Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70322
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor羅禮強
dc.contributor.authorWan-Ju Liuen
dc.contributor.author劉宛儒zh_TW
dc.date.accessioned2021-06-17T04:25:50Z-
dc.date.available2023-08-21
dc.date.copyright2018-08-21
dc.date.issued2018
dc.date.submitted2018-08-14
dc.identifier.citation1. Levy, S. B.; Marshall, B. Antibacterial resistance worldwide: causes, challenges and responses. Nat Med. 2004, 10, S122-S129.
2. Ostash, B.; Walker, S. Bacterial transglycosylase inhibitors. Curr. Opin. Chem. Biol. 2005, 9, 459-466.
3. Chen, K. T.; Kuan, Y. C.; Fu, W. C.; Liang, P. H.; Cheng, T. J.; Wong, C. H.; Cheng, W. C. Rapid preparation of mycobacterium N-glycolyl Lipid I and Lipid II derivatives: a biocatalytic approach. Chem. Eur. J. 2013, 19, 834-838.
4. Bouhss, A.; Josseaume, N.; Allanic, D.; Crouvoisier, M.; Gutmann, L.; Mainardi, J. L.; Mengin-Lecreulx, D.; van Heijenoort, J.; Arthur, M. Identification of the UDP-MurNAc-Pentapeptide:L-Alanine Ligase for Synthesis of Branched Peptidoglycan Precursors in Enterococcus faecalis. J. Bacteriol. 2001, 183, 5122-5127.
5. Ruiz, N. Lipid Flippases for Bacterial Peptidoglycan Biosynthesis. Lipid Insights 2015, 8, 21-31.
6. Jankute, M.; Cox, J. A.; Harrison, J.; Besra, G. S. Assembly of the Mycobacterial Cell Wall. Annu. Rev. Microbiol. 2015, 69, 405-423.
7. Siricilla, S.; Mitachi, K.; Skorupinska-Tudek, K.; Swiezewska, E.; Kurosu, M. Biosynthesis of a water-soluble lipid I analogue and a convenient assay for translocase I. Anal. Biochem. 2014, 461, 36-45.
8. Mitachi, K.; Siricilla, S.; Yang, D.; Kong, Y.; Skorupinska-Tudek, K.; Swiezewska, E.; Franzblau, S. G.; Kurosu, M. Fluorescence-based assay for polyprenyl phosphate-GlcNAc-1-phosphate transferase (WecA) and identification of novel antimycobacterial WecA inhibitors. Anal. Biochem. 2016, 512, 78-90.
9. Abrahams, K. A.; Besra, G. S. Mycobacterial cell wall biosynthesis: a multifaceted antibiotic target. Parasitology. 2018, 145, 116-133.
10. Amer, A. O.; Valvano, M. A. Conserved amino acid residues found in a predicted cytosolic domain of the lipopolysaccharide biosynthetic protein WecA are implicated in the recognition of UDP-N-acetylglucosamine. Microbiology. 2001, 14, 3015-3025.
11. Maldonado, R. F.; Sa-Correia, I.; Valvano, M. A. Lipopolysaccharide modification in Gram-negative bacteria during chronic infection. FEMS Microbiol. Rev. 2016, 40, 480-493.
12. Jorgenson, M. A.; Young, K. D. Interrupting Biosynthesis of O Antigen or the Lipopolysaccharide Core Produces Morphological Defects in Escherichia coli by Sequestering Undecaprenyl Phosphate. J. Bacteriol. 2016, 198, 3070-3079.
13. Ishizaki, Y.; Hayashi, C.; Inoue, K.; Igarashi, M.; Takahashi, Y.; Pujari, V.; Crick, D. C.; Brennan, P. J.; Nomoto, A. Inhibition of the first step in synthesis of the mycobacterial cell wall core, catalyzed by the GlcNAc-1-phosphate transferase WecA, by the novel caprazamycin derivative CPZEN-45. J. Biol. Chem. 2013, 288, 30309-30319.
14. Bhavsar, A. P.; Brown, E. D. Cell wall assembly in Bacillus subtilis: how spirals and spaces challenge paradigms. Mol. Microbiol. 2006, 60, 1077-1090.
15. Hao, H.; Cheng, G.; Dai, M.; Wu, Q.; Yuan, Z. Inhibitors targeting on cell wall biosynthesis pathway of MRSA. Mol. Biosyst. 2012, 8, 2828-2838.
