Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 生物化學暨分子生物學科研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70348
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor詹迺立
dc.contributor.authorHsiang-Ling Lien
dc.contributor.author李湘鈴zh_TW
dc.date.accessioned2021-06-17T04:26:17Z-
dc.date.available2020-09-04
dc.date.copyright2018-09-04
dc.date.issued2018
dc.date.submitted2018-08-14
dc.identifier.citation1 Epstein, M. A., Achong, B. G. & Barr, Y. M. Virus Particles in Cultured Lymphoblasts from Burkitt's Lymphoma. Lancet 1, 702-703 (1964).
2 Baer, R. et al. DNA sequence and expression of the B95-8 Epstein-Barr virus genome. Nature 310, 207-211 (1984).
3 Proceedings of the IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Epstein-Barr Virus and Kaposi's Sarcoma Herpesvirus/Human Herpesvirus 8. Lyon, France, 17-24 June 1997. IARC Monogr Eval Carcinog Risks Hum 70, 1-492 (1997).
4 Spear, P. G. & Longnecker, R. Herpesvirus entry: an update. J Virol 77, 10179-10185 (2003).
5 Chesnokova, L. S. & Hutt-Fletcher, L. M. Fusion of Epstein-Barr virus with epithelial cells can be triggered by alphavbeta5 in addition to alphavbeta6 and alphavbeta8, and integrin binding triggers a conformational change in glycoproteins gHgL. J Virol 85, 13214-13223, doi:10.1128/JVI.05580-11 (2011).
6 Li, Q. et al. Epstein-Barr virus uses HLA class II as a cofactor for infection of B lymphocytes. J Virol 71, 4657-4662 (1997).
7 Straus, S. E., Cohen, J. I., Tosato, G. & Meier, J. NIH conference. Epstein-Barr virus infections: biology, pathogenesis, and management. Ann Intern Med 118, 45-58 (1993).
8 Parkin, D. M. The global health burden of infection-associated cancers in the year 2002. Int J Cancer 118, 3030-3044, doi:10.1002/ijc.21731 (2006).
9 Toussirot, E. & Roudier, J. Epstein-Barr virus in autoimmune diseases. Best Pract Res Clin Rheumatol 22, 883-896, doi:10.1016/j.berh.2008.09.007 (2008).
10 Ascherio, A. & Munger, K. L. Epstein-barr virus infection and multiple sclerosis: a review. J Neuroimmune Pharmacol 5, 271-277, doi:10.1007/s11481-010-9201-3 (2010).
11 Di Lernia, V. & Mansouri, Y. Epstein-Barr virus and skin manifestations in childhood. Int J Dermatol 52, 1177-1184, doi:10.1111/j.1365-4632.2012.05855.x (2013).
12 Odumade, O. A., Hogquist, K. A. & Balfour, H. H., Jr. Progress and problems in understanding and managing primary Epstein-Barr virus infections. Clin Microbiol Rev 24, 193-209, doi:10.1128/CMR.00044-10 (2011).
13 Tugizov, S. M., Berline, J. W. & Palefsky, J. M. Epstein-Barr virus infection of polarized tongue and nasopharyngeal epithelial cells. Nat Med 9, 307-314, doi:10.1038/nm830 (2003).
14 Tanner, J., Weis, J., Fearon, D., Whang, Y. & Kieff, E. Epstein-Barr virus gp350/220 binding to the B lymphocyte C3d receptor mediates adsorption, capping, and endocytosis. Cell 50, 203-213 (1987).
15 Ogembo, J. G. et al. Human complement receptor type 1/CD35 is an Epstein-Barr Virus receptor. Cell Rep 3, 371-385, doi:10.1016/j.celrep.2013.01.023 (2013).
16 Nawandar, D. M. et al. Differentiation-Dependent KLF4 Expression Promotes Lytic Epstein-Barr Virus Infection in Epithelial Cells. PLoS Pathog 11, e1005195, doi:10.1371/journal.ppat.1005195 (2015).
17 Miller, G., El-Guindy, A., Countryman, J., Ye, J. & Gradoville, L. Lytic cycle switches of oncogenic human gammaherpesviruses. Adv Cancer Res 97, 81-109, doi:10.1016/S0065-230X(06)97004-3 (2007).
18 Flemington, E. K., Goldfeld, A. E. & Speck, S. H. Efficient transcription of the Epstein-Barr virus immediate-early BZLF1 and BRLF1 genes requires protein synthesis. J Virol 65, 7073-7077 (1991).
19 Heslop, H. E. How I treat EBV lymphoproliferation. Blood 114, 4002-4008, doi:10.1182/blood-2009-07-143545 (2009).
20 Thorley-Lawson, D. A. & Gross, A. Persistence of the Epstein-Barr virus and the origins of associated lymphomas. N Engl J Med 350, 1328-1337, doi:10.1056/NEJMra032015 (2004).
21 Kenney, S. C. & Mertz, J. E. Regulation of the latent-lytic switch in Epstein-Barr virus. Semin Cancer Biol 26, 60-68, doi:10.1016/j.semcancer.2014.01.002 (2014).
22 Sun, C. C. & Thorley-Lawson, D. A. Plasma cell-specific transcription factor XBP-1s binds to and transactivates the Epstein-Barr virus BZLF1 promoter. J Virol 81, 13566-13577, doi:10.1128/JVI.01055-07 (2007).
23 Chang, Y. et al. Induction of the early growth response 1 gene by Epstein-Barr virus lytic transactivator Zta. J Virol 80, 7748-7755, doi:10.1128/JVI.02608-05 (2006).
24 Ersing, I., Bernhardt, K. & Gewurz, B. E. NF-kappaB and IRF7 pathway activation by Epstein-Barr virus Latent Membrane Protein 1. Viruses 5, 1587-1606, doi:10.3390/v5061587 (2013).
25 Hong, G. K. et al. Epstein-Barr virus lytic infection contributes to lymphoproliferative disease in a SCID mouse model. J Virol 79, 13993-14003, doi:10.1128/JVI.79.22.13993-14003.2005 (2005).
26 Hong, G. K. et al. Epstein-Barr virus lytic infection is required for efficient production of the angiogenesis factor vascular endothelial growth factor in lymphoblastoid cell lines. J Virol 79, 13984-13992, doi:10.1128/JVI.79.22.13984-13992.2005 (2005).
27 Kenney, S. Theodore E. Woodward Award: development of novel, EBV-targeted therapies for EBV-positive tumors. Trans Am Clin Climatol Assoc 117, 55-73; discussion 73-54 (2006).
28 Feng, W. H., Hong, G., Delecluse, H. J. & Kenney, S. C. Lytic induction therapy for Epstein-Barr virus-positive B-cell lymphomas. J Virol 78, 1893-1902 (2004).
29 Wille, C. K. et al. Viral genome methylation differentially affects the ability of BZLF1 versus BRLF1 to activate Epstein-Barr virus lytic gene expression and viral replication. J Virol 87, 935-950, doi:10.1128/JVI.01790-12 (2013).
30 Feederle, R. et al. The Epstein-Barr virus lytic program is controlled by the co-operative functions of two transactivators. EMBO J 19, 3080-3089, doi:10.1093/emboj/19.12.3080 (2000).
31 Petosa, C. et al. Structural basis of lytic cycle activation by the Epstein-Barr virus ZEBRA protein. Mol Cell 21, 565-572, doi:10.1016/j.molcel.2006.01.006 (2006).
32 Schepers, A., Pich, D. & Hammerschmidt, W. A transcription factor with homology to the AP-1 family links RNA transcription and DNA replication in the lytic cycle of Epstein-Barr virus. EMBO J 12, 3921-3929 (1993).
33 Morrison, T. E., Mauser, A., Wong, A., Ting, J. P. & Kenney, S. C. Inhibition of IFN-gamma signaling by an Epstein-Barr virus immediate-early protein. Immunity 15, 787-799 (2001).
34 Manet, E., Rigolet, A., Gruffat, H., Giot, J. F. & Sergeant, A. Domains of the Epstein-Barr virus (EBV) transcription factor R required for dimerization, DNA binding and activation. Nucleic Acids Res 19, 2661-2667 (1991).
35 Ragoczy, T. & Miller, G. Role of the epstein-barr virus RTA protein in activation of distinct classes of viral lytic cycle genes. J Virol 73, 9858-9866 (1999).
36 Chang, L. K. et al. Activation of Sp1-mediated transcription by Rta of Epstein-Barr virus via an interaction with MCAF1. Nucleic Acids Res 33, 6528-6539, doi:10.1093/nar/gki956 (2005).
37 Lin, T. Y. et al. MCAF1 and Rta-activated BZLF1 transcription in Epstein-Barr virus. PLoS One 9, e90698, doi:10.1371/journal.pone.0090698 (2014).
38 El-Guindy, A., Ghiassi-Nejad, M., Golden, S., Delecluse, H. J. & Miller, G. Essential role of Rta in lytic DNA replication of Epstein-Barr virus. J Virol 87, 208-223, doi:10.1128/JVI.01995-12 (2013).
39 Chen, Y. J. et al. Epstein-Barr Virus Rta-Mediated Accumulation of DNA Methylation Interferes with CTCF Binding in both Host and Viral Genomes. J Virol 91, doi:10.1128/JVI.00736-17 (2017).
40 Hong, G. K. et al. The BRRF1 early gene of Epstein-Barr virus encodes a transcription factor that enhances induction of lytic infection by BRLF1. J Virol 78, 4983-4992 (2004).
41 Heilmann, A. M., Calderwood, M. A. & Johannsen, E. Epstein-Barr virus LF2 protein regulates viral replication by altering Rta subcellular localization. J Virol 84, 9920-9931, doi:10.1128/JVI.00573-10 (2010).
42 Heilmann, A. M., Calderwood, M. A., Portal, D., Lu, Y. & Johannsen, E. Genome-wide analysis of Epstein-Barr virus Rta DNA binding. J Virol 86, 5151-5164, doi:10.1128/JVI.06760-11 (2012).
43 Chen, L. W. et al. Two phenylalanines in the C-terminus of Epstein-Barr virus Rta protein reciprocally modulate its DNA binding and transactivation function. Virology 386, 448-461, doi:10.1016/j.virol.2009.01.022 (2009).
44 Chang, L. K. et al. Post-translational modification of Rta of Epstein-Barr virus by SUMO-1. J Biol Chem 279, 38803-38812, doi:10.1074/jbc.M405470200 (2004).
45 Yang, Y. C., Yoshikai, Y., Hsu, S. W., Saitoh, H. & Chang, L. K. Role of RNF4 in the ubiquitination of Rta of Epstein-Barr virus. J Biol Chem 288, 12866-12879, doi:10.1074/jbc.M112.413393 (2013).
46 Chen, L. W., Chang, P. J., Delecluse, H. J. & Miller, G. Marked variation in response of consensus binding elements for the Rta protein of Epstein-Barr virus. J Virol 79, 9635-9650, doi:10.1128/JVI.79.15.9635-9650.2005 (2005).
47 Russo Krauss, I., Merlino, A., Vergara, A. & Sica, F. An overview of biological macromolecule crystallization. Int J Mol Sci 14, 11643-11691, doi:10.3390/ijms140611643 (2013).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70348-
dc.description.abstractEB病毒也被稱為人類泡疹病毒第四型,為雙鏈DNA病毒,是最常引起人類疾病的病毒之一,估計全世界超過95%的人口皆曾受其感染。原發性的EB病毒感染通常從口腔開始,透過唾液傳播來感染CD21+ B淋巴細胞及上皮細胞。EB病毒感染會造成傳染性單核白血球增多症,並可能導致多種惡性腫瘤的發生,目前已知伯基特淋巴瘤、霍奇金淋巴瘤、胃癌及鼻咽癌等皆與此病毒相關。EB病毒的複製週期可分裂解性複製型或潛伏型兩種型式,一旦病毒入侵宿主細胞後就會採取其中一種型式進行後續的感染。雖然這些惡性腫瘤的成因大多源自於EB病毒潛伏感染所引發的NF-κB路徑活化,不過在惡性腫瘤中也有少數病毒會經由再活化的過程轉而以裂解性方式進行複製,此時細胞會分泌生長因子和致癌細胞因子,促使腫瘤惡化及轉移。因此為了更清楚知道EB病毒感染的風險,有必要更深入的了解病毒如何調控潛伏型和裂解性複製之間的轉換。
EB病毒的裂解性複製包含三個時期,為立即早期 (IE)、早期 (E)及晚期 (L),其中立即早期會藉由表現BZLF1和BRLF1基因來合成轉錄活化子Zta和Rta,二者共同調節下游之病毒與宿主基因的表達,以利病毒基因的複製。而當感染EB病毒的細胞接受到細胞因子的刺激時,也可能引發BZLF1或BRLF1基因的活化,促進EB病毒由潛伏轉換成裂解性複製,因此Zta和Rta實為啟動EB病毒再活化的關鍵。Rta可以直接與Rta響應元件 (RRE)結合,或透過和Zta的協同作用調控基因表達,亦可以藉由間接的方式,和作為媒介的蛋白MCAF1作用後,與其他轉錄因子的促進子結合, Rta活化本身及Zta即是以這種方式達成。
雖然Zta及Rta都是轉錄活化子,但它們的功能及DNA結合特性皆有明顯差異。目前對於Rta結構與功能的了解仍然十分有限。由於在腫瘤細胞中執行EB病毒裂解誘導被視為一種具有潛力的治療策略,鑒於Rta導致的EB病毒再活化是病毒傳播的主要機制,所以有必要更詳細地了解Rta。因此本研究的主要目標就是要解析Rta或是Rta-DNA複合體的結構,以此來闡述Rta功能。
目前已經成功在BL21-star菌株中表現6x His-tag的Rta,藉由鎳離子親和性、肝素瓊脂及分子篩管柱層析法進行純化蛋白,可以得到均質狀且構型正確的Rta同源二聚體,並透過凝膠遷移實驗確認其仍然具有與特定DNA序列結合的能力。我亦嘗試使用多種養晶試劑以培養Rta同源二聚體的蛋白晶體,同時也使用BMLF1-RRE來形成Rta-DNA複合體,並進行蛋白晶體培養。目前已發現複合體可能的結晶條件,後續實驗將針對此條件進行優化,以取得高品質的Rta-DNA晶體進行後續的結構解析。
zh_TW
dc.description.abstractEpstein–Barr virus (EBV), also known as human herpesvirus 4 (HHV-4), is one of the most common human viral pathogens. Primary EBV infection usually begins in the oral cavity. The main target cells are CD21+ B cells and epithelial cells. EBV infection is the cause of infectious mononucleosis (glandular fever) and is associated with various cancers, including Hodgkin's lymphoma, Burkitt's lymphoma, gastric cancer, and nasopharyngeal carcinoma. Upon entering a host cell, EBV may adopt the latent or lytic life cycle. Although EBV predominantly establishes latency in host cells, a few lytically-infected cells could be carcinogenic through the release of growth factors and oncogenic cytokines. Therefore, to better appreciate the risks associated with EBV infection, we need to understand how the virus switches from latency to the lytic cycle in a process termed EBV reactivation.
The viral activation can be divided into three phases: Immediate early (IE), Early (E) and Late (L). The viral IE genes BZLF1 and BRLF1 are first transcribed to produce two transactivators, Zta and Rta, which are required for EBV genome replication. These proteins can act synergistically or independently to trigger EBV reactivation. Rta may regulate transcription via three mechanisms of action. Rta may autonomously activate the expression of a certain set of genes, such as BMLF1 which encodes a mRNA export factor. Moreover, Rta and Zta may act in synergy to activate some lytic cycle genes, such as BMRF1. Furthermore, Rta may interact with specificity protein (Sp1) through an intermediary protein, MCAF1, to form a regulatory complex on Sp1-binding sites.
Although both Rta and Zta act as transcriptional activators, they exhibit distinct functional and DNA-binding properties. So far, only Zta is biochemically and struturally characterized, much less regarding Rta is known. Because lytic-induction therapy in tumor cells are being regarded as a potential therapy for EBV-positive tumors, and the Rta-mediated reactivation of EBV is the main cause of viral transmission, it would be helpful to understand the function of Rta in greater detail. We aim to determine the crystal structures of Rta, either alone or in complex with the EBV gene promoter element to elucidate its function.
Toward this goal, we have successfully expressed 6x His-tagged Rta in BL21-star cells, and the recombinant protein may be purified by a combination of Nickel, heparin and gel filtration column. Purified Rta is homogenous and exists as a homodimer, corresponding to the expected configuration. Electrophoresis mobility shift assay (EMSA) indicates purified Rta may associate with an DNA duplex containing the BMLF1-RRE sequence. Crystallization trials for the Rta dimer and Rta-DNA complex are currently underway. A preliminary crystallization condition for Rta-DNA complex has been identified. This condition will be systematically optimized to produce crystals of higher quality for subsequent crystallographic analysis.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T04:26:17Z (GMT). No. of bitstreams: 1
ntu-107-R05442005-1.pdf: 3565390 bytes, checksum: 45e94e5ed7412dfed02271b3f174d20c (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents誌謝 i
中文摘要 ii
Abstract iv
縮寫表 vi
目錄 vii
圖目錄 x
表目錄 xi
第1章 緒論 1
1.1 EB病毒的介紹 1
1.2 EB病毒的複製週期 (replication cycle) 2
1.3 EB病毒的治療策略 4
1.4 轉錄活化子Zta及Rta 5
1.5 Rta的功能活性 7
1.6 研究動機 7
第2章 材料與方法 8
2.1 蛋白質表現 8
2.1.1 質體建構 8
2.1.2 菌株 8
2.1.3 轉型作用 (transformation) 9
2.1.4 蛋白質表現測試 9
2.1.5 蛋白質大量表現 10
2.2 蛋白質純化 11
2.2.1 破菌及蛋白萃取 11
2.2.2 液相層析 (liquid chromatography) 11
2.3 蛋白質分析及定量 14
2.3.1 蛋白膠體電泳分析 14
2.3.2 蛋白質身分鑑定 15
2.3.3 蛋白質濃縮定量 16
2.4 蛋白質活性測試 17
2.4.1 DNA聚丙烯醯胺 (polyacrylamide)凝膠製備 17
2.4.2 雙股DNA製備 17
2.4.3 凝膠遷移實驗 (electrophoresis mobility shift assay,EMSA) 17
2.5 蛋白質晶體之條件篩選 19
2.5.1 緩衝溶液篩選 (buffer screen) 19
2.5.2 蛋白質-DNA之相互作用 19
2.5.3 胰蛋白酶抵抗試驗 (Trypsin resistance assay) 20
2.6 蛋白質晶體培養 21
2.6.1 預結晶試驗 (pre-crystallization test,PCT) 21
2.6.2 蛋白結晶與條件篩選 21
2.7 蛋白晶體結構之數據收集 22
2.7.1 晶體冷凍保護 (cryo-protection) 22
2.7.2 X-ray繞射數據收集 23
第3章 結果 24
3.1 蛋白表現測試 24
3.2 蛋白質純化 25
3.3 蛋白質身分鑑定 27
3.4 蛋白質活性測試 27
3.5 蛋白質晶體之條件篩選 29
3.6 蛋白晶體培養 30
第4章 討論 31
4.1 蛋白質純化 31
4.2 蛋白質晶體之條件篩選 32
4.3 蛋白晶體培養 33
圖 34
表 55
參考文獻 62
附錄 65
dc.language.isozh-TW
dc.subjectEB病毒zh_TW
dc.subject病毒再活化zh_TW
dc.subject轉錄調控因子zh_TW
dc.subjectRtazh_TW
dc.subjectRta-BMLF1複合體zh_TW
dc.subjecttranscriptional regulatoren
dc.subjectRta-BMLF1 complexen
dc.subjectRtaen
dc.subjectEBVen
dc.subjectviral reactivationen
dc.titleEB病毒裂解性轉錄活化子Rta之結構解析zh_TW
dc.titleStructural analysis of the Epstein-Barr virus lytic transactivator Rtaen
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.oralexamcommittee曾秀如,張麗冠
dc.subject.keywordEB病毒,病毒再活化,轉錄調控因子,Rta,Rta-BMLF1複合體,zh_TW
dc.subject.keywordEBV,viral reactivation,transcriptional regulator,Rta,Rta-BMLF1 complex,en
dc.relation.page70
dc.identifier.doi10.6342/NTU201802260
dc.rights.note有償授權
dc.date.accepted2018-08-14
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept生物化學暨分子生物學研究所zh_TW
顯示於系所單位:生物化學暨分子生物學科研究所

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  未授權公開取用
3.48 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved