Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生化科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70319
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor邱繼輝(Kay-Hooi Khoo)
dc.contributor.authorHsin-Hung Huangen
dc.contributor.author黃興鴻zh_TW
dc.date.accessioned2021-06-17T04:25:47Z-
dc.date.available2021-08-20
dc.date.copyright2018-08-20
dc.date.issued2018
dc.date.submitted2018-08-14
dc.identifier.citationAshline, D., Singh, S., Hanneman, A., Reinhold, V. (2005) Congruent strategies for carbohydrate sequencing. 1. Mining structural details by MSn. Anal Chem. 77(19), 6250-62.
Baum, L.G., Cobb, B.A. (2017) The direct and indirect effects of glycans on immune function. Glycobiology. 27(7), 619-624.
Cariappa, A., Takematsu, H., Liu, H., Diaz, S., Haider, K., Boboila, C., Kalloo, G., Connole, M., Shi, H.N., Varki, N., Varki, A., Pillai, S. (2009) B cell antigen receptor signal strength and peripheral B cell development are regulated by a 9-O-acetyl sialic acid esterase. J Exp Med 206(1), 125-38.
Cheng, C.W., Chou, C.C., Hsieh, H.W., Tu, Z., Lin, C.H., Nycholat, C., Fukuda, M., Khoo, K.H. (2015) Efficient Mapping of Sulfated Glycotopes by Negative Ion Mode nanoLC-MS/MS-Based Sulfoglycomic Analysis of Permethylated Glycans. Anal Chem. 87(12), 6380-8.
Cheng, P.F., Snovida, S., Ho, M.Y., Cheng, C.W., Wu, A.M., Khoo, K.H. (2013) Increasing the depth of mass spectrometry-based glycomic coverage by additional dimensions of sulfoglycomics and target analysis of permethylated glycans. Anal Bioanal Chem. 405(21), 6683-95.
Ciucanu, I. and Kerek, F. (1984) A simple and rapid method for the permethylation of carbohydrates. Carbohydrate Research 131(2), 209-217.
Dell, A., Morris, H.R. Egge, H., von Nicolai, H. Strecker, G. (1983) Fast-atom-bombardment mass-spectrometry for carbohydrate-structure determination. Carbohydrate Research 115, 41-52.
Dell, A. (1987) F.A.B.-mass spectrometry of carbohydrates. Adv Carbohydr Chem Bioche 45, 19-72.
Dell, A., Morris, H.R. (2001) Glycoprotein structure determination by mass spectrometry. Science. 291(5512), 2351-6.
Domon, B., Costello, C.E. (1988) Structure elucidation of glycosphingolipids and gangliosides using high-performance tandem mass spectrometry. Biochemistry. 27(5), 1534-43.
Egge, H. Peter-Katalinic, J. (1987) Fast atom bombardment mass spectrometry for structural elucidation of glycoconjugates. Mass Spectrom Rev 6, 31-393.
Fan, Y.Y., Yu, S.Y., Ito, H., Kameyama, A., Sato, T., Lin, C.H., Yu, L.C., Narimatsu, H., Khoo K.H. (2008) Identification of further elongation and branching of dimeric type 1 chain on lactosylceramides from colonic adenocarcinoma by tandem mass spectrometry sequencing analyses. J Biol Chem. 283(24), 16455-68.
Fukuda, H., Kondo, A., Noda, H. (2001) Biodiesel fuel production by transesterification of oils. J Biosci Bioeng. 92(5), 405-16.
Hakomori, S. (1964) A rapid permethylation of glycolipid, and polysaccharide catalyzed by methylsulfinyl carbanion in dimethyl sulfoxide. J Biochem 55, 205-208.
Hall, M.K., Weidner, D.A., Whitman, A.A., Schwalbe, R.A. (2018) Lack of complex type N-glycans lessens aberrant neuronal properties. PLoS One. 13(6): e0199202.
Haltiwanger, R.S., Kelly, W.G., Roquemore, E.P., Blomberg, M.A., Dong, L.Y., Kreppel, L., Chou, T.Y., Hart, G.W. (1992) Glycosylation of nuclear and cytoplasmic proteins is ubiquitous and dynamic. Biochem Soc Trans. 20(2), 264-269.