16. Al-Dabbagh, B.; Olatunji, S.; Crouvoisier, M.; El Ghachi, M.; Blanot, D.; Mengin-Lecreulx, D.; Bouhss, A. Catalytic mechanism of MraY and WecA, two paralogues of the polyprenyl-phosphate N-acetylhexosamine 1-phosphate transferase superfamily. Biochimie. 2016, 127, 249-257.
17. Winn, M.; Goss, R. J.; Kimura, K.; Bugg, T. D. Antimicrobial nucleoside antibiotics targeting cell wall assembly: recent advances in structure-function studies and nucleoside biosynthesis. Nat. Prod. Rep. 2010, 27, 279-304.
18. Hirano, S.; Ichikawa, S.; Matsuda, A., Synthesis of Caprazamycin Analogues and Their Structure-Activity Relationship for Antibacterial Activity Relationship for Antibacterial Activity. J. Org. Chem. 2007, 72, 9936-9946.
19. Wiegmann, D.; Koppermann, S.; Wirth, M.; Niro, G.; Leyerer, K.; Ducho, C. Muraymycin nucleoside-peptide antibiotics: uridine-derived natural products as lead structures for the development of novel antibacterial agents. Beilstein. J. Org. Chem. 2016, 12, 769-795.
20. Takeoka, Y.; Tanino, T.; Sekiguchi, M.; Yonezawa, S.; Sakagami, M.; Takahashi, F.; Togame, H.; Tanaka, Y.; Takemoto, H.; Ichikawa, S.; Matsuda, A. Expansion of Antibacterial Spectrum of Muraymycins toward Pseudomonas aeruginosa. ACS Med. Chem. Lett. 2014, 5, 556-560.
21. Mitachi, K.; Aleiwi, B. A.; Schneider, C. M.; Siricilla, S.; Kurosu, M. Stereocontrolled Total Synthesis of Muraymycin D1 Having a Dual Mode of Action against Mycobacterium tuberculosis. J. Am. Chem. Soc. 2016, 138, 12975-12980.
22. Lukose, V.; Walvoort, M. T. C.; Imperiali, B. Bacterial phosphoglycosyl transferases: initiators of glycan biosynthesis at the membrane interface. Glycobiology. 2017, 27, 820-833.
23. McDonald, L. A.; Barbieri, L. R.; Carter, G. T.; Lenoy, E.; Lotvin, J.; Petersen, P. J.; Siegel, M. M.; Singh, G.; Williamson, R. T. Structures of the Muraymycins, Novel Peptidoglycan Biosynthesis Inhibitors. J. Am. Chem. Soc. 2002, 124, 10260-10261.
24. Takatsuki, A.; Arima, K.; Tamura, G. Tunicamycin, a new antibiotic. I. J. Antibiot. 1971, 24, 215-223.
25. Takatsuki, A.; Kawamura, K.; Okina, M.; Kodama, Y.; Ito, T.; Tamura, G., The Structure of Tunicamycin. Agric. Bio. Chem. 1977, 41, 2307-2309.
26. Yen, J. H.; Wu, P. S.; Chen, S. F.; Wu, M. J. Fisetin Protects PC12 Cells from Tunicamycin-Mediated Cell Death via Reactive Oxygen Species Scavenging and Modulation of Nrf2-Driven Gene Expression, SIRT1 and MAPK Signaling in PC12 Cells. Int. J. Mol. Sc.i 2017, 18, 852.
27. Zhang, Y.; Liao, S.; Fan, W.; Wei, W.; Wang, C.; Sun, S. Tunicamycin-induced ER stress regulates chemokine CCL5 expression and secretion via STAT3 followed by decreased transmigration of MCF-7 breast cancer cells. Oncol. Rep. 2014, 32, 2769-2776.
28. Brandish, P. E.; Kimura, K. I.; Inukai, M.; Southgate, R.; Lonsdale, J. T.; Bugg, T. D. Modes of action of tunicamycin, liposidomycin B, and mureidomycin A: inhibition of phospho-N-acetylmuramyl-pentapeptide translocase from Escherichia coli. Antimicrob. Agents Chemother. 1996, 40, 1640-1644.
29. Chung, B. C.; Zhao, J.; Gillespie, R. A.; Kwon, D.-Y.; Guan, Z.; Hong, J.; Zhou, P.; Lee, S.-Y. Crystal Structure of MraY, an Essential Membrane Enzyme for Bacterial Cell Wall Synthesis. Science 2013, 341, 1012-1016.
30. Chung, B. C.; Mashalidis, E. H.; Tanino, T.; Kim, M.; Matsuda, A.; Hong, J.; Ichikawa, S.; Lee, S. Y. Structural insights into inhibition of lipid I production in bacterial cell wall synthesis. Nature. 2016, 533, 557-560.
31. Hakulinen, J. K.; Hering, J.; Branden, G.; Chen, H.; Snijder, A.; Ek, M.; Johansson, P. MraY-antibiotic complex reveals details of tunicamycin mode of action. Nat. Chem. Biol. 2017, 13, 265-267.
32. Serpi, M.; Ferrari, V.; Pertusati, F., Nucleoside Derived Antibiotics to Fight Microbial Drug Resistance: New Utilities for an Established Class of Drugs? J. Med. Chem. 2016, 59, 10343-10382.
33. Shelton, J.; Lu, X.; Hollenbaugh, J. A.; Cho, J. H.; Amblard, F.; Schinazi, R. F. Metabolism, Biochemical Actions, and Chemical Synthesis of Anticancer Nucleosides, Nucleotides, and Base Analogs. Chem. Rev. 2016, 116, 14379-14455.
34. Ochi, K.; Ezaki, M.; Iwami, M.; Komori, T.; Kohsaka, M. FR-900493 substance, a process for its production and a pharmaceutical composition containing the same. EP19890104621, 1989.
35. Kimura, K.-i.; Bugg, T. D. H. Recent advances in antimicrobial nucleoside antibiotics targeting cell wall biosynthesis. Nat. Prod. Rep. Natural Products 2003, 20, 252-273.
36. Zhao, C.; Huang, T.; Chen, W.; Deng, Z., Enhancement of the diversity of polyoxins by a thymine-7-hydroxylase homolog outside the polyoxin biosynthesis gene cluster. Appl. Environ. Microbiol. 2010, 76, 7343-7347.
37. Bugg, T. D. H. Nucleoside Natural Product Antibiotics Targetting Microbial Cell Wall Biosynthesis. Antibacterials 2017, 26, 1-25 .
38. Dähn, U.; Hagenmaier, H.; Höhne, H.; König, W.; Wolf, G.; Zähner, H. Stoffwechselprodukte von mikroorganismen. Arch. Microbiol. 1976, 107, 143-160.
39. Moukha-chafiq, O.; Reynolds, R. C. Parallel solution-phase synthesis and general biological activity of a uridine antibiotic analog library. ACS Comb. Sci. 2014, 16, 232-237.
40. Sun, D.; Lee, R. E., Solid-Phase Synthesis of a Thymidinyl Dipeptide Urea Library. J. Comb. Chem. 2007, 9, 370-385.
41. Park, J. W.; Nam, S. J.; Yoon, Y. J. Enabling techniques in the search for new antibiotics: Combinatorial biosynthesis of sugar-containing antibiotics. Biochem. Pharmacol. 2017, 134, 56-73.
42. Takahashi, Y.; Igarashi, M.; Miyake, T.; Soutome, H.; Ishikawa, K.; Komatsuki, Y.; Koyama, Y.; Nakagawa, N.; Hattori, S.; Inoue, K.; Doi, N.; Akamatsu, Y. Novel semisynthetic antibiotics from caprazamycins A-G: caprazene derivatives and their antibacterial activity. J. Antibiot. 2013, 66, 171-178.
43. Fer, M. J.; Olatunji, S.; Bouhss, A.; Calvet-Vitale, S.; Gravier-Pelletier, C. Toward analogues of MraY natural inhibitors: synthesis of 5'-triazole-substituted-aminoribosyl uridines through a Cu-catalyzed azide-alkyne cycloaddition. J. Org. Chem. 2013, 78, 10088-10105.
44. Fer, M. J.; Bouhss, A.; Patrao, M.; Le Corre, L.; Pietrancosta, N.; Amoroso, A.; Joris, B.; Mengin-Lecreulx, D.; Calvet-Vitale, S.; Gravier-Pelletier, C. 5'-Methylene-triazole-substituted-aminoribosyl uridines as MraY inhibitors: synthesis, biological evaluation and molecular modeling. Org. Biomol. Chem. 2015, 13, 7193-7222.
45. Katsuyama, A.; Ichikawa, S. Synthesis and Medicinal Chemistry of Muraymycins, Nucleoside Antibiotics. Chem. Pharm. Bull. 2018, 66, 123-131.
46. Koppermann, S.; Cui, Z.; Fischer, P. D.; Wang, X.; Ludwig, J.; Thorson, J. S.; Van Lanen, S. G.; Ducho, C. Insights into the Target Interaction of Naturally Occurring Muraymycin Nucleoside Antibiotics. ChemMedChem 2018, 13,779 -784.
47. Eppacher, S.; Solladié, N.; Bernet, B.; Vasella, A. Oligonucleosides with a Nucleobase-Including Backbone, Part 1, Concept, Force-Field Calculations, and Synthesis of Uridine-Derived Monomers and Dimers. Helvetica. Chimica. Acta. 2000, 83, 1311-1330.
48. Sabbavarapu, N. M.; Shavit, M.; Degani, Y.; Smolkin, B.; Belakhov, V.; Baasov, T. Design of Novel Aminoglycoside Derivatives with Enhanced Suppression of Diseases-Causing Nonsense Mutations. Med. Chem. Lett. 2016, 7, 418-423.
49. Kandasamy, J.; Atia-Glikin, D.; Belakhov, V.; Baasov, T. Repairing faulty genes by aminoglycosides: Identification of new pharmacophore with enhanced suppression of disease-causing nonsense mutations. Med. Chem. Commun. 2011, 2, 165-171.
50. Dumbre, S.; Derouaux, A.; Lescrinier, E.; Piette, A.; Joris, B.; Terrak, M.; Herdewijn, P. Synthesis of modified peptidoglycan precursor analogues for the inhibition of glycosyltransferase. J. Am. Chem. Soc. 2012, 134, 9343-9351.
51. Artola, M.; Ruiz-Avila, L. B.; Vergonos, A.; Huecas, S.; Araujo-Bazan, L.; Martin-Fontecha, M.; Vazquez-Villa, H.; Turrado, C.; Ramirez-Aportela, E.; Hoegl, A.; Nodwell, M.; Barasoain, I.; Chacon, P.; Sieber, S. A.; Andreu, J. M.; Lopez-Rodriguez, M. L. Effective GTP-replacing FtsZ inhibitors and antibacterial mechanism of action. Chem. Biol. 2015, 10, 834-843.
52. Gopinath, P.; Wang, L.; Abe, H.; Ravi, G.; Masuda, T.; Watanabe, T.; Shibasaki, M. Catalytic asymmetric total synthesis of (+)-caprazol. Org. Lett. 2014, 16, 3364-3367.
53. Hirano, S.; Ichikawa, S.; Matsuda, A. Development of a Highly β-Selective Ribosylation Reaction without Using Neighboring Group Participation:  Total Synthesis of (+)-Caprazol, a Core Structure of Caprazamycins. J. Org. Chem. 2007, 72, 9936-9946.
54. Hirano, S.; Ichikawa, S.; Matsuda, A. Total synthesis of caprazol, a core structure of the caprazamycin antituberculosis antibiotics. Angew. Chem. Int. Ed. Engl. 2005, 44, 1854-6.
55. Crich, D.; Sun, S. Are Glycosyl Triflates Intermediates in the Sulfoxide Glycosylation Method? A Chemical and 1H, 13C, and 19F NMR Spectroscopic Investigation. JACS 1997, 119, 11217-11223.
56. Chen, K. T.; Chen, P. T.; Lin, C. K.; Huang, L. Y.; Hu, C. M.; Chang, Y. F.; Hsu, H. T.; Cheng, T. J.; Wu, Y. T.; Cheng, W. C. Structural Investigation of Park's Nucleotide on Bacterial Translocase MraY: Discovery of Unexpected MraY Inhibitors. Sci. Rep. 2016, 6, 31579.
57. Tanino, T.; Al-Dabbagh, B.; Mengin-Lecreulx, D.; Bouhss, A.; Oyama, H.; Ichikawa, S.; Matsuda, A. Mechanistic analysis of muraymycin analogues: a guide to the design of MraY inhibitors. J. Med. Chem. 2011, 54, 8421-39.
58. Asakura, J.; Robins, M. J. Cerium(IV)-mediated halogenation at C-5 of uracil derivatives. J. Org. Chem. 1990, 55, 4928-4933.
59. Escuret, V.; Aucagne, V.; Joubert, N.; Durantel, D.; Rapp, K. L.; Schinazi, R. F.; Zoulim, F.; Agrofoglio, L. A. Synthesis of 5-haloethynyl- and 5-(1,2-dihalo)vinyluracil nucleosides: antiviral activity and cellular toxicity. Bioorg. Med. Chem. 2005, 13, 6015-6024.
60. Kraljević, T. G.; Bistrović, A.; Dedić, M.; Pavelić, S. K.; Sedić, M.; Raić-Malić, S. Efficient palladium-mediated or base-induced 5-endo-dig cyclisation of C5-alkynylated pyrimidine derivatives: conventional and microwave-assisted synthesis of novel furo[2,3-d]pyrimidines. Tetrahedron Lett. 2012, 53, 5144-5147.
61. Paul, S.; Nandi, B.; Pattanayak, S.; Sinha, S. Synthesis of 5-alkynylated uracil–morpholino monomers using Sonogashira coupling. Tetrahedron Lett. 2012, 53, 4179-4183.
62. Ghilagaber, S.; Hunter, W. N.; Marquez, R. Efficient coupling of low boiling point alkynes and 5-iodonucleosides. Tetrahedron Lett.2007, 48, 483-486.
63. Harkat, H.; Weibel, J.-M.; Pale, P. Synthesis of functionalized THF and THP through Au-catalyzed cyclization of acetylenic alcohols. Tetrahedron Lett. 2007, 48, 1439-1442.
64. Robins, M. J.; Barr, P. J. Nucleic acid related compounds. 31. Smooth and efficient palladium-copper catalyzed coupling of terminal alkynes with 5-iodouracil nucleosides. Tetrahedron Lett. 1981, 22, 421-424.
65. Leszczynska, G.; Leonczak, P.; Dziergowska, A.; Malkiewicz, A. mt-tRNA components: synthesis of (2-thio)uridines modified with blocked glycine/taurine moieties at C-5,1. Nucleosides Nucleotides Nucleic Acids 2013, 32, 599-616.
66. Satoh, K.; Tanaka, H.; Andoh, A.; Miyasaka, T. Photochemical Synthesis of 6-Aryluridines. Nucleosides and Nucleotides 1986, 5, 461-469.
67. Shih, Y.-C.; Chien, T.-C. Practical synthesis of 6-aryluridines via palladium(II) acetate catalyzed Suzuki–Miyaura cross-coupling reaction. Tetrahedron Lett. 2011, 67, 3915-3923.
68. Nencka, R.; Sinnaeve, D.; Karalic, I.; Martins, J. C.; Van Calenbergh, S. Synthesis of C-6-substituted uridine phosphonates through aerobic ligand-free Suzuki-Miyaura cross-coupling. Org. Biomol. Chem. 2010, 8, 5234-5246.
69. Bello, A. M.; Poduch, E.; Fujihashi, M.; Amani, M.; Li, Y.; Crandall, I.; Hui, R.; Lee, P. I.; Kain, K. C.; Pai, E. F.; Kotra, L. P. A Potent, Covalent Inhibitor of Orotidine 5‘-Monophosphate Decarboxylase with Antimalarial Activity. J. Med. Chem. 2007, 50, 915-921.
70. Poduch, E.; Bello, A. M.; Tang, S.; Fujihashi, M.; Pai, E. F.; Kotra, L. P. Design of Inhibitors of Orotidine Monophosphate Decarboxylase Using Bioisosteric Replacement and Determination of Inhibition Kinetics. J. Med. Chem. 2006, 49, 4937-4945.
71. Blank, H. U.; Fox, J. J. Pyrimidines. VII. Simple conversion of 2-oxo-5-nitro heterocycles to v-triazolo derivatives by sodium azide. JACS 1968, 90, 7175-7176.
72. Nagamatsu, T.; Islam, R. Synthesis and Regioselective N- and O-Alkylation of 1H- or 3H-[1,2,3]Triazolo[4,5-d]pyrimidine-5,7(4H,6H)-diones (8-Azaxanthines) and Transformation of Their 3-Alkyl Derivatives into 1-Alkyl Isomers. Synthesis. 2006, 24, 4167-4179.
73. Lewis, M.; Meza-Avina, M. E.; Wei, L.; Crandall, I. E.; Bello, A. M.; Poduch, E.; Liu, Y.; Paige, C. J.; Kain, K. C.; Pai, E. F.; Kotra, L. P. Novel interactions of fluorinated nucleotide derivatives targeting orotidine 5'-monophosphate decarboxylase. J. Med. Chem. 2011, 54, 2891-2901.
74. Davies, D. B.; Rajani, P.; Sadikot, H. Determination of glycosidic bond conformations of pyrimidine nucleosides and nucleotides using vicinal carbon–proton coupling constants. J. Chem. Soc., Perkin Trans. 2 1985, 279-285.
75. Huang, L. Y.; Huang, S. H.; Chang, Y. C.; Cheng, W. C.; Cheng, T. J.; Wong, C. H. Enzymatic synthesis of lipid II and analogues. Angew. Chem. Int. Ed. 2014, 53, 8060-8065.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70322-
dc.description.abstract近年來細菌具有抗藥性的比例逐漸上升,為了要阻止細菌對人類所造成的威脅,設計新的抗生素為首要的課題之一,而細菌細胞壁是細菌存活很重要的結構之一。細菌壁的生合成中有許多的酵素參與,MraY為其中很重要的磷酸轉移酶 (phosphate transferase),核苷類似物的分子對此具有高度的生物活性,因此我們以此為主架構,設計一系列的核苷類分子。
在我的實驗中,建構方便及快速的合成方法是相當重要的,為了簡化複雜的天然物結構,尤其是繁瑣的立體中心的建立,我們使用三唑 (triazole) 片段來嫁接分子,並且使用醯胺鍵 (amide bond) 或是異氰酸酯基團 (isocyanate) 快速製造一系列的分子,以取代嫁接胺基核醣 (amino ribose) 所需要用到複雜的醣基化反應,因此可以利用平行合成的方式、機器的輔助,以及固相萃取得到分子庫。在觀察細菌生長的型態中,我們選用枯草桿菌 (B. subtilis 168),可以發現部分分子會影響細菌的生長及分裂。
在含有胺基核醣 (amino ribose) 的系列分子中,我們設計了脂質鏈片段的修飾以及立體中心的改變,並且進行抑制酵素活性以及最低抑制濃度 (MIC) 的測試,發現具有長碳鏈的分子對於革蘭氏陽性菌 (Gram-positive bacteria) 或是革蘭氏陰性菌 (Gram-negative bacteria) 都有較好的最低抑制濃度。
另一方面,MraY的受質含有核苷鹼基的結構,因此我們想要在鹼基上做修飾,並且進行生物抑制活性的探討。分子設計方面,我們可以在脲嘧啶 (uracil) 五號位的碳 (C-5 position) 上利用胺化反應 (amination) 轉換成胺基,進行醯胺鍵的連接,或是利用薗頭耦合反應 (Sonogashira reaction) 得到碳-碳鍵的連結,再進行修飾,而在六號位的碳 (C-6 position) 則可以利用強鹼置換出連接橋梁,以此得到相對應以UMP為骨架的小型分子庫,並測試MraY的抑制活性。
zh_TW
dc.description.abstractDue to serious antibacterial resistance, new antibacterial drugs, new targets or new treatments are urgently needed to combat the global spread of multi-drug resistant bacteria, such as MRSA. Translocase MraY, an integral membrane protein, plays an important role in bacterial cell wall biosynthesis (or peptidoglycan biosynthesis). Thus, it is considered a potential and promising antibacterial target. In natural products, several structurally complicated nucleoside analogues are identified to target MraY and exhibit interesting antibacterial activity. Their structures contain several feature moieties including a uridine, an aminoribose, a lipid side chain and multi-stereogenic centers, which become a hurdle to efficiently prepare these molecules or molecular libraries for further biological or antibacterial studies. Herein, we at first plan to simplify these complicated structures and investigate the essential moieties, followed by developing a convenient approach to prepare nucleoside analogue-based libraries for bacterial morphology study and antibacterial evaluation. In this study, my research work can be divided into three parts.
Firstly, in order to develop a general and flexible synthetic approach to prepare nucleoside derivatives, we designed to efficiently assemble feature moieties through a triazole formation (the click chemistry), an urea formation, and an amide bond formation to build up the backbone template and install a diverse substituent. Notably, the original glycosidic bond and an aminoribose moiety were replaced with a simplified fragment. The proper application of semi-automatic such as solution-phase synthesizer, multichannel liquid handler, and vacuum centrifuge can allow us to prepare the high quality products efficiently. Interestingly, several synthetic molecules with simplified structures are capable of affecting bacterial morphology and growth.
Secondly, we planned to investigate a varied lipophilic side chain and the chiral center linked to the aminoribosyluridine moiety. The antibacterial results suggested that the proper length of the lipid chain in nucleosides is required against Gram-positive and Gram-negative bacteria.
Besides, the preliminary results in our laboratory suggest modifications of UMP (Uridine monophosphate) might affect the enzyme-based Lipid I synthesis catalyzed by MraY. In the third part, we plan to develop a method to build a UMP -based library with a substituent diversity on the C-5 or C-6 position.
Through my effort, a more convenient approach has been established to build up these nucleoside molecules. In addition, several essential moieties have been identified. Importantly, the proper length of the lipid chain has been discovered. This valuable information is a foundation to allow us for further modifications to improve inhibition potency against MraY or antibacterial activity.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T04:25:50Z (GMT). No. of bitstreams: 1
ntu-107-R05223144-1.pdf: 25012039 bytes, checksum: 8839dbe263dbce21c45d7d35a6e6275a (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents致謝 I
摘要 III
Abstract IV
Content VII
Index of Figures X
Index of Tables XII
Index of Scheme XIII
Abbreviations XV
Chapter 1. Introduction 1
1.1 The biosynthesis of peptidoglycan 1
1.2 Natural occurring nucleoside antibiotics against MraY 2
1.3 Crystal structure of MraY 4
1.4 Nucleoside analogues contain uridine skeleton 5
1.5 Review of current uridine-derived library 6
1.6 Review of current MraY inhibitors about muraymycin 7
1.7 Motivation 9
Chapter 2. Result and Discussion 11
2.1 Design and synthesis of 5’-triazole-substituted uridines. 11
2.1.1 Preparation of the diastereoisomer skeletion 12
2.1.2 Preliminary model study 13
2.1.3 Library design 14
2.1.4 Library generation 16
2.1.5 Biological evaluation 19
2.1.6 Sub-conclusion 20
2.2 Design and synthesis of 5’-triazole-substituted-aminoribosyl uridines. 21
2.2.1. Preparation of the 5’-triazole-substituted-aminoribosyl uridines 21
2.2.2. Preliminary biological evaluation 23
2.2.3. Further study of modification based on the most potent structure 25
2.2.4. Understanding the effect of the length at side chain 26
2.2.5. Understanding the effect of the guanidino group at side chain 27
2.2.6. Sub-conclusion 28
2.3 Uracil modification against MraY 29
2.3.1 Motivation 29
2.3.2 Design the modification on 5-position at uracil 31
2.3.3 Preparation of 5-position substituted uridine 21. 32
2.3.4 Preparation the library of UMP 36
2.3.5 Library and biological evaluation 38
2.3.6 Design the modification at the 6-position of uracil 39
2.3.7 Preparation of 6-position substituted uridine (Route 1) 41
2.3.8 Preparation of 6-position substituted uridine (Route 2) 46
2.3.9 Replan for 6-position substituted uridine. 47
2.3.10 Preliminary biological evaluation. 49
Chapter 3. Conclusion 51
Chapter 4. Experimental Section 53
4.1 General experiment procedure 53
4.2 Procedures and experimental data 54
4.3 Procedures of bioassay 121
References 124
Appendix 136
dc.language.isoen
dc.subject?頭耦合反應zh_TW
dc.subject核?鹼基zh_TW
dc.subject轉移?zh_TW
dc.subject抑制劑zh_TW
dc.subject抗生素zh_TW
dc.subjectUMP (uridine monophosphate)en
dc.subjectantibacterial agentsen
dc.subjecttranslocase MraYen
dc.subjectinhibitorsen
dc.subjectnucleosideen
dc.subjectSonogashira reactionen
dc.title核苷類衍生物之合成及其生物活性的應用zh_TW
dc.titleDiverse synthesis of nucleoside analogues and their use in a study of antibacterial activityen
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.oralexamcommittee鄭偉杰,邱浩傑,簡敦誠
dc.subject.keyword抗生素,轉移?,抑制劑,核?鹼基,?頭耦合反應,zh_TW
dc.subject.keywordantibacterial agents,translocase MraY,inhibitors,nucleoside,Sonogashira reaction,UMP (uridine monophosphate),en
dc.relation.page311
dc.identifier.doi10.6342/NTU201800724
dc.rights.note有償授權
dc.date.accepted2018-08-15
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept化學研究所zh_TW
顯示於系所單位:化學系

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  未授權公開取用
24.43 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved