請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70352完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 董桂書(Kuei-Shu Tung) | |
| dc.contributor.author | Meng-Yu Yang | en |
| dc.contributor.author | 楊梦雨 | zh_TW |
| dc.date.accessioned | 2021-06-17T04:26:22Z | - |
| dc.date.available | 2023-08-19 | |
| dc.date.copyright | 2018-08-19 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2018-08-14 | |
| dc.identifier.citation | Acosta, I., Ontoso, D., and San-Segundo, P. A. (2011). The budding yeast polo-like kinase Cdc5 regulates the Ndt80 branch of the meiotic recombination checkpoint pathway. Mol. Biol. Cell 22, 3478-3490.
Benjamin, K. R., Zhang, C., Shokat, K. M., and Herskowitz, I. (2003). Control of landmark events in meiosis by the CDK Cdc28 and the meiosis-specific kinase Ime2. Genes Dev. 17, 1524-1539. Birnboim, H., and Doly, J. (1979). A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acid Res. 7, 1513–1523. Booher, R. N., Deshaies, R. J., and Kirschner, M. W. (1993). Properties of Saccharomyces cerevisiae wee1 and its differential regulation of p34CDC28 in response to G1 and G2 cyclins. EMBO J. 12, 3417-3426. Cha, R. S., Weiner, B. M., Keeney, S., Dekker, J., and Kleckner, N. (2000). Progression of meiotic DNA replication is modulated by interchromosomal interaction proteins, negatively by Spo11p and positively by Rec8p. Genes Dev. 14, 493-503. Chen, Q., Thorpe, J., Dohmen, J. R., Li, F., and Keller, J. N. (2006). Ump1 extends yeast lifespan and enhances viability during oxidative stress: central role for the proteasome? Free Radic. Biol. Med. 40, 120-126. Chu, S., DeRisi, J., Eisen, M., Mulholland, J., Botstein, D., Brown, P. O., and Herskowitz, I. (1998). The transcriptional program of sporulation in budding yeast. Science 282, 699-705. Chu, S., and Herskowitz, I. (1998). Gametogenesis in yeast is regulated by a transcriptional cascade dependent on Ndt80. Mol. Cell 1, 685-696. Clifford, D. M., Marinco, S. M., and Brush, G. S. (2004). The meiosis-specific protein kinase Ime2 directs phosphorylation of replication protein A. J. Biol. Chem. 279, 6163-6170. Clifford, D. M., Stark, K. E., Gardner, K. E., Hoffmann-Benning, S., and Brush, G. S. (2005). Mechanistic insight into the Cdc28-related protein kinase Ime2 through analysis of replication protein A phosphorylation. Cell Cycle 4, 1826-1833. Collins, I., and Newlon, C. S. (1994). Chromosomal DNA replication initiates at the same origins in meiosis and mitosis. Mol. Cell. Biol. 14, 3524-3534. Corbi, D., Sunder, S., Weinreich, M., Skokotas, A., Johnson, E. S., and Winter, E. (2014). Multisite phosphorylation of the Sum1 transcriptional repressor by S-phase kinases controls exit from meiotic prophase in yeast. Mol. Cell. Biol. 34, 2249-2263. Diffley, J. F. (1994). Eukaryotic DNA replication. Curr. Opin. Cell Biol. 6, 368-372. Diffley, J. F., & Cocker, J. H. (1992). Protein-DNA interactions at a yeast replication origin. Nature 357, 169. Dirick, L., Goetsch, L., Ammerer, G., and Byers, B. (1998). Regulation of meiotic S phase by Ime2 and a Clb5, 6-associated kinase in Saccharomyces cerevisiae. Science 281, 1854-1857. Escalante-Chong, R., Savir, Y., Carroll, S. M., Ingraham, J. B., Wang, J., Marx, C. J., and Springer, M. (2015). Galactose metabolic genes in yeast respond to a ratio of galactose and glucose. Proc. Natl. Acad. Sci. USA 112, 1636-1641. Fragkos, M., Ganier, O., Coulombe, P., and Méchali, M. (2015). DNA replication origin activation in space and time. Nat. Rev. Mol. Cell Biol. 16, 360. Furuno, N., Nishizawa, M., Okazaki, K., Tanaka, H., Iwashita, J., Nakajo, N., et al. (1994). Suppression of DNA replication via Mos function during meiotic divisions in Xenopus oocytes. EMBO J. 13, 2399-2410. Futcher, B. (2008). Cyclins in meiosis: lost in translation. Dev. Cell 14, 644-645. Gurevich, V., and Kassir, Y. (2010). A switch from a gradient to a threshold mode in the regulation of a transcriptional cascade promotes robust execution of meiosis in budding yeast. PLoS One 5, e11005. Guttmann-Raviv, N., Boger-Nadjar, E., Edri, I., and Kassir, Y. (2001). Cdc28 and Ime2 possess redundant functions in promoting entry into premeiotic DNA replication in Saccharomyces cerevisiae. Genetics 159, 1547-1558. Guttmann-Raviv, N., Martin, S., and Kassir, Y. (2002). Ime2, a Meiosis-Specific Kinase in Yeast, Is Required for Destabilization of Its Transcriptional Activator, Ime1. Mol. Cell. Biol. 22, 2047-2056. Hepworth, S. R., Friesen, H., and Segall, J. (1998). NDT80 and the meiotic recombination checkpoint regulate expression of middle sporulation-specific genes in Saccharomyces cerevisiae. Mol. Cell. Biol. 18, 5750-5761. Herskowitz, I. (1988). Life cycle of the budding yeast Saccharomyces cerevisiae. Microbiol. Rev. 52, 536. Holt, L. J., Hutti, J. E., Cantley, L. C., and Morgan, D. O. (2007). Evolution of Ime2 phosphorylation sites on Cdk1 substrates provides a mechanism to limit the effects of the phosphatase Cdc14 in meiosis. Mol. Cell 25, 689-702. Ito, H., Fukuda, Y., Murata, K., & Kimura, A. (1983). Transformation of intact yeast cells treated with alkali cations. J. Bacteriol. 153, 163-168. Johnston, M. (1987). A model fungal gene regulatory mechanism: the GAL genes of Saccharomyces cerevisiae. Microbiol. Rev. 51, 458. Kelly, T. J., and Brown, G. W. (2000). Regulation of chromosome replication. Annu. Rev. Biochem. 69, 829-880. Lacefield, S. (2014). CDK modulation coordinates G1 events after S phase. Cell Cycle. 13, 683-4. Lee, K. S., Park, J. E., Asano, S., and Park, C. J. (2005). Yeast polo-like kinases: functionally conserved multitask mitotic regulators. Oncogene 24, 217-229. Maniatis, T., Fritsch, E. F., and Sambrook, J. (1982). Molecular cloning: A Laboratory Manual,Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press. 545. McCarroll, R. M., and Esposito, R. E. (1994). SPO13 negatively regulates the progression of mitotic and meiotic nuclear division in Saccharomyces cerevisiae. Genetics 138, 47-60. Mitchell, A. P. (1994). Control of meiotic gene expression in Saccharomyces cerevisiae. Microbiol. Rev. 58, 56-70. Mitchell, A. P., Driscoll, S. E., and Smith, H. E. (1990). Positive control of sporulation-specific genes by the IME1 and IME2 products in Saccharomyces cerevisiae. Mol. Cell. Biol. 10, 2104-2110. Najor, N. A., Weatherford, L., and Brush, G. S. (2016). Prevention of DNA Rereplication Through a Meiotic Recombination Checkpoint Response. G3 (Bethesda) 6, 3869-3881. Neiman, A. M. (2005). Ascospore formation in the yeast Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 69, 565-584. Neiman, A. M. (2011). Sporulation in the budding yeast Saccharomyces cerevisiae. Genetics 189, 737-765. Nguyen, V. Q., and Li, J. J. (2001). Cyclin-dependent kinases prevent DNA re-replication through multiple mechanisms. Nature 411, 1068. Roeder, G. S., and Bailis, J. M. (2000). The pachytene checkpoint. Trends Genet. 16, 395-403. Roth, R. (1973). Chromosome replication during meiosis: identification of gene functions required for premeiotic DNA synthesis. Proc. Natl. Acad. Sci. USA 70, 3087-3091. Sambrook, J., and Russell, D. (2001). Molecular Cloning: A Laboratory Manual,Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press. Sari, F., Heinrich, M., Meyer, W., Braus, G. H., and Irniger, S. (2008). The C-terminal region of the meiosis-specific protein kinase Ime2 mediates protein instability and is required for normal spore formation in budding yeast. J. Mol. Biol. 378, 31-43. Schell, M., and Wilson, D. (1977). Purification and properties of galactokinase from Saccharomyces cerevisiae. J. Biol. Chem. 252, 1162-1166. Sherman, F., Fink, G. R., and Hicks, J. B. (1986). Methods in Yeast Genetics: A Laboratory Manual, Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press. Simchen, G. (1974). Are mitotic functions required in meiosis? Genetics 76, 745-753. Sourirajan, A., and Lichten, M. (2008). Polo-like kinase Cdc5 drives exit from pachytene during budding yeast meiosis. Genes Dev. 22, 2627-2632. Stillman, B. (1996). Cell cycle control of DNA replication. Science 274, 1659-1663. Stillman, B., Bell, S. P., Dutta, A., and Marahrens, Y. (2008). DNA replication and the cell cycle. Ciba Found. Symp. 170, 147. Strich, R. (2004). Meiotic DNA replication. Curr. Top. Dev. Biol. 61, 29-60. Subramanian, V. V., and Hochwagen, A. (2014). The meiotic checkpoint network: step-by-step through meiotic prophase. Cold Spring Harb. Perspect. Biol. 6, a016675. Truong, L. N., and Wu, X. (2011). Prevention of DNA re-replication in eukaryotic cells. J. Mol. Cell Biol. 3, 13-22. Tung, K.-S., Hong, E.-J. E., and Roeder, G. S. (2000). The pachytene checkpoint prevents accumulation and phosphorylation of the meiosis-specific transcription factor Ndt80. Proc. Natl. Acad. Sci. 97, 12187-12192. Vershon, A. K., & Pierce, M. (2000). Transcriptional regulation of meiosis in yeast. Curr. Opin. Cell Biol. 12, 334-339. Wang, Y., Chang, C. Y., Wu, J. F., and Tung, K. S. (2011). Nuclear localization of the meiosis-specific transcription factor Ndt80 is regulated by the pachytene checkpoint. Mol. Biol. Cell 22, 1878-1886. Wilkins, A. S., and Holliday, R. (2009). The evolution of meiosis from mitosis. Genetics 181, 3-12. Winter, E. (2012). The Sum1/Ndt80 transcriptional switch and commitment to meiosis in Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 76, 1-15. Xu, L., Ajimura, M., Padmore, R., Klein, C., and Kleckner, N. (1995). NDT80, a meiosis-specific gene required for exit from pachytene in Saccharomyces cerevisiae. Mol. Cell. Biol. 15, 6572-6581. Yoshida, M., Kawaguchi, H., Sakata, Y., Kominami, K.-i., Hirano, M., Shima, H., et al. (1990). Initiation of meiosis and sporulation in Saccharomyces cerevisiae requires a novel protein kinase homologue. Mol. Gen. Genet. 221, 176-186. Zamb, T., and Roth, R. (1977). Role of mitotic replication genes in chromosome duplication during meiosis. Proc. Natl. Acad. Sci. 74, 3951-3955. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70352 | - |
| dc.description.abstract | 有絲分裂會進行一次DNA複製與一次核分裂,而減數分裂被視為由有絲分裂演化而來,但在一次的染色體複製後,卻有連續二次的核分裂。目前對於出芽酵母菌(Saccharomyces cerevisiae)在減數分裂二次核分裂之間如何去防止DNA再複製尚未清楚。Ndt80是一個減數分裂特定轉錄因子,本實驗室發現將其異位表現在營養生長細胞中,會使細胞生長停滯在G1時期,抑制DNA複製。由於Nd80在減數分裂的表現時間以及實驗觀察到的抑制DNA複製效應,因此提出一個假設:Ndt80可能參與防止兩次核分裂間DNA再複製的調控。
在近期的研究中,本實驗室利用半乳糖啟動子將Ndt80在細胞進入減數分裂前提早表現,結果發現細胞的DNA複製會受到抑制。本研究中,我們亦利用偵測減數分裂特定表現蛋白Ime2,確認受到抑制的是減數分裂的DNA複製 (pre-meiotic DNA replication)。然而,相較於異位表現Ndt80在營養生長細胞中完全抑制DNA複製,減數分裂的DNA複製僅受到部分抑制。由於酵母菌會代謝半乳糖,我們推測減數分裂的DNA複製僅受到部分抑制是因為使用減量的半乳糖濃度很快被代謝之故。因此我們剔除GAL1基因試圖讓半乳糖的代謝減緩。結果顯示剔除GAL1基因確實使Ndt80的表現量增加,且使抑制減數分裂DNA複製的效應增強。 此外,本實驗室藉由調控Cdc28活性配合NDT80剔除,發現唯有在完成減數分裂DNA複製的ndt80細胞中短暫抑制Cdc28活性才會造成DNA再複製。然而,NDT80基因的剔除也會使細胞週期停滯在粗絲期,為排除是粗絲期停滯造成DNA再複製的可能性,因此我們利用IME2啟動子將CDC5表現在ndt80基因剔除的細胞,使細胞得以離開粗絲期,結果發現DNA仍會進行再複製,因此推論應當是Ndt80直接參與減數分裂中防止DNA再複製的機制。 | zh_TW |
| dc.description.abstract | Our previous studies showed that ectopic expression of Ndt80 in mitotic cells caused cells to arrest at G1 phase and prohibit DNA replication. Considering the repression of DNA replication by Ndt80 and the expression period of Ndt80 during meiosis, it was proposed that Ndt80 might be involved in repressing another round of DNA replication during the two meiotic divisions.
Our recent studies have showed that precocious expression of Ndt80 before induction for meiosis could repress pre-meiotic DNA synthesis. The repressed DNA replication was confirmed again to be pre-meiotic by the induction of Ime2. Compared to the full repression of mitotic DNA replication by Ndt80, the repression of pre-meiotic DNA replication was only partial. Since the concentration of galactose used in meiotic experiment was much less than in the cell. Therefore, we deleted the GAL1 gene to slow down galactose metabolism, and found that both the expression level of Ndt80 and the repression of pre-meiotic DNA replication by Ndt80 were increased. Furthermore, our lab has showed that DNA re-replication occurred after pre-meiotic DNA replication in ndt80 null mutants after transient inhibition of Cdc28 activity. Nevertheless, the ndt80 null cells arrest at the pachytene stage, and we could not rule out the possibility that the DNA re-replication was due to the arrest, but not the absence of Ndt80. To clarify this problem, we constructed the cdc28-as1/cdc28-as1 ndt80Δ/ndt80Δ pIME2-CDC5/CDC5 strain which was assumed to be able to exit from pachytene arrest. The results showed that cells still performed DNA re-replication after transient inhibition of Cdc28 activity, indicating that Ndt80 is involved in regulating DNA replication during meiosis. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T04:26:22Z (GMT). No. of bitstreams: 1 ntu-107-R04b43002-1.pdf: 8889874 bytes, checksum: a7285577178a89b9d88ec5789772d721 (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | 中文摘要 -------------------------------------------------------------------------------- i
ABSTRACT -------------------------------------------------------------------------------------- ii TABLE OF CONTENTS----------------------------------------------------------------------- iv LIST OF TABLES ----------------------------------------------------------------------------- viii LIST OF FIGURES ----------------------------------------------------------------------------- ix CHAPTER 1. INTRODUCTION ------------------------------------------------------------ 1 I. Sporulation in Saccharomyces cerevisiae ------------------------------------------------ 1 Initiation -------------------------------------------------------------------------------------- 1 Meiosis --------------------------------------------------------------------------------------- 2 Spore formation ----------------------------------------------------------------------------- 2 The regulatory cascade controls the events of sporulation in yeast------------------- 3 II. Regulation of DNA replication------------------------------------------------------------ 4 Mitotic DNA replication---------------------------------------------------------------- 5 Pre-meiotic DNA replication----------------------------------------------------------- 6 Kinase involved in DNA replication------------------------------------------------------ 6 The control of once and only once DNA replication------------------------------------ 8 III. Progression through meiotic nuclear division ------------------------------------------ 9 The pachytene stage------------------------------------------------------------------------- 9 NDT80 --------------------------------------------------------------------------------------- 10 CDC5---------------------------------------------------------------------------------------- 11 IV. Ndt80 and pre-meiotic DNA replication----------------------------------------------- 12 Ectopic expression of Ndt80 -------------------------------------------------------------- 12 Transient inhibition of Cdc28-as1 activity in the ndt80Δ cells ----------------------- 13 V. Specific aims and strategy---------------------------------------------------------------- 14 CHAPTER 2. MATERIALS AND METHODS ----------------------------------------- 15 I. Strains, Media, and Culture condition--------------------------------------------------- 15 II. Molecular biology methods ------------------------------------------------------------- 17 A. DNA preparation and transformation------------------------------------------------ 17 B. Plasmid construction------------------------------------------------------------------- 17 C. Yeast strains construction------------------------------------------------------------ 20 III. DNA content analysis-------------------------------------------------------------------- 22 A. Synchronization of meiotic culture--------------------------------------------------- 22 B. Preparation of yeast samples for FACS analysis------------------------------------ 23 IV. Protein extraction and Western blot analysis----------------------------------------- 24 V. Analysis of cellular viability------------------------------------------------------------- 25 CHAPTER 3. RESULTS---------------------------------------------------------------------- 26 I. Enhancing repression of pre-meiotic DNA replication by precocious expression of Ndt80------------------------------------------------------------------------------------------- 26 A. The expression of meiosis-specific proteins for the initiation stage of meiosis-26 1. Ime1 was expressed at high levels at the initiation of meiosis------------------ 26 2. Ime2 was expressed in burst upon induction of meiosis ------------------------ 27 B. The incomplete repression of pre-meiotic DNA replication by Ndt80 was due to the insufficient galactose induction -------------------------------------------------- 28 1. Elimination of Gal1 enhanced the repression of pre-meiotic DNA replication by Ndt80 ------------------------------------------------------------------------------- 29 2. Clarification the effect of Ndt80 from other factors affecting pre-meiotic DNA replication ----------------------------------------------------------------------------- 31 II. Further study on DNA re-replication in the cdc28-as1 ndt80Δ cells --------------- 32 A. CDC5 expression in the cdc28-as1 ndt80Δ cells did not interfere DNA re-replication ------------------------------------------------------------------------------- 32 B. Defects in spore formation did not interfere flow cytometry analysis of DNA content ----------------------------------------------------------------------------------- 33 III. Ectopic expression of IME2 in vegetative cells ------------------------------------- 35 Induction of IME2 in the ndt80Δ cells caused partial arrest ------------------------- 35 CHAPTER 4. DISCUSSION ----------------------------------------------------------------- 36 I. Elimination of Gal1 enhanced the repression of pre-meiotic DNA replication by Ndt80----------------------------------------------------------------------------------------- 36 II. The deletion of Gal1 caused cells not to execute DNA replication ----------------- 36 III. The absence of Ndt80, but not the pachytene arrest caused DNA re-replication in meiosis ------------------------------------------------------------------------------------- 37 IV. The ndt80Δ mutant cells showed a faster pre-meiotic DNA replication ---------- 38 REFERENCES---------------------------------------------------------------------------------- 39 APPENDIX--------------------------------------------------------------------------------------- 92 | |
| dc.language.iso | en | |
| dc.subject | 酵母菌 | zh_TW |
| dc.subject | 染色體複製 | zh_TW |
| dc.subject | 減數分裂 | zh_TW |
| dc.subject | DNA replication | en |
| dc.subject | yeast | en |
| dc.subject | meiosis | en |
| dc.subject | Ndt80 | en |
| dc.title | 進階探討酵母菌 Ndt80 蛋白在減數分裂中對於 DNA 複製之調控 | zh_TW |
| dc.title | Further analysis of the Ndt80 function in regulating DNA replication during yeast meiosis | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 王廷方(Ting-Fang Wang),蔡皇龍(Huang-Lung Tsai) | |
| dc.subject.keyword | 酵母菌,減數分裂,染色體複製, | zh_TW |
| dc.subject.keyword | yeast,meiosis,Ndt80,DNA replication, | en |
| dc.relation.page | 95 | |
| dc.identifier.doi | 10.6342/NTU201803251 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2018-08-14 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 分子與細胞生物學研究所 | zh_TW |
| 顯示於系所單位: | 分子與細胞生物學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-1.pdf 未授權公開取用 | 8.68 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
