeted delivery of encapsulated dextran-doxorubicin conjugate using chitosan nanoparticles as carrier. J Control Release, 2001. 74(1-3): p. 317-23.
14. Allen, T.M. and P.R. Cullis, Drug delivery systems: entering the mainstream. Science, 2004. 303(5665): p. 1818-22.
15. Aluise, C.D., et al., Chemo brain (chemo fog) as a potential side effect of doxorubicin administration: role of cytokine-induced, oxidative/nitrosative stress in cognitive dysfunction. Adv Exp Med Biol, 2010. 678: p. 147-56.
16. Varela, M., et al., Chemoembolization of hepatocellular carcinoma with drug eluting beads: efficacy and doxorubicin pharmacokinetics. J Hepatol, 2007. 46(3): p. 474-81.
17. Herbst, R.S., et al., Phase II selection design trial of concurrent chemotherapy and cetuximab versus chemotherapy followed by cetuximab in advanced-stage non-small-cell lung cancer: Southwest Oncology Group study S0342. J Clin Oncol, 2010. 28(31): p. 4747-54.
18. Lynch, T.J., et al., A randomized multicenter phase III study of cetuximab (Erbitux((R))) in combination with taxane/carboplatin versus taxane/carboplatin alone as first-line treatment for patients with advanced/metastatic non-small cell lung cancer (NSCLC). Journal of Thoracic Oncology, 2007. 2(8): p. S340-S341.
19. Izumi, Y., et al., Tumour biology: herceptin acts as an anti-angiogenic cocktail. Nature, 2002. 416(6878): p. 279-80.
20. Sliwkowski, M.X., et al., Nonclinical studies addressing the mechanism of action of trastuzumab (Herceptin). Semin Oncol, 1999. 26(4 Suppl 12): p. 60-70.
21. Swanson, K.R., E.C. Alvord, Jr., and J.D. Murray, Quantifying efficacy of chemotherapy of brain tumors with homogeneous and heterogeneous drug delivery. Acta Biotheor, 2002. 50(4): p. 223-37.
22. Wirth, T., N. Parker, and S. Yla-Herttuala, History of gene therapy. Gene, 2013. 525(2): p. 162-9.
23. Keeler, A.M., M.K. ElMallah, and T.R. Flotte, Gene Therapy 2017: Progress and Future Directions. Clin Transl Sci, 2017. 10(4): p. 242-248.
24. Yi, Y., M.J. Noh, and K.H. Lee, Current advances in retroviral gene therapy. Curr Gene Ther, 2011. 11(3): p. 218-28.
25. Westphal, M., et al., Adenovirus-mediated gene therapy with sitimagene ceradenovec followed by intravenous ganciclovir for patients with operable high-grade glioma (ASPECT): a randomised, open-label, phase 3 trial. Lancet Oncol, 2013. 14(9): p. 823-33.
26. Chandrasegaran, S. and D. Carroll, Origins of Programmable Nucleases for Genome Engineering. J Mol Biol, 2016. 428(5 Pt B): p. 963-89.
27. Prasad, V., Immunotherapy: Tisagenlecleucel - the first approved CAR-T-cell therapy: implications for payers and policy makers. Nat Rev Clin Oncol, 2018. 15(1): p. 11-12.
28. Wang, Z. and W. Han, Biomarkers of cytokine release syndrome and neurotoxicity related to CAR-T cell therapy. Biomark Res, 2018. 6: p. 4.
29. Joura, E.A., et al., Efficacy of a quadrivalent prophylactic human papillomavirus (types 6, 11, 16, and 18) L1 virus-like-particle vaccine against high-grade vulval and vaginal lesions: a combined analysis of three randomised clinical trials. Lancet, 2007. 369(9574): p. 1693-702.
30. Conry, R.M., et al., Safety and immunogenicity of a DNA vaccine encoding carcinoembryonic antigen and hepatitis B surface antigen in colorectal carcinoma patients. Clin Cancer Res, 2002. 8(9): p. 2782-7.
31. Melero, I., et al., Therapeutic vaccines for cancer: an overview of clinical trials. Nat Rev Clin Oncol, 2014. 11(9): p. 509-24.
32. Marzuka, A.G. and S.E. Book, Basal cell carcinoma: pathogenesis, epidemiology, clinical features, diagnosis, histopathology, and management. Yale J Biol Med, 2015. 88(2): p. 167-79.
33. Kalinski, P. and J.R. Gingrich, Toward improved effectiveness of bladder cancer immunotherapy. Immunotherapy, 2015. 7(10): p. 1039-42.
34. Schwab, C.L., et al., Past, present and future targets for immunotherapy in ovarian cancer. Immunotherapy, 2014. 6(12): p. 1279-93.
35. Coiffier, B., et al., Therapeutic options in relapsed or refractory peripheral T-cell lymphoma. Cancer Treat Rev, 2014. 40(9): p. 1080-8.
36. Abdel-Wahab, N., et al., Use of Immune Checkpoint Inhibitors in the Treatment of Patients With Cancer and Preexisting Autoimmune Disease. Ann Intern Med, 2018. 169(2): p. 133-134.
37. Jenkins, R.W., D.A. Barbie, and K.T. Flaherty, Mechanisms of resistance to immune checkpoint inhibitors. Br J Cancer, 2018. 118(1): p. 9-16.
38. Mueller, S.P., et al., Collimator selection for SPECT brain imaging: the advantage of high resolution. J Nucl Med, 1986. 27(11): p. 1729-38.
39. Bar-Shalom, R., et al., Clinical performance of PET/CT in evaluation of cancer: additional value for diagnostic imaging and patient management. J Nucl Med, 2003. 44(8): p. 1200-9.
40. Mariani, G., L. Bruselli, and A. Duatti, Is PET always an advantage versus planar and SPECT imaging? Eur J Nucl Med Mol Imaging, 2008. 35(8): p. 1560-5.
41. Ibusuki, M., et al., Potential advantage of preoperative three-dimensional mapping of sentinel nodes in breast cancer by a hybrid single photon emission CT (SPECT)/CT system. Surg Oncol, 2010. 19(2): p. 88-94.
42. Lavely, W.C., et al., Comparison of SPECT/CT, SPECT, and planar imaging with single- and dual-phase (99m)Tc-sestamibi parathyroid scintigraphy. J Nucl Med, 2007. 48(7): p. 1084-9.
43. Beanlands, R.S. and G. Youssef, Diagnosis and prognosis of coronary artery disease: PET is superior to SPECT: Pro. J Nucl Cardiol, 2010. 17(4): p. 683-95.
44. Noble, J.A. and D. Boukerroui, Ultrasound image segmentation: a survey. IEEE Trans Med Imaging, 2006. 25(8): p. 987-1010.
45. Barry, C.D., et al., Three-dimensional freehand ultrasound: image reconstruction and volume analysis. Ultrasound Med Biol, 1997. 23(8): p. 1209-24.
46. Buades, A., B. Coll, and J.M. Morel, A review of image denoising algorithms, with a new one. Multiscale Modeling & Simulation, 2005. 4(2): p. 490-530.
47. Rosencwaig, A. and A. Gersho, Theory of Photoacoustic Effect with Solids. Journal of Applied Physics, 1976. 47(1): p. 64-69.
48. Wang, X., et al., Noninvasive photoacoustic angiography of animal brains in vivo with near-infrared light and an optical contrast agent. Opt Lett, 2004. 29(7): p. 730-2.
49. Kim, K., et al., Photoacoustic imaging of early inflammatory response using gold nanorods. Applied Physics Letters, 2007. 90(22).
50. Ku, G. and L.H.V. Wang, Deeply penetrating photoacoustic tomography in biological tissues enhanced with an optical contrast agent. Optics Letters, 2005. 30(5): p. 507-509.
51. Shenton, M.E., et al., A review of MRI findings in schizophrenia. Schizophrenia Research, 2001. 49(1-2): p. 1-52.
52. Spencer, S.S., W.H. Theodore, and S.F. Berkovic, Clinical-Applications - Mri, Spect, and Pet. Magnetic Resonance Imaging, 1995. 13(8): p. 1119-1124.