Hang, Q., Isaji, T., Hou, S., Wang, Y., Fukuda, T., Gu, J. (2017) A Key Regulator of Cell Adhesion: Identification and Characterization of Important N-Glycosylation Sites on Integrin α5 for Cell Migration. Mol Cell Biol 37(9).
Harvey D.J. (2000a) Collision-induced fragmentation of underivatized N-linked carbohydrates ionized by electrospray. J Mass Spectrom. 35(10), 1178-90.
Harvey, D. J. (2000b) Electrospray mass spectrometry and fragmentation of N-linked carbohydrates derivatized at the reducing terminus. J Am Soc Mass Spectrom. 11(10), 900-15.
Harvey, D. J. (2000c) N-(2-diethylamino)ethyl-4-aminobenzamide derivative for high sensitivity mass spectrometric detection and structure determination of N-linked carbohydrates. Rapid Commun Mass Spectrom. 14(10), 862-71.
Harvey, D. J. (2005a) Fragmentation of negative ions from carbohydrates: part 1. Fragmentation of hybrid and complex N-linked glycans. J Am Soc Mass Spectrom. 16(5), 622-630.
Harvey, D. J. (2005b) Fragmentation of negative ions from carbohydrates: part 2. Fragmentation of hybrid and complex N-linked glycans. J Am Soc Mass Spectrom. 16(5), 631-646.
Harvey, D. J. (2005c) Fragmentation of negative ions from carbohydrates: part 3. Fragmentation of hybrid and complex N-linked glycans. J Am Soc Mass Spectrom. 16(5), 647-659.
Helenius, A., and Aebi, M. (2004). Roles of N-linked glycans in the endoplasmic reticulum Annu Rev Biochem 73, 1019-49.
Hortin, G., Green, E.D., Baenziger, J.U., Strauss, A.W. (1986) Sulphation of proteins secreted by a human hepatoma-derived cell line. Sulphation of N-linked oligosaccharides on alpha 2HS-glycoprotein. Biochem J. 235(2), 407-14.
Hsiao, C.T., Wang, P.W., Chang, H.C., Chen, Y.Y., Wang, S.H., Chern, Y., Khoo, K.H. (2017) Advancing a High Throughput Glycotope-centric Glycomics Workflow Based on nanoLC-MS2-product Dependent-MS3 Analysis of Permethylated Glycans. Mol Cell Proteomics. 16(12), 2268-2280.
Kameyama, A., Kikuchi, N., Nakaya, S., Ito, H., Sato, T., Shikanai, T., Takahashi, Y., Takahashi. K., Narimatsu, H.A. (2005) Strategy for identification of oligosaccharide structures using observational multistage mass spectral library. Anal Chem. 77(15), 4719-25.
Kang, P., Mechref, Y., Klouckova, I., Novotny, M.V. (2005) Solid-phase permethylation of glycans for mass spectrometric analysis. Rapid Commun Mass Spectrom. 19(23), 3421-8.
Karlsson, N.G., Wilson, N.L., Wirth, H.J., Dawes, P., Joshi, H., Packer, N.H. (2004) Negative ion graphitised carbon nano-liquid chromatography/mass spectrometry increases sensitivity for glycoprotein oligosaccharide analysis. Rapid Commun Mass Spectrom. 18(19), 2282-92.
Karsten, U., Goletz, S. (2015) What controls the expression of the core-1 (Thomsen-Friedenreich) glycotope on tumor cells? Biochemistry. 80(7), 801-807.
Kawashima, H. (2006) Roles of sulfated glycans in lymphocyte homing. Biol Pharm Bull. 12, 2343-9.
Khoo, K.H., Yu, S.Y. (2010) Mass spectrometric analysis of sulfated N- and O-glycans. Methods Enzymol. 478, 3-26.
Kimura, N., Ohmori, K., Miyazaki, K., Izawa, M., Matsuzaki, Y., Yasuda, Y., Takematsu, H., Kozutsumi, Y., Moriyama, A., Kannagi, R. 2007. Human Blymphocytes express alpha2-6-sialylated 6-sulfo-N-acetyllactosamine serving as a preferred ligand for CD22/Siglec-2. J Biol Chem. 282:32200–32207.
Kreer, C., Kuepper, J.M., Zehner, M., Quast, T., Kolanus, W., Schumak, B., Burgdorf, S. (2017) N-glycosylation converts non-glycoproteins into mannose receptor ligands and reveals antigen-specific T cell responses in vivo. Oncotarget. 8(4), 6857-6872
Křivohlavá, R., Grobárová, V., Neuhöferová, E., Fišerová, A., Benson, V. (2018) Interaction of colon cancer cells with glycoconjugates triggers complex changes in gene expression, glucose transporters and cell invasion. Mol Med Rep. 17(4), 5508-5517.
Larsen, I.S.B., Narimatsu, Y., Joshi, H.J., Yang, Z., Harrison, O.J., Brasch, J., Shapiro, L., Honig, B., Vakhrushev, S.Y., Clausen, H., Halim, A. (2017) Mammalian O-mannosylation of cadherins and plexins is independent of protein O-mannosyltransferases 1 and 2. J Biol Chem. 292(27), 11586-11598.
Lee, A.R., Kim, S., Ko, K.W., Park, C.S. (2017) Differential effects of N-linked glycosylation of Vstm5 at multiple sites on surface expression and filopodia formation. PLoS One 12(7), e0181257.
Link-Lenczowski, P., Bubka, M., Balog, C.I.A., Koeleman, C.A.M., Butters, T.D., Wuhrer, M., Lityńska, A. (2018) The glycomic effect of N-acetylglucosaminyltransferase III overexpression in metastatic melanoma cells. GnT-III modifies highly branched N-glycans. Glycoconj J. 35(2), 217-231.
Lommel, M., Winterhalter, P.R., Willer, T., Dahlhoff, M., Schneider, M.R., Bartels, M.F., Renner-Müller, I., Ruppert, T., Wolf, E., Strahl S. (2013) Protein O-mannosylation is crucial for E-cadherin-mediated cell adhesion. Proc Natl Acad Sci U S A. 110(52), 21024-9.
Macauley, M.S., Kawasaki, N., Peng, W., Wang, S.H., He, Y., Arlian, B.M., McBride, R., Kannagi, R., Khoo, K.H., Paulson, J.C. (2015) Unmasking of CD22 Co-receptor on Germinal Center B-cells Occurs by Alternative Mechanisms in Mouse and Man. J Biol Chem. 290(50), 30066-77.
Morelle, W., Slomianny, M.C., Diemer, H., Schaeffer, C., van Dorsselaer, A., Michalski, J.C. (2004) Fragmentation characteristics of permethylated oligosaccharides using a matrix-assisted laser desorption/ionization two-stage time-of-flight (TOF/TOF) tandem mass spectrometer. Rapid Commun Mass Spectrom. 18(22), 2637-49.
Moremen, K.W., Tiemeyer, M., Nairn, A.V. (2012) Vertebrate protein glycosylation: diversity, synthesis and function. Nat Rev Mol Cell Biol. 13(7), 448-62.
Mørtz, E., Sareneva, T., Julkunen, I., Roepstorff, P. (1996) Does matrix-assisted laser desorption/ionization mass spectrometry allow analysis of carbohydrate heterogeneity in glycoproteins? A study of natural human interferon-gamma. J Mass Spectrom 31(10), 1109-1118.
North, S.J., Jang-Lee, J., Harrison, R., Canis, K., Ismail, M.N., Trollope, A., Antonopoulos, A., Pang, P.C., Grassi, P., Al-Chalabi, S., Etienne, A.T., Dell, A., Haslam, S.M. (2010) Mass spectrometric analysis of mutant mice. Methods Enzymol. 478, 27-77.
Plumb, R., Johnson, K. A., Rainville, P., Smith, B. W., Wilson, I. D., Castro-Perez, J.M., Nicholson, J.K. (2006) UPLC/MSE; a new approach for generating molecular fragment information for biomarker structure elucidation Rapid Commun. Mass Spectrom. 20, 1989–1994.
Rokhsefat, S., Lin, A., Comelli, E.M. (2016) Mucin-Microbiota Interaction During Postnatal Maturation of the Intestinal Ecosystem: Clinical Implications. Dig Dis Sci. 61(6), 1473-86.
