請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70353
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳振川(Jenn-Chuan Chern) | |
dc.contributor.author | Yu-Lin Liao | en |
dc.contributor.author | 廖昱霖 | zh_TW |
dc.date.accessioned | 2021-06-17T04:26:23Z | - |
dc.date.available | 2019-08-19 | |
dc.date.copyright | 2018-08-19 | |
dc.date.issued | 2018 | |
dc.date.submitted | 2018-08-14 | |
dc.identifier.citation | [1] Chern, J. C., and Liu, T.C., 2009, “Life-Cycle Management of Sustainable Public Infrastructure,” Paper presented at the International Symposium on Infra-structure and Environment, sponsored by the Society for Social Management Systems, Kochi, Japan. (2010 SSMS Best Paper Award).
[2] 陳振川,2013,「積極構架健全工程環境–持續推動優質公共建設」,混凝土科技,台灣混凝土學會,第七卷,第四期,pp. 3-25。 [3] Hubler, M. H., Wendner, R., and Bažant, Z.P., 2015, “Comprehensive Data-base for Concrete Creep and Shrinkage: Analysis and Recommendations for Testing and Recording,” ACI Materials Journal, V. 112, NO. 112-M52, July, pp.547-558. [4] 陸景文,2001,「台灣地區混凝土橋梁溫度、彈性應變、潛變及乾縮特性之整合研究」,博士論文(指導教授:陳振川、詹穎雯),國立台灣大學土木工程學研究所,台北。 [5] 陸景文、陳振川、張國鎮、詹穎雯,2001,「台灣地區溫度對混凝土橋樑影響之監測與分析」,中國土木水利工程學刊,第13卷,第3期,pp.593-604。 [6] 劉庭愷,「建置及應用資料庫以發展台灣混凝土潛變預測公式」,碩士論文(指導教 授:陳振川),國立台灣灣大學土木工程學研究所 (2017) [7] 秦維邑,「建置及應用資料庫以發展台灣混凝土收縮預測公式」,碩士論文(指導教 授:陳振川),國立台灣灣大學土木工程學研究所 (2017) [8] 公共工程施工綱要規範第03315章,「自充填混凝土」(2010)。 [9] 陳育聖,「自充填混凝土之工程性質」,碩士論文(指導教授:詹穎雯),國立台灣大學土木工程學研究所 (2000) [10] 陳振川,「HPC國外發展與我國推動策略概論」,高性能混凝土研討會,台北市台灣大學 (1990)。 [11] 陳振川,「高性能混凝土整合推動計畫與國外經驗」,結構工程,第九卷,第一期,第7-23頁 (1994) [12] 陳振川、廖肇昌、黃然(主編),「混凝土施工自動化研討會論文集」,台北市台灣大學,223頁 (1998)。 [13] Chern, J.C., Hwang, C.L. and Tsai, D.H. “Research and Development of High Performance Concrete in Taiwan,” Concrete International, American Concrete Institute, Vol. 17, No. 10, pp. 71-76. (1995) [14] Mehta, P., and P. J.M. Monteiro, 1986, “Concrete Structure, Properties and Ma-terials,” Prentice- Hall inc., Englewood-Cliffs, N.J., 1986. [15] 陳振川、詹穎雯,1989,「飛灰與無飛灰混凝土之強度與變形」,中國土木水利工程學刊,第一卷,第一期,pp. 43-58。 [16] 詹穎雯,1987,「環境溫、濕度對含高爐石、飛灰與普通卜特蘭水泥混凝土強度之影響與變形之研究」,碩士論文(指導教授:陳振川),國立台灣大學土木工程學研究所,台北。 [17] 行政院公共工程委員會,2001,「公共工程高爐石混凝土使用手冊」。 [18] 行政院公共工程委員會,1999,「公共工程飛灰混凝土使用手冊」。 [19] 陳振川、高健章、詹穎雯、湯豐銘,1987,「不同環境溫、濕度對高爐水泥與卜特蘭水泥混凝土強度影響與變形之研究」,研究報告,財團法人台灣營建研究中心。 [20] Bažant, Z.P., and Chern, J. C., 1985, 'Concrete Creep at Variable Humidity: Constitutive Law and Mechanism', Materials and Structures, Vol. 18, No. 103, pp. 1-20. [21] Neville, A. M., Dilger, W. H., and Brooks, J. J., 1983, “Creep of Plain and Structural Concrete”, Longman Inc., New York. [22] Loman, W. R., 1940, “The Theory of Concrete Creep”, Proc, ASTM, Vol. 40, pp. 1082-1102. [23] Wagner, O., 1958, “Das Kriechen Unbewehrten Betons, Deutscher Ausschuss fur Stahlbeton, No. 131, Berlin, pp.74. [24] Brooks, J. J., Wainwright, P. J., and Boukendakji, M., 1992, “Influence of Salg Type and Replacement Level on Strength, Elasticity, Shrinkage, and Creep of Concrete,” ACI SP-132, pp.1325-1341. [25] 陳振川、詹穎雯,1986,「添加飛灰與高爐石粉混凝土之體積穩定探討」,高爐石與飛灰資源再混凝土工程上應用研討會,pp. 215-243。 [26] 陳振川,1987,「混凝土力學行為—強度」,混凝土施工技術研討會論文集,pp. 81-110。 [27] Ross, A. D., 1983, “The Creep of Blast Furnace Slag Cement Concrete,” ACI Journal, Vol. 8, pp. 43-52. [28] Tazawa, E., Yonekura, A., and Tanaka, S., 1989, “Drying Shrinkage and Creep of Concrete Containing Granulated Blast Furnace Slag,” ACI Special Publica-tion, Vol. 114, pp. 1325-1344. [29] Collins, F. G., and Sanjayan, J. G., “Effect of Pore Size Distribution on Drying Shrinking of Alkali-Activated Slalg Concrete,” Cement and Concrete Research 30, pp. 1401-1406. [30] Shariq, M., Prasad, J., and Abbas, H., 2016, “Creep and Drying Shrinkage of Concrete Containing GGBFS,” Cement and Concrete Composites, 68, pp. 35-45. [31] ACI Committee 232, 2002, “Use of Fly Ash in Concrete(ACI 232.2R-96),” American Concrete Institute. [32] Naganathan, S., and Linda, T., 2013, “Effect of Fly Ash Fineness on the Per-formance of Cement Mortar,” Jordan Journal of Civil Engineering, Vol. 7, NO. 3, pp. 326-331. [33] Lane, R. O., and Best, J. F., 1982, “Properties and Use of Fly Ash in Portland Cement Concrete,” Concrete International: Design & Construction, V. 4, No. 7, July, pp. 81-92. [34] Yuan, R. L., and Cook, J. E., 1983, “Study of Class C Fly Ash Concrete,” Fly Ash, Silica Fume, Slag and Other Mineral By-Products in Concrete, SP-79, American Concrete Institute, pp. 307-319. [35] Hansen, T.C., and K.E.C., Nielsen, 1965, “Influence of aggregate properties on concrete shrinkage,” ACI, pp.783. [36] Chern, J.C., Marchertas, A.H., and Bažant, Z.P., 1985, 'Concrete Creep at Transient Temperature: Constitutive Law and Mechanism', Proc. 8th Intern. Conf. on Struc. Mech. in Reactor Technology, Bressels, Belgium. [37] Raghavan, K. P., Sharma, B. S., Chattopadhyay, D., & Creep, S. (2002, No-vember). Chloride Permeability Properties of Self-Consolidating Concrete. In Proceedings, First North American Conference on the Design and Use of Self-Consolidating Concrete, Northwestern University, Evanston, IL, USA (pp. 341-347). [38] Attiogbe, E. K., See, H. T., & Daczko, J. A. (2002, November). Engineering properties of self-consolidating concrete. In Proceedings of the First North American Conference on the Design and Use of Self-Consolidating Concrete. [39] Issa, M., Alhassan, M., Shabila, H., & Krozel, J. (2005). Laboratory perfor-mance evaluation of self-consolidating concrete. In Proceeding of the Second North American Conference on the Des. and Use of Self Consolidating Con-crete and the Fourth Int. RILEM Symposium on Self-Consolidating Con-crete (pp. 857-862). [40] Naito, C. J., Parent, G., & Brunn, G. (2006). Performance of bulb-tee girders made with self-consolidating concrete. PCI journal, 51(6), 72-85. [41] Zheng, J., Chao, P., & Luo, S. (2009). 73. Experimental study on factors influ-encing creep of self-compacting concrete. In 2nd Int. Symposium on Design, Performance and Use of Self Consolidating Concrete (pp. 703-709). RILEM Publications sarl. [42] Kim, Y. H. (2008). Characterization of self-consolidating concrete for the design of precast, pretensioned bridge superstructure elements. Texas A&M University. [43] Kavanaugh, B. (2008). Creep Behavior of Self-Consolidating Con-crete (Doctoral dissertation). [44] Arezoumandi, M., Ezzell, M., & Volz, J. S. (2014). A comparative study of the mechanical properties, fracture behavior, creep, and shrinkage of chemically based self-consolidating concrete. Frontiers of Structural and Civil Engineer-ing, 8(1), 36-45. [45] Kim, Y. H., Trejo, D., Hueste, M. B. D., & Kim, J. J. (2011). Experimental Study on Creep and Durability of High-Early-Strength Self-Consolidating Concrete for Precast Elements. ACI Materials Journal, 108(2). [46] Cordoba, B. (2007). Creep and shrinkage of self-consolidating concrete (SCC) (Doctoral dissertation, University of Wyoming). [47] Schindler, A. K., Barnes, R. W., Kamgang, J. K., & Kavanaugh, B. (2017). Compliance of Self-Consolidating Concrete for Prestressed Applications. ACI Materials Journal, 114(2). [48] Trejo, D., Hueste, M. B. D., Kim, Y. H., & Atahan, H. (2008). Characterization of self-consolidating concrete for design of precast, prestressed bridge gird-ers (No. FHWA/TX-09/0-5134-2). [49] Jonathon Shlens, A Tutorial on Principal Component Analysis, December 10, 2005 [50] Collepardi, M., Borsoi, A., Collepardi, S., & Troli, R. (2005). Strength, shrink-age and creep of SCC and flowing concrete. In Second North American Con-ference on the Design and Use of Self-Consolidating Concrete and the Fourth International RILEM Symposium on Self-Compacting Concrete (pp. 911-920). [51] Loser, R., and A. Leemann. 'Shrinkage and restrained shrinkage cracking of self-compacting concrete compared to conventionally vibrated con-crete.' Materials and structures 42.1 (2009): 71-82. [52] Heirman, G., Vandewalle, L., Van Gemert, D., Boel, V., Audenaert, K., De Schutter, G, & Vantomme, J. (2008). Time-dependent deformations of limestone powder type self-compacting concrete. Engineering Structures, 30(10), 2945-2956. [53] Turcry, P., Loukili, A., Haidar, K., Pijaudier-Cabot, G., & Belarbi, A. (2006). Cracking tendency of self-compacting concrete subjected to restrained shrink-age: experimental study and modeling. Journal of Materials in Civil Engineer-ing, 18(1), 46-54. [54] Bocciarelli, M., Cattaneo, S., Ferrari, R., Ostinelli, A., & Terminio, A. (2018). Long-term behavior of self-compacting and normal vibrated concrete: Experi-ments and code predictions. Construction and Building Materials, 168, 650-659. [55] Aslani, F., & Maia, L. (2013). Creep and shrinkage of high-strength self-compacting concrete: experimental and analytical analysis. Magazine of Concrete Research. [56] Horta, A. (2005). Evaluation of Self-Consolidating Concrete for Bridge Struc-ture Applications (Doctoral dissertation, Georgia Institute of Technology). [57] Alghazali, H. H., & Myers, J. J. (2015, January). Creep and shrinkage of eco-logical self consolidating concrete. In International Conference on Perfor-mance-based and Life-cycle Structural Engineering (pp. 1619-1627). School of Civil Engineering, The University of Queensland. [58] El-Khoury, R. (2010). Creep and shrinkage behavior of self-consolidating con-crete (Doctoral dissertation, Ph. D. dissertation, Univ. of New Brunswick, New Brunswick, NJ, 200). [59] Maia, L., & Figueiras, J. (2012). Early-age creep deformation of a high strength self-compacting concrete. Construction and Building Materials, 34, 602-610. [60] Persson, B. (2001). A comparison between mechanical properties of self-compacting concrete and the corresponding properties of normal con-crete. Cement and concrete Research, 31(2), 193-198. [61] Kuder, K., Lehman, D., Berman, J., Hannesson, G., & Shogren, R. (2012). Mechanical properties of self consolidating concrete blended with high volumes of fly ash and slag. Construction and Building Materials, 34, 285-295. [62] Khatri, R. P., Sirivivatnanon, V., & Gross, W. (1995). Effect of different sup-plementary cementitious materials on mechanical properties of high perfor-mance concrete. Cement and Concrete Research, 25(1), 209-220. [63] Khatib, J. M. (2008). Performance of self-compacting concrete containing fly ash. Construction and Building Materials, 22(9), 1963-1971. [64] Long, W. J., & Khayat, K. H. (2011). Creep of prestressed self-consolidating concrete. Materials Journal, 108(5), 476-484. [65] Kristiawan, S. A., & Aditya, M. T. M. (2015). Effect of high volume fly ash on shrinkage of self-compacting concrete. Procedia Engineering, 125, 705-712. [66] Leemann, A., Lura, P., & Loser, R. (2011). Shrinkage and creep of SCC–The influence of paste volume and binder composition. Construction and Building Materials, 25(5), 2283-2289. [67] Larson, K. H. (2006). Evaluating the time-dependent deformations and bond characteristics of a self-consolidating concrete mix and the implication for pre-tensioned [sic] bridge applications (Doctoral dissertation, Kansas State Univer-sity). [68] Matthew, D., Ambrosia, D., Lange, D. A., & Brinks, A. J. (2005). Restrained shrinkage and creep of self-consolidating concrete. In 2nd North American Conference on Self Consolidating Concrete (pp. 921-928). [69] Kangvanpanich, K. (2002). Early age creep of self-compacting concrete using low heat cement at different Stress/Strength ratios (Doctoral dissertation, Kochi University of Technology). [70] Gross, S. P., Yost, J. R., & Gaynor, E. (2007). Experimental study of prestress land and camber in high-strength SCC beams. Special Publication, 247, 77-92. [71] Bažant, Z. P., & Jirásek, M. (2017). Creep and Hygrothermal Effects in Con-crete Structures. Springer. [72] Branson, D. E., and Christiason, M. L., 1971, “Time Depedent Concrete Prop-erties Related to Design—Strength and Elastic Properties, Creep and Shrinkage,” Creep, Shrinkage and Temperature Effects, SP-27, American Concrete Institute, Farmington Hills, MI, pp. 257-277. [73] ACI Committee 209, 1982, “Prediction of Creep, Shrinkage and Temperature Effects in Concrete Structures,” Designing for Creep and Shrinkage in Concrete Structures, A Tribute to Adrian Pauw, SP-76, American Concrete Institute, Farmington Hills, MI, pp. 193-300. [74] ACI Committee 209, 1992, “Prediction of Creep, Shrinkage, and Temperature Effects in Concrete Structures (ACI 209R-92),” American Concrete Institute, Farmington Hills, MI, 47 pp. [75] AASHTO, 2014, “AASHTO LRFD Bridge Design Specifications. 7 th ed,” American Association of State Highway and Transportation Officials (AASH-TO), Washington DC. [76] Gardner, N. J., and Lockman, M. J., 2004, “Is Superposition of Creep Strains Valid for Concretes Subjected to Drying Creep?” ACI Materials Journal, V. 101, NO. 5, Sept.-Oct., pp.409-415. [77] Gardner, N. J., and Lockman, M. J., 2001, “Design Provisions for Drying Shrinkage and Creep of Normal Strength Concrete,” ACI Materials Journal, V. 98, NO. 2, Mar.-Apr., pp. 159-167. [78] CEB, 1991, “Evaluation of the Time Dependent Properties of Concrete,” Bulle-tin d’Information NO. 199, Comite European du Beton/Federation Internatio-nale de la Precontrainte, Lausanne, Switzerland, 201 pp. [79] CEB, 1999, “Structural Concrete—Textbook on Behaviour, Design and Per-formance. Updated Knowledge of the CEB/FIP Model Code 1990,” fib Bulle-tin 2, V. 2, Federation Internationale du Beton, Lausanne, Switzerland, pp. 37-52. [80] Bažant, Z.P., and Baweja, S., 1995, “Creep and Shrinkage Prediction Model for Analysis and Design of Concrete Structures: Model B3,” Materials and Struc-tures, Vol. 28, pp. 357-365, 415-430, 488-495. [81] Bažant, Z.P., Hubler, M.H., and Wendner, R., 2015, “Model B4 for Creep, Drying Shrinkage and Autogenous Shrinkage of Normal and High-strength Concretes with Multi-decade Applicability,” RILEM Recommendation TC-242-MDC. [82] ACI Committee 209, 2008, “Guide for Modeling and Calculating Shrinkage and Creep in Hardened Concrete (ACI 209.2R-08),” American Concrete Instti-tute. [83] Bažant, Z.P., L.Panula, 1978, “Practical prediction of time-dependent defor-mations of concrete”, Materials and Structures, Vol.11, Issue 5, pp.317-328. [84] Han, B., Xie, H. B., Zhang, D. J., & Ma, X. (2016). Sensitivity analysis of creep models considering correlation. Materials and Structures, 49(10), 4217-4227. [85] Muller, H. S., and Hilsdorf, H. K., 1990, “General Task Group 9,” CEB Comit’e Euro-International du Beton, Paris, France, pp. 201. [86] 高健章、林正直,1970,「混凝土受均佈壓力及均變分佈壓力之初期潛變」,材料科學,第二卷,第三期。 [87] 孫志誠,1975,「養護環境對混凝土潛變之影響」,碩士論文(指導教授:高健章),國立台灣大學土木工程學研究所,台北。 [88] 高健章、張阿本、孫志誠,1975,「各種養護環境之混凝土潛變及其極限值」,材料科學,第二卷,第三期。 [89] 黃裔炎,1985,「大壩混凝土之潛變試驗研究」,碩士論文(指導教授:高健章),國立台灣大學土木工程學研究所,台北。 [90] 張行健,1987,「混凝土大壩熱黏彈性有限元素分析與潛變試驗」,碩士論文(指導教授:陳振川),國立台灣大學土木工程學研究所,台北。 [91] 陳振川、高健章、陳清泉,1987,「縱貫線下大甲溪橋U型梁載重試驗及相關試驗研究」,研究報告,財團法人台灣營建研究中心。 [92] 林宜楷,2010,「高強度高細度爐石粉混凝土潛變與乾縮行為之研究」,碩士論文(指導教授:詹穎雯),國立台灣大學土木工程學研究所,台北。 [93] 吳鎮吉,2012,「高摻量飛灰混凝土應用於連續壁及基礎版之工程性質探討」,碩士論文(指導教授:詹穎雯),國立台灣大學土木工程學研究所,台北。 [94] 侯錫璋,1988,「混凝土潛變預測模式之發展與爐石骨材混凝土之長期行為研究」,碩士論文(指導教授:陳振川),國立台灣大學土木工程學研究所,台北。 [95] 楊錦懷,1989,「纖維加強水泥複合材料之乾縮、黏彈與破裂行為研究」,博士論文(指導教授:陳振川、陳清泉),國立台灣大學土木工程學研究所,台北。 [96] Chern, J.C., 1984, “Creep Law of Concrete, Its Uncertainty and Effects of Drying and Cracking,” PhD Dissertation (advised by Bažant, Z. P.), North-western University. [97] Chern, J.C., Young, C.H., 1990, “Study on the Factors Influencing the Drying Shrinkage of Steel Fiber Reinforced Concrete,” ACI Materials Journal, Vol. 87, No. 2, 123-129. [98] Chern, J.C.,and Young, C.H., 1991, “Practical Prediction Model for Shrinkage of Steel Fibre Reinforced Concrete,” Materials and Structures, Vol. 24, pp.191-201. [99] Chern, J.C. and Young, C.H., (1992), 'Pickett Effect and Creep in Flexure of Steel-Fiber Reinforced Concrete,' J. of the Chinese Institute of Engineers, Vol. l5, No. 6, pp. 695-702. [100] 吳賴雲、張阿本、李振昌,1995,「中山高汐五段高架拓寬工程圓山-台北段試驗混凝土潛變與乾縮性質研究」,研究報告,財團法人台灣營建研究中心。 [101] 張燕京、陳振川、陳清泉、張國鎮、詹穎雯,1996,「預力混凝土箱型梁上部結構自動工法個案研究-支撐先進工法(南二高台南環線C372標工程)」,研究報告,財團法人台灣營建研究中心。 [102] 詹穎雯、周浩生,1998,「高速公路王田交流道工程混凝土材料潛變與乾縮性質研究」,研究報告,財團法人台灣營建研究中心。 [103] 駱國富,1996,「高性能混凝土預力粱預力損失與長期變位之研究」,碩士論文(指導教授:陳振川),國立台灣大學土木工程學研究所,台北。 [104] 謝明宏,1999,「自充填混凝土之本土化研究」,碩士論文(指導教授:詹穎雯),國立台灣大學土木工程學研究所,台北。 [105] 陳宗賢,2005,「自充填混凝土預力大梁長期載重行為之研究」,碩士論文(指導教授:詹穎雯),國立台灣大學土木工程學研究所,台北。 [106] 孫昌政,2012,「高流動化混凝土應用於橋梁工程之配比設計」,碩士論文(指導教授:詹穎雯),國立台灣大學土木工程學研究所,台北。 [107] 黃兆龍,蘇南,1979,「台灣主要河川粗骨材資源、岩性及巨觀工程性質之探討」,土木水利,第十六卷,第二期,第61-76頁。 [108] 王丞,「建置及應用資料庫以發展台灣自充填混凝土收縮預測公式」,碩士論文(指導教 授:陳振川),國立台灣灣大學土木工程學研究所 (2017) [109] 黃兆龍,蘇南,1980,「台灣北中部主要河川粗骨材巨觀工程性質之研究」,土木水利,第17卷,第1期,第43-59頁。 [110] 經濟部中央地質調查所,1972,「台灣地區陸上砂石資源調查與研究報告」。 [111] Bažant, Z.P., ASCE, F., and Chern, J. C., 1987, “Stress-Induced Thermal and Shrinkage Strains in Concrete,” Journal of Engineering Mechanics, Vol. 113, pp.1493-1511. [112] 廖文正、林致淳、詹穎雯,2016,「台灣混凝土彈性模數建議公式研究」,結構工程,Vol. 31, NO.3, pp.5-31。 [113] Farhad Aslani,(2014), “Creep behaviour of normal- and high-strength self-compacting concrete”, Structural Engineering and Mechanics, Vol. 53, No. 5 (2015) 921-938 [114] Wendner, R., Hubler, M. H., and Bažant, Z.P., 2015, “Statistical Justification of Model B4 for Multi-Decade Concrete Creep Using Laboratory and Bridge Da-tabases and Comparisons to Other Models,” Materials and Structures, Vol. 48, pp. 815-833. [115] Poppe, A. M., & De Schutter, G. (2005, May). Creep and shrinkage of self-compacting concrete. In First International Symposium on Design, Perfor-mance and Use of Self-Consolidating Concrete, China (pp. 329-336) | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70353 | - |
dc.description.abstract | 工程設計應考慮強度、變形與耐久性三方面,但台灣的結構設計中變形與耐久性問題常常被忽視。台灣目前自充填混凝土工程設計均依照搗實混凝土規範設計,依循國外規範修訂,但在各地區之組成材料、配比均有所差異,且搗實混凝土與自充填混凝土也存在著明顯的工程性質差異。綜合以上,直接使用國外規範勢必會嚴重影響混凝土結構物變形與耐久性的設計及評估。
世界針對混凝土潛變收縮已有長期的試驗與研究發展,而自充填混凝土經過近二十多年研究發展已在台灣工程上普遍使用,然而其變形特性仍待深入探討。本研究先依國際格式蒐集國內外各自充填混凝土潛變資料,建立「自充填混凝土潛變資料庫」。通過自充填混凝土資料庫與搗實混凝土資料庫交叉比對與文獻探討,找出自充填混凝土配比有高膠結材量、低骨膠比、低水膠比、高總粒料量等特性;再經透過國內與國外自充填混凝土資料分析與文獻探討,找出台灣自充填混凝土有高取代率、高砂率、高骨膠比、高細粒料量等特性;最後經過Principal Component Analysis (PCA)的參數分析判別出砂率及粗細粒料量、漿體量、骨膠比、總粒料量為配比中重要參數。 本研究經評估比對後選用Model B4修正而來之Model B4-TW潛變預測公式為基礎,針對自充填混凝土特性及本土化特性進行修正。修正內容主要為漿體量造成變形影響、砂率造成之變形影響、乾燥收縮變化造成乾燥潛變之影響,最後提出適用於台灣自充填混凝土的潛變預測公式。另外,因台灣搗實混凝土資料庫中爐石與飛灰混凝土之潛變資料量不足造成爐石與飛灰的行為無法確切掌握,亦導致本研究本土化特性中高取代率修正上的困難,故本研究也指出未來加強實驗研究之建議。 | zh_TW |
dc.description.abstract | The strength, deformation and durability should be considered in engineering design, but the problems of deformation and durability are usually ignored in Taiwan’s structural design. At present, the design of Self-Compacting Concrete (SCC) projects in Taiwan are all designed according to Vibrated Concrete’s (VC) codes which are revised from foreign countries, but there are differences in the composition and proportion of the materials in various regions, and obvious differences between the Vibrated Concrete and Self-Compacting Concrete in engineering properties. Above all, the use of foreign codes will seriously affect the design and evaluation of deformation and durability of concrete structures.
Tests and researches on the creep and shrinkage of concrete have been developed over several decades at various places around the world, and Self-Compacting Concrete has been widely used in Taiwan engineering after nearly 20 years of research and development. However, its deformation characteristics still needs more investigation. In this study, the data of creep deformation in Taiwan and abroad were collected follows the framework and parameters of the Northwestern University (NU) database to establish Taiwan’s Self-Compacting Concrete creep database. First, through the comparison be-tween the Self-Compacting Concrete database and Vibrated Concrete database, it is found that the proportion of the Self-Compacting Concrete has the characteristics of high cementing material weight, low aggregate cementing ratio, low water-cementing ratio and high total aggregate weight. Second, through the analysis of Taiwan and foreign Self-Compacting Concrete data, it is found that Self-Compacting Concrete in Taiwan has the characteristics of high replacement rate, high sand ratio, high aggregate cementing ratio and high fine aggregate weight. Finally, Through the Principal Component Analysis, it is found that sand ratio, fine and coarse aggregate weight, total aggregate weight, cementing material weight are the important parameter in the mixture. Based on the Model B4-TW creep prediction formula which was modified by Model B4, this study revised the characteristics of Self-Compacting Concrete and the localization. The modification is mainly about the effect of high volume of cementing material weight and high sand ratio, as well as the effect of drying shrinkage changes on the drying creep. In addition, Due to the lack of data for slag and fly ash concrete creep in the Taiwan database, the behavior of slag and fly ash cannot be investigated accurately, which leads to the difficulty in correcting the high replacement rate in the localization of this study. Therefore, suggestions for further experiments are proposed to promote the formulation of prediction formulae. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T04:26:23Z (GMT). No. of bitstreams: 1 ntu-107-R05521242-1.pdf: 7793498 bytes, checksum: 8490556a9d9e828472235f3225d32bcc (MD5) Previous issue date: 2018 | en |
dc.description.tableofcontents | 誌謝 I
摘要 II ABSTRACT III 目錄 V 表目錄 X 圖目錄 XII 第一章、 緒論 1 1.1. 研究動機與目的 1 1.2. 研究範圍與內容 1 1.2.1 研究範圍 1 1.2.2 研究內容 2 1.3. 研究方法 3 1.4. 研究流程圖 4 第二章、 文獻回顧 5 2.1. 自充填混凝 5 2.1.1 自充填混凝土之定義 5 2.1.2 台灣自充填混凝土之發展 5 2.2. 卜作嵐材料(POZZOLANIC MATERIALS) 6 2.2.1 水淬高爐爐碴 7 2.2.2 飛灰 7 2.3. 混凝土之潛變 8 2.3.1 混凝土潛變機制 8 2.3.2 影響混凝土潛變之因素 11 2.4. 自充填混凝土之潛變 18 2.4.1 搗實混凝土與自充填混凝土之潛變比較 18 2.4.2 影響自充填混凝土潛變之因素 23 2.4.3 小結 27 2.5. MODEL B4潛變機理 28 2.5.1 漸近彈性(Asymptotic elastic) 28 2.5.2 黏彈性(viscoelastic) 28 2.5.3 流性(flow) 30 2.5.4 乾燥潛變(drying creep) 31 2.6. PRINCIPAL COMPONENT ANALYSIS (PCA) 32 2.6.1 分析原理簡述 33 2.6.2 分析步驟 34 第三章、 國內外混凝土潛變規範與統計指標 35 3.1. 國內外混凝土潛變預測公式 35 3.1.1 ACI Committee 209R-92 35 3.1.2 AASHTO LRFD 2014 37 3.1.3 GL2000 38 3.1.4 CEB MC90-99 40 3.1.5 CEB MC10 44 3.1.6 Model B3 47 3.1.7 Model B4 50 3.1.8 Model CCL 58 3.1.9 Model B4-TW 60 3.2. 國外自充填混凝土潛變預測式 64 3.2.1 Poppe and De Schutter 64 3.2.2 Larson 66 3.2.3 Cordoba 66 3.3. 各統計指標簡介 68 3.3.1 ACI 209.2R-08收錄統計指標 68 3.3.2 常見之統計指標 73 3.4. 預測式敏感度分析 75 第四章、 國內外混凝土收縮潛變資料庫 77 4.1. 國內混凝土收縮潛變研究沿革 77 4.2. 國內外混凝土資料庫整理 78 4.3. 自充填混凝土潛變資料庫簡介 79 4.4. 搗實混凝土與自充填混凝土之比較 81 4.4.1 資料比較母體 82 4.4.2 比較結果 82 4.5. 國內外自充填混凝土資料庫比較 83 4.5.1 資料比較母體 83 4.5.2 比較結果 84 4.5.3 台灣粒料特性 85 第五章、 潛變預測公式選用 88 5.1. 實驗值問題 89 5.1.1 誤差來源 89 5.1.2 篩選資料 92 5.1.3 自充填混凝土資料庫篩選結果 93 5.2. 國內混凝土潛變資料庫與規範之比較 95 5.2.1 自充填混凝土之基本潛變 96 5.2.2 自充填混凝土之乾室總潛變 110 5.3. 潛變預測公式選用及綜合討論 123 第六章、 MODEL B4-TW(SCC)潛變公式發展 125 6.1. 自充填混凝土潛變之參數探討 125 6.1.1 PCA 126 6.1.2 確定修正或新增參數 129 6.2. 自充填混凝土基本潛變公式發展 130 6.2.1 漿體量修正 130 6.2.2 砂率修正 132 6.2.3 取代量修正 134 6.3. 自充填混凝土乾室總潛變公式發展 135 6.3.1 乾燥潛變公式修改 135 6.3.2 漿體量 138 6.3.3 砂率 138 6.4. 自充填混凝土潛變公式綜合比較 139 6.4.1 各影響混凝土潛變之因素探討 139 6.4.2 各國統計指標探討 141 6.5. 台灣自充填混凝土潛變預測建議公式 144 第七章、 結論與建議 156 7.1. 結論 156 7.2. 建議 157 參考文獻 158 附錄.自充填混凝土潛變資料庫 171 | |
dc.language.iso | zh-TW | |
dc.title | 建置及應用資料庫以發展台灣自充填混凝土潛變預測公式 | zh_TW |
dc.title | Developing Taiwan's Self-Compacting Concrete Creep Prediction Formula Based on the Establishment and Application of Database | en |
dc.type | Thesis | |
dc.date.schoolyear | 106-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 詹穎雯,廖文正,歐昱辰,王炤烈 | |
dc.subject.keyword | 自充填混凝土,長期變形,潛變,資料庫, | zh_TW |
dc.subject.keyword | Self-Compacting Concrete,prediction,creep,database, | en |
dc.relation.page | 227 | |
dc.identifier.doi | 10.6342/NTU201803358 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2018-08-14 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 土木工程學研究所 | zh_TW |
顯示於系所單位: | 土木工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-107-1.pdf 目前未授權公開取用 | 7.61 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。