53. Bloch, F., Nuclear Induction. Physical Review, 1946. 70(7-8): p. 460-474.
54. Purcell, E.M., H.C. Torrey, and R.V. Pound, Resonance Absorption by Nuclear Magnetic Moments in a Solid. Physical Review, 1946. 69(1-2): p. 37-38.
55. Wangsness, R.K. and F. Bloch, The Dynamical Theory of Nuclear Induction. Physical Review, 1953. 89(4): p. 728-739.
56. Solomon, I., Relaxation Processes in a System of 2 Spins. Physical Review, 1955. 99(2): p. 559-565.
57. Lauterbur, P.C., Image-Formation by Induced Local Interactions - Examples Employing Nuclear Magnetic-Resonance. Clinical Orthopaedics and Related Research, 1989(244): p. 3-6.
58. Deroos, A., et al., Reperfused and Nonreperfused Myocardial-Infarction - Diagnostic Potential of Gd-Dtpa-Enhanced Mr Imaging. Radiology, 1989. 172(3): p. 717-720.
59. Su, C.H., et al., Nanoshell magnetic resonance imaging contrast agents. Journal of the American Chemical Society, 2007. 129(7): p. 2139-2146.
60. Tsung-Ju Yu, Y.-H. C., Yun-Ming Wang, The status and prospect of contrast agents for magnetic resonance imaging. J. Chin. Chem. Soc. 1999, 67: p. 165-177.
61. Marckmann, P., et al., Nephrogenic systemic fibrosis: Suspected causative role of gadodiamide used for contrast-enhanced magnetic resonance imaging. Journal of the American Society of Nephrology, 2006. 17(9): p. 2359-2362.
62. Grobner, T., Gadolinium - a specific trigger for the development of nephrogenic fibrosing dermopathy and nephrogenic systemic fibrosis? Nephrology Dialysis Transplantation, 2006. 21(4): p. 1104-1108.
63. Sieber, M.A., et al., A preclinical study to investigate the development of nephrogenic systemic fibrosis: A possible role for gadolinium-based contrast media. Investigative Radiology, 2008. 43(1): p. 65-75.
64. Qiao, R.R., C.H. Yang, and M.Y. Gao, Superparamagnetic iron oxide nanoparticles: from preparations to in vivo MRI applications. Journal of Materials Chemistry, 2009. 19(35): p. 6274-6293.
65. Weissleder, R., et al., Superparamagnetic Iron-Oxide - Pharmacokinetics and Toxicity. American Journal of Roentgenology, 1989. 152(1): p. 167-173.
66. Jang, J.T., et al., Critical Enhancements of MRI Contrast and Hyperthermic Effects by Dopant-Controlled Magnetic Nanoparticles. Angewandte Chemie-International Edition, 2009. 48(7): p. 1234-1238.
67. Lee, N., et al., Water-Dispersible Ferrimagnetic Iron Oxide Nanocubes with Extremely High r(2) Relaxivity for Highly Sensitive in Vivo MRI of Tumors. Nano Letters, 2012. 12(6): p. 3127-3131.
68. Whelan, T.J., et al., Long-Term Results of Hypofractionated Radiation Therapy for Breast Cancer. New England Journal of Medicine, 2010. 362(6): p. 513-520.
69. Chou, C.-W., Medical imaging: Principle, detectors, and lectronics. Science, 2008. p. 16-23.
70. Kato, M., et al., Optimized use of a biodegradable polymer as a carrier material for the local delivery of recombinant human bone morphogenetic protein-2 (rhBMP-2). Biomaterials, 2006. 27(9): p. 2035-2041.
71. Luten, J., et al., Biodegradable polymers as non-viral carriers for plasmid DNA delivery. Journal of Controlled Release, 2008. 126(2): p. 97-110.
72. Molday, R.S. and D. Mackenzie, Immunospecific Ferromagnetic Iron-Dextran Reagents for the Labeling and Magnetic Separation of Cells. Journal of Immunological Methods, 1982. 52(3): p. 353-367.
73. Kim, D.K., et al., Synthesis and characterization of surfactant-coated superparamagnetic monodispersed iron oxide nanoparticles. Journal of Magnetism and Magnetic Materials, 2001. 225(1-2): p. 30-36.
74. Hyeon, T., et al., Synthesis of highly crystalline and monodisperse maghemite nanocrystallites without a size-selection process. Journal of the American Chemical Society, 2001. 123(51): p. 12798-12801.
75. Sun, S.H. and H. Zeng, Size-controlled synthesis of magnetite nanoparticles. Journal of the American Chemical Society, 2002. 124(28): p. 8204-8205.
76. Cheng, F.Y., et al., Characterization of aqueous dispersions of Fe3O4 nanoparticles and their biomedical applications. Biomaterials, 2005. 26(7): p. 729-738.
77. Lee, J.H., et al., Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging. Nature Medicine, 2007. 13(1): p. 95-99.
78. Aghazadeh, M. and I. Karimzadeh, One-pot Electro-synthesis and Characterization of Chitosan Capped Superparamagnetic Iron Oxide Nanoparticles (SPIONs) from Ethanol Media. Current Nanoscience, 2018. 14(1): p. 42-49.
79. Jana, N.R., Y.F. Chen, and X.G. Peng, Size- and shape-controlled magnetic (Cr, Mn, Fe, Co, Ni) oxide nanocrystals via a simple and general approach. Chemistry of Materials, 2004. 16(20): p. 3931-3935.
80. Kwon, S.G., et al., Kinetics of monodisperse iron oxide nanocrystal formation by 'heating-up' process. Journal of the American Chemical Society, 2007. 129(41): p. 12571-12584.
81. Park, J., et al., Ultra-large-scale syntheses of monodisperse nanocrystals. Nature Materials, 2004. 3(12): p. 891-895.
82. Xie, J., et al., Linking hydrophilic macromolecules to monodisperse magnetite (Fe3O4) nanoparticles via trichloro-s-triazine. Chemistry of Materials, 2006. 18(23): p. 5401-5403.
83. Xie, J., et al., One-pot synthesis of monodisperse iron oxide nanoparticles for potential biomedical applications. Pure and Applied Chemistry, 2006. 78(5): p. 1003-1014.
84. Li, J., et al., Analyzing the structure of CoFe-Fe3O4 core-shell nanoparticles by electron imaging and diffraction. Journal of Physical Chemistry B, 2004. 108(37): p. 14005-14008.
85. Sun, S.H., et al., Monodisperse MFe2O4 (M = Fe, Co, Mn) nanoparticles. Journal of the American Chemical Society, 2004. 126(1): p. 273-279.
86. Insin, N., et al., Incorporation of iron oxide nanoplarticles and quantum dots into silica microspheres. Acs Nano, 2008. 2(2): p. 197-202.
87. Hyeon, T., Chemical synthesis of magnetic nanoparticles. Chemical Communications, 2003(8): p. 927-934.
88. Shukoor, M.I., et al., Fabrication of a silica coating on magnetic gamma-Fe2O3 nanoparticles by an immobilized enzyme. Chemistry of Materials, 2008. 20(11): p. 3567-3573.
89. Gupta, A.K. and M. Gupta, Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials, 2005. 26(18): p. 3995-4021.
90. Huang, X.L., et al., Self-assembled virus-like particles with magnetic cores. Nano Letters, 2007. 7(8): p. 2407-2416.
91. Bronstein, L.M., et al., Influence of iron oleate complex structure on iron oxide nanoparticle formation. Chemistry of Materials, 2007. 19(15): p. 3624-3632.
92. Hultman, K.L., et al., Magnetic resonance imaging of major histocompatibility class II expression in the renal medulla using immunotargeted superparamagnetic iron oxide nanoparticles. Acs Nano, 2008. 2(3): p. 477-484.
93. Woo, K., et al., Easy synthesis and magnetic properties of iron oxide nanoparticles. Chemistry of Materials, 2004. 16(14): p. 2814-2818.