Rosen, S.D. (2004) Ligands for L-selectin: homing, inflammation, and beyond. Annu Rev Immunol. 22, 129-56.
Rudd, P.M., Woods, R.J., Wormald M.R., Opdenakker G., Downing, A.K., Campbell, I.D., Dwek, R.A. (1995) The effects of variable glycosylation on the functional activities of ribonuclease, plasminogen and tissue plasminogen activator. Biochim Biophys Acta. 1248(1), 1-10.
Röst, H.L., Rosenberger, G., Navarro, P., Gillet, L., Miladinović, S.M., Schubert, O.T., Wolski, W., Collins, B.C., Malmström, J., Malmström, L., Aebersold, R. (2014) OpenSWATH enables automated, targeted analysis of data-independent acquisition MS data. Nat Biotechnol. 32(3), 219-223.
Rudd, P.M., Mattu, T.S., Zitzmann, N., Mehta, A., Colominas, C., Hart, E., Opdenakker, G., Dwek, R.A. (1999) Glycoproteins: rapid sequencing technology for N-linked and GPI anchor glycans Biotechnol Genet Eng Rev 16, 1-21.
Schauer, R., Srinivasan, G.V., Wipfler, D., Kniep, B., Schwartz-Albiez, R. (2011) O-Acetylated sialic acids and their role in immune defense. Adv Exp Med Biol. 705, 525-48.
Scigelova, M., Makarov, A. (2006) Orbitrap mass analyzer--overview and applications in proteomics. Proteomics. Suppl 2, 16-21.
Senko, M.W., Remes, P.M., Canterbury, J.D., Mathur, R., Song, Q., Eliuk, S.M., Mullen, C., Earley, L., Hardman, M., Blethrow, J.D., Bui, H., Specht, A., Lange, O., Denisov, E., Makarov, A., Horning, S., Zabrouskov, V. (2013) Novel parallelized quadrupole/linear ion trap/Orbitrap tribrid mass spectrometer improving proteome coverage and peptide identification rates. Anal Chem 85(24), 11710-4.
Seymour, J.L., Costello, C.E., Zaia, J. (2006) The influence of sialylation on glycan negative ion dissociation and energetics. J Am Soc Mass Spectrom. 17(6), 844-854.
Sheriff, S., Chang, C.Y., Ezekowitz, R.A. (1994) Human mannose-binding protein carbohydrate recognition domain trimerizes through a triple alpha-helical coiled-coil. Nat Struct Biol. 11, 789-94.
Shi, W.X., Chammas, R., Varki, N.M., Powell, L., Varki, A. (1996) Sialic acid 9-O-acetylation on murine erythroleukemia cells affects complement activation, binding to I-type lectins, and tissue homing. J Biol Chem. 271(49), 31526-32.
Sjoberg, E.R., Powell, L.D., Klein, A., Varki, A. (1994) Natural ligands of the B cell adhesion molecule CD22 beta can be masked by 9-O-acetylation of sialic acids. J Cell Biol 126(2), 549-62.
Sottani, C., Fiorentino, M., Minoia, C. (1997) Matrix performance in matrix-assisted laser desorption/ionization for molecular weight determination in sialyl and non-sialyl oligosaccharide proteins. Rapid Commun Mass Spectrom 11(8), 907-913.
Sidoli, S., Fujiwara, R., Garcia, B.A. (2016) Multiplexed data independent acquisition (MSX-DIA) applied by high resolution mass spectrometry improves quantification quality for the analysis of histone peptides. Proteomics. 16(15-16), 2095-2105.
Stephens, E., Maslen, S.L., Green, L.G., Williams, D.H. (2004) Fragmentation characteristics of neutral N-linked glycans using a MALDI-TOF/TOF tandem mass spectrometer. Anal Chem. 76(8), 2343-2354.
Stroud, M.R., Levery, S.B., Nudelman, E.D., Salyan, M.E., Towell, J.A., Roberts, C.E., Watanabe, M., Hakomori, S. (1991) Extended type 1 chain glycosphingolipids: dimeric Lea (III4V4Fuc2Lc6) as human tumor-associated antigen. J Biol Chem 266(13), 8439-8446.
Stroud, M.R., Levery, S.B., Salyan, M.E., Roberts, C.E., Hakomori, S. (1992) Extended type-1 chain glycosphingolipid antigens. Isolation and characterization of trifucosyl-Leb antigen (III4V4VI2Fuc3Lc6). Eur J Biochem. 203(3), 577-586.
Takada, A, Ohmori, K., Yoneda, T., Tsuyuoka, K., Hasegawa, A., Kiso, M., Kannagi, R. (1993) Contribution of carbohydrate antigens sialyl Lewis A and sialyl Lewis X to adhesion of human cancer cells to vascular endothelium. Cancer Res. 53(2), 354-361.
Tsou, C.C., Avtonomov, D., Larsen, B., Tucholska, M., Choi, H., Gingras, A.C., Nesvizhskii, A.I. (2015) DIA-Umpire: comprehensive computational framework for data-independent acquisition proteomics. Nat Methods. 12(3), 258-264,
Ubillos, L., Berriel, E., Mazal, D., Victoria, S., Barrios, E, Osinaga, E., Berois, N. (2018) Polypeptide-GalNAc-T6 expression predicts better overall survival in patients with colon cancer. Oncol Lett. 16(1), 225-234.
Varki, A. (2001) Loss of N-glycolylneuraminic acid in humans: Mechanisms, consequences, and implications for hominid evolution. Am J Phys Anthropol Suppl 33, 54-69. Review.
Varki, A., Lowe, J. B., in: Varki, A., Cummings, R. D., Esko, J. D., Freeze, H. H. (2009) Biological Roles of Glycans, Essentials of Glycobiology, Cold Spring Harbor, NY, 75–88.
Venable, J.D., Dong, M.Q., Wohlschlegel, J., Dillin, A., Yates, J.R. (2004) Automated approach for quantitative analysis of complex peptide mixtures from tandem mass spectra. Nat Methods. 1(1), 39-45.
Wada, Y., Azadi, P., Costello, C.E., Dell, A., Dwek, R.A., Geyer, H., Geyer, R., Kakehi, K., Karlsson, N.G., Kato, K., Kawasaki, N., Khoo, K.H., Kim, S., Kondo, A., Lattova, E., Mechref, Y., Miyoshi, E., Nakamura, K., Narimatsu, H., Novotny, M.V., Packer, N.H., Perreault, H., Peter-Katalinic, J., Pohlentz, G., Reinhold, V.N., Rudd, P.M., Suzuki, A., Taniguchi, N. (2007) Comparison of the methods for profiling glycoprotein glycans--HUPO Human Disease Glycomics/Proteome Initiative multi-institutional study. Glycobiology. 4, 411-22.
Wheeler, S.F., Harvey, D.J. (2000) Negative ion mass spectrometry of sialylated carbohydrates: discrimination of N-acetylneuraminic acid linkages by MALDI-TOF and ESI-TOF mass spectrometry. Anal Chem. 72(20), 5027-5039.
Weis, W.I., Drickamer, K. (1994) Trimeric structure of a C-type mannose-binding protein. Structure. 2(12), 1227-40.
Wuhrer, M., Koeleman, C.A., Hokke, C.H., Deelder, A.M. (2005) Protein glycosylation analyzed by normal-phase nano-liquid chromatography--mass spectrometry of glycopeptides. Anal Chem. 77(3), 886-94.
Wuhrer, M., Koeleman, C.A., Hokke, C.H., Deelder, A.M. (2006) Mass spectrometry of proton adducts of fucosylated N-glycans: fucose transfer between antennae gives rise to misleading fragments. Rapid Commun Mass Spectrom. 20(11), 1747-54.
Wuhrer, M., Koeleman, C.A., Deelder, A.M. (2009) Hexose rearrangements upon fragmentation of N-glycopeptides and reductively aminated N-glycans. Anal Chem. 81(11):4422-32.
Yu, S.Y., Wu, S.W., Khoo, K.H. (2006) Distinctive characteristics of MALDI-Q/TOF and TOF/TOF tandem mass spectrometry for sequencing of permethylated complex type N-glycans. Glycoconj J. 23(5-6), 355-69.
Yu, S.Y., Wu, S.W., Hsiao, H.H., Khoo, K.H. (2009) Enabling techniques and strategic workflow for sulfoglycomics based on mass spectrometry mapping and sequencing of permethylated sulfated glycans. Glycobiology. 10, 1136-1149.
Yu, S.Y., Chang, L.Y., Cheng, C.W., Chou, C.C., Fukuda, M.N., Khoo, K.H. (2013) Priming mass spectrometry-based sulfoglycomic mapping for identification of terminal sulfated lacdiNAc glycotope. Glycoconj J. 2, 183-194.
Zaia, J. (2008) Mass spectrometry and the emerging field of glycomics. Chem Biol. 15(9), 881-892.
Zhang, Y., Bilbao, A., Bruderer, T., Luban, J., Strambio-De-Castillia, C., Lisacek, F., Hopfgartner, G., Varesio, E. (2015) The Use of Variable Q1 Isolation Windows Improves Selectivity in LC-SWATH-MS Acquisition. J Proteome Res 14(10), 4359-4371.
Zhou, Y., Fukuda, T., Hang, Q., Hou, S., Isaji, T., Kameyama, A., Gu, J. (2017) Inhibition of fucosylation by 2-fluorofucose suppresses human liver cancer HepG2 cell proliferation and migration as well as tumor formation. Sci Rep 7(1), 11563.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70319-
dc.description.abstract醣質體於癌症與疾病中的研究目標包含希望能找到醣化作用在病理生理機制中的變化。特別是醣鏈上的醣表位分析,除了是重要的基本醣生物學研究目標,更可能是非常重要的疾病標記。而目前以質譜技術進行各種免疫細胞類型中特定醣鏈上硫酸化、唾液酸化醣表位分析以及全面性的針對生物樣本中醣表位具體量化分析,仍然是非常艱鉅的挑戰,並且很少被報導。本論文以實驗室既有的醣質體分析平台方法為基礎,進行兩種不同方向的分析方法開發。首先以多孔石墨碳(porous graphitized carbon)管柱分離技術為基礎,開發奈米流速多孔石墨碳層析質譜方法平台,針對表現於N型醣鏈上的硫酸化醣抗原之唾液酸鍵接位點進行結構確認及相對比例定量。然而要精確定位醣鏈上硫酸化醣表位中硫酸根位置,則仍必須針對全甲基化醣鏈 (permethylated glycans) 進行二次與三次質譜實驗來確認。論文中結合不同分析方法的優點,能針對B-CLL患者收集的外周血單核細胞(PBMC) 上的抑制性B細胞受體 CD22上的特定硫酸化與唾液酸化醣鏈進行半定量監測。
而在另一方面,本論文的第二部分也是主要部分致力於探索不同的數據採集方法,來進行更全面醣質體研究的可行性。在此部分,本論文首次開發將數據獨立採集方法 (intelligent GlycOmics Data-independent-acquisition, iGODIA, method) 應用於醣表位全面性與相對量化分析。並以BSM ( Bovine Maxillary Mucin)樣品中的全甲基化非硫酸化與硫酸化 O型醣鏈完整測試此方法應用於不同分析模式,包含正負電分析,二次與三次質譜分析 (MS2, MS3),以及應用此方法進行醣質體定性定量實驗 (Quan/Qual experiments),並建立最佳數據獨立採集方法和其儀器參數。更進一步結合產物離子資訊依賴三次質譜方法 (MS3) ,進行同分異構醣表位的相對含量定量分析,與當前的LC-MS2-pd-MS3數據依賴性採集模式相比,應用此數據獨立性採集模式方法 (iGODIA) 針對結腸癌三期患者組織樣品的中的O型醣鏈上的特定醣表位進行定性定量分析,可證明此數據獨立性採集模式方法具備獨特分析優勢。
zh_TW
dc.description.abstractCancer and disease glycomics aim to delineate the pathophysiological glycosylation changes of significant translational values. Ability to efficiently map the altered glycosylation features particularly the terminal glyco-epitopes (glycotopes) not only is essential to drive basic glycobiology research but also can uncover valuable disease markers. Despite well-recognized biological importance, high precision and comprehensive mass spectrometry (MS)-based glycomic identification and quantitative mapping of terminal glycotopes particularly the sulfo-, sialylated glycotopes on various immune cell types remains technically challenging and rarely reported. In this thesis work, MS-based (sulfo)-glycomic platform previously developed in the laboratory was extended by developing and incorporating additional complementary analytical approaches in two different aspects. First, nanoLC-MS/MS analysis of native N-glycans on capillary poros graphitized carbon column was investigated and shown to be a more efficient and direct way to resolve the sialyl linkages of N-glycans carrying sulfo-sialylated glycotopes. This allows semi-quantitative mapping of the relative expression of specific sulfo-sialylated ligands of an inhibitory B cell receptor, CD22, on the peripheral blood mononuclear cells (PBMC) collected from B-CLL patients. However, de novo sequencing and identification of the sulfated glycotopes down to the level of defining the position of sulfate was found to be more readily accomplished by MS2/MS3 analysis of permethylated glycans at higher sensitivity. To home in on this latter aspect, the second and major part of this thesis work was devoted to explore the feasibility of more comprehensive mapping via alternative data acquisition method. An intelligent GlycOmics DIA (iGODIA) workflow, including dual positive/negative polarity analysis, tandem MS2/MS3, and Qual/Quan experiments, were investigated using permethylated non-sulfated and sulfated O-glycan from BSM as respective standards in positive and negative ion modes to establish optimum data independent acquisition (DIA) setup and instrument parameters. Further product dependent (pd)-MS3 were applied following DIA to resolve isomeric targeted glycotopes and various modes of relative quantification were experimented. In comparison against current LC-MS2-pd-MS3 data dependent acquisition mode, the advantages and extra benefits of this iGODIA workflow were clearly demonstrated when target-adapted against glycotopes on O-glycans of colon cancer stage III patients' tissue samples.en
dc.description.provenanceMade available in DSpace on 2021-06-17T04:25:47Z (GMT). No. of bitstreams: 1
ntu-107-D95b46010-1.pdf: 4574045 bytes, checksum: 642a61e2ae8aabf9fdacb5e84d12ba92 (MD5)
Previous issue date: 2018
en
dc.description.tableofcontentsTable of Contents
Chapter 1 : Introduction 1
1.1 : Glycosylation and Glycomics 1
1.2 : Mass Spectrometry-Based Methods for Glycomics Study 7
1.2.1 : From FAB-MS to MALDI- and LC-ESI-MS 8
1.2.2 : Tandem MS and Glycan Sequencing 10
1.2.2.1 : MALDI MS/MS 11
1.2.2.2 : LC-ESI-MS/MS 13
1.2.2.3 : Orbitrap Mass Spectrometers for Multimode MS2/MS3 15
1.3 : The Limitation of Glycomics by Current Mass Spectrometry-Based Methods 18
1.4 : Specific Aims 23
Chapter 2 Materials and Methods 25
2.1 : Release of N- and O-glycans from Cell Line or Tissue 25
2.2 : N- and O-glycan Permethylation 26
2.3 : MALDI-MS and MS/MS Experiments 27
2.4 : PGC- and RP- NanoLC-MS with DDA experiment 28
2.5 : iGODIA & iGODIA tMS3 experiment 29
Chapter 3 Results 31
3.1 : To Establish a Complementary PGC-Based Method for Identifying Native 2,3- and/or 2,6-Sialyl Sulfated N-Glycan from Biological Source 32
3.1.1 : Results from MS and MS/MS Analysis of Permethylated N-glycans 33
3.1.2 : NanoPGC-LC/MS for Resolving Native Sulfo-Sialyl N-glycans 38
3.1.3 : Relative Quantification of KN343 Glycotope in B-CLL Samples by NanoPGC-LCMS Platform 42
3.2 : High Throughput MS-Based Method for Targeted Glycotope Quantitation 45
3.2.1 : Workflows of DDA and iGODIA Experiments 47
3.2.2 : iGODIA in Glycomics Study 53
3.2.2.1 : Determining the MS Scan Range and Stepped MS/MS Isolation Window in iGODIA Experiment 53
3.2.2.2 : The Comparison Between DDA and iGODIA 58
3.2.2.3 : Negative Ion Mode iGODIA Applied to Permethylated Mono-Sulfated O-Glycan Analysis .... 68
3.2.2.4 : Relative Quantitation of Targeted