94. Wan, S.R., et al., Biocompatible superparamagnetic iron oxide nanoparticle dispersions stabilized with poly(ethylene glycol)oligo(aspartic acid) hybrids. Journal of Biomedical Materials Research Part A, 2007. 80a(4): p. 946-954.
95. Zhang, Y., N. Kohler, and M.Q. Zhang, Surface modification of superparamagnetic magnetite nanoparticles and their intracellular uptake. Biomaterials, 2002. 23(7): p. 1553-1561.
96. Kohler, N., G.E. Fryxell, and M.Q. Zhang, A bifunctional poly(ethylene glycol) silane immobilized on metallic oxide-based nanoparticles for conjugation with cell targeting agents. Journal of the American Chemical Society, 2004. 126(23): p. 7206-7211.
97. Kohler, N., et al., Methotrexate-modified superparamagnetic nanoparticles and their intracellular uptake into human cancer cells. Langmuir, 2005. 21(19): p. 8858-8864.
98. Kohler, N., et al., Methotrexate-immobilized poly(ethylene glycol) magnetic nanoparticles for MR imaging and drug delivery. Small, 2006. 2(6): p. 785-792.
99. Aronov, O., et al., Folate-targeted PEG as a potential carrier for carboplatin analogs. Synthesis and in vitro studies. Bioconjugate Chemistry, 2003. 14(3): p. 563-574.
100. Germershaus, O., et al., Trastuzumab-polyethylenimine-polyethylene glycol conjugates for targeting Her2-expressing tumors. Bioconjugate Chemistry, 2006. 17(5): p. 1190-1199.
101. Wolchok, J.D. and T.A. Chan, CANCER Antitumour immunity gets a boost. Nature, 2014. 515(7528): p. 496-498.
102. Robert, C., et al., Anti-programmed-death-receptor-1 treatment with pembrolizumab in ipilimumab-refractory advanced melanoma: a randomised dose-comparison cohort of a phase 1 trial. Lancet, 2014. 384(9948): p. 1109-1117.
103. Topalian, S.L., et al., Survival, Durable Tumor Remission, and Long-Term Safety in Patients With Advanced Melanoma Receiving Nivolumab. Journal of Clinical Oncology, 2014. 32(10): p. 1020-+.
104. Wolchok, J.D., et al., Four-year survival rates for patients with metastatic melanoma who received ipilimumab in phase II clinical trials. Annals of Oncology, 2013. 24(8): p. 2174-2180.
105. Powles, T., et al., MPDL3280A (anti-PD-L1) treatment leads to clinical activity in metastatic bladder cancer. Nature, 2014. 515(7528): p. 558-+.
106. Herbst, R.S., et al., Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature, 2014. 515(7528): p. 563-+.
107. Soliman, H., F. Khalil, and S. Antonia, PD-L1 Expression Is Increased in a Subset of Basal Type Breast Cancer Cells. Plos One, 2014. 9(2).
108. Gittings, M.R. and D.A. Saville, The determination of hydrodynamic size and zeta potential from electrophoretic mobility and light scattering measurements. Colloids and Surfaces a-Physicochemical and Engineering Aspects, 1998. 141(1): p. 111-117.
109. Denizot, F. and R. Lang, Rapid Colorimetric Assay for Cell-Growth and Survival - Modifications to the Tetrazolium Dye Procedure Giving Improved Sensitivity and Reliability. Journal of Immunological Methods, 1986. 89(2): p. 271-277.
110. Paul, K.G., et al., Synthesis of ultrasmall superparamagnetic iron oxides using reduced polysaccharides. Bioconjugate Chemistry, 2004. 15(2): p. 394-401.
111. Weissleder, R., et al., Ultrasmall Superparamagnetic Iron-Oxide - Characterization of a New Class of Contrast Agents for Mr Imaging. Radiology, 1990. 175(2): p. 489-493.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70357-
dc.description.abstract本團隊設計功能性的磁性奈米粒子SPIO-anti-PD-L1應用於磁振造影的對比劑。我們合成氧化鐵奈米粒子,並表面上修飾對細胞程式死亡-配體1 (PD-L1)具有高度專一性的抗體anti-PD-L1,使之具有標靶診斷的功效。動態光散射儀顯示其水合粒徑大小為18.89 ± 3.931nm,表面電位約為 + 4.5 ± 2.32mV,用MTT assay證實其對於細胞的毒性不大,可以被生物體所接受。在體外細胞實驗所選用的細胞有兩株,分別為PD-L1高表現量的MDA-MB-231人乳腺癌細胞株及PD-L1低表現量的MCF7人乳腺癌细胞株。用流式細胞儀與西方點墨法測得SPIO-anti-PD-L1具有專一性辨識的能力。流式細胞儀與磁振造影實驗結果得知此對比劑與目標受體結合的時間持久性。由體外細胞實驗與老鼠活體實驗的磁振造影結果證實SPIO-anti-PD-L1為有效的對比劑。本文研究已成功設計出用於PD-L1的高度專一性的功能性磁性奈米粒子,利用磁振造影確認其位置,可用於癌症的早期診斷。zh_TW
dc.description.abstractOur team designed the functional magnetic nanoparticle SPIO-anti-PD-L1 to be used as a contrast agent for magnetic resonance imaging. We synthesized superparamagnetic iron oxide nanoparticles and immobilized the surface by anti-PD-L1 antibody, which is highly specific to Programmed death-ligand 1 (PD-L1) presented in cancer cells. The dynamic light scattering showed that the hydrated particle size and surface zeta potential were 18.89 ± 3.931 nm and + 4.5 ± 2.32 mV, respectively. MTT assay showed that it was not toxic to cells. These two experiment showed that SPIO-anti-PD-L1 could be biocompatibility. We selected two cell lines for in vitro experiments, MDA-MB-231, human breast cancer cell line with PD-L1 high-performance and MCF7, human breast cancer cell line with PD-L1 low-expression. The western blotting and flow cytometry study showed that the antibodies effectively recognized the receptor on MDA-MB-231. The flow cytometry and in vitro magnetic resonance imaging showed that the time-point of SPIO-anti-PD-L1 bind to the target receptor and binding persistence. In vitro and in vivo magnetic resonance imaging experiments showed that SPIO-anti-PD-L1 was an effective contrast agent. Therefore, we believe the highly specific SPIO-anti-PD-L1 nanoparticles introduced in this study could potentially be used in MRI for early detection of cancer.en
dc.description.provenanceMade available in DSpace on 2021-06-17T04:26:27Z (GMT). No. of bitstreams: 1
ntu-107-R05458006-1.pdf: 2615411 bytes, checksum: 3d51f23a9bd1722d7a8fe6fb12a0f935 (MD5)
Previous issue date: 2018
en
dc.description.tableofcontentsContents
口試委員會審定書………………………………………………………………………i
誌謝………………………………………………………………………….……..……ii
中文摘要………………………………………………………………………..………iv
Abstract…………………………………………………………………………..…….v
Chapter 1 Introduction...................................................................................................1
1.1 Cancer treatment...............................................................................................2
1.1.1 Surgery...................................................................................................3
1.1.2 Radiation therapy...................................................................................4
1.1.3 Chemotherapy........................................................................................5
1.1.4 Gene therapy..........................................................................................7
1.1.5 Immunotherapy.....................................................................................10
1.2 Molecular medicine........................................................................................13
1.3 Biomedical imaging............................................................................15
1.4 Magnetic resonance imaging contrast agent……………………..…….…...21
1.4.1 Positive magnetic resonance contrast agents………………….…..…23
1.4.2 Negative magnetic resonance contrast agents…………………….…25
1.5 Media for immunotherapy - nano vectors……………………………….….27
1.5.1 High molecular polymer nano vectors................................................27
1.5.2 Synthesizing of iron oxide nanoparticles……………………….…...27
1.5.3 Types of synthesis SPION by thermal decomposition........................32
1.5.4 Biocompatible protective group…………………………………..…33
1.5.5 Relationship between PD-1, PD-L1 and anti-PD-L1…………….….34
1.6 Study purpose.................................................................................................34
Chapter 2 Materials and Methods................................................................................36
2.1 Instrument.......................................................................................................36
2.2 Reagents.........................................................................................................36
2.3 Synthesizing of SPION..................................................................................39
2.4 Synthesizing of SPIO-anti-PD-L1..................................................................40
2.4.1 Synthesizing of APTES-Ac.................................................................40
2.4.2 Synthesizing of mPEG-NBoc-silane...................................................40
2.4.3 Hydrolysis of mPEG-NBoc-silane…………………………………..41
2.4.4 Synthesizing of SPIO-mPEG-NH2.....................................................41
2.4.5 Synthesizing of SPIO-anti-PD-L1.......................................................41
2.5 Physical properties of nanomaterials and SPIO-anti-PD-L1…….……...…42
2.5.1 Particle size of nanomaterials..............................................................42
2.5.2 Zeta potential of nanomaterials…………………………..……….…43
2.5.3 Stability of nanomaterials....................................................................44
2.6 In vitro experiment.........................................................................................44
2.6.1 Cell line and its culture........................................................................44
2.6.2 PD-L1 performance by flow cytometry……………………….……45
2.6.3 Phagocytosis time identification by Flow cytometry………..………47
2.6.4 Western blot analysis...........................................................................49
2.6.5 Magnetic resonance imaging analysis.................................................50
2.6.6 Cell viability treated by SPIO-anti-PD-L1..........................................51
2.6.7 Confocal fluorescence microscope analysis........................................52
2.7 In vivo experiment.........................................................................................53
2.7.1 Magnetic resonance imaging analysis……………………………….54
Chapter 3 Results.........................................................................................................55
3.1 Physical properties of nanomaterials and SPIO-anti-PD-L1........................55
3.1.1 Particle size and zeta potential of nanomaterials.................................55
3.1.2 Stability of nanomaterials....................................................................56
3.2 In vitro experiment.........................................................................................58
3.2.1 PD-L1 performance by Flow cytometry……………………...…..…58
3.2.2 Phagocytosis time identification by Flow cytometry…………….….59
3.2.3 Western blot analysis...........................................................................61
3.2.4 Magnetic resonance imaging analysis.................................................62
3.2.5 Cell viability treated by SPIO-anti-PD-L1…………………………..65
3.2.6 Confocal fluorescence microscope analysis…………………........…66
3.3 In vivo experiment.........................................................................................68
3.3.1 Magnetic resonance imaging analysis.................................................68
Chapter 4 Discussion and future work.........................................................................71
References....................................................................................................................A
dc.language.isoen
dc.subject磁振造影zh_TW
dc.subject細胞程式死亡-配體1zh_TW
dc.subject對比劑zh_TW
dc.subject人乳腺癌細胞株zh_TW
dc.subject氧化鐵奈米粒子zh_TW
dc.subjectMRIen
dc.subjectPD-L1en
dc.subjectiron oxide nanoparticlesen
dc.subjectcontrast agenten
dc.subjecthuman breast cancer cell linesen
dc.title用於免疫療法之磁振分子顯影劑SPIO-anti-PD-L1zh_TW
dc.titleNanoparticle Contrast Agents SPIO-anti-PD-L1 for Magnetic Resonance Imaging in Immunotherapyen
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.oralexamcommittee王雲銘,許駿
dc.subject.keyword細胞程式死亡-配體1,氧化鐵奈米粒子,磁振造影,對比劑,人乳腺癌細胞株,zh_TW
dc.subject.keywordPD-L1,iron oxide nanoparticles,MRI,contrast agent,human breast cancer cell lines,en
dc.relation.page73
dc.identifier.doi10.6342/NTU201802863
dc.rights.note有償授權
dc.date.accepted2018-08-14
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept醫療器材與醫學影像研究所zh_TW
顯示於系所單位:醫療器材與醫學影像研究所

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  未授權公開取用
2.55 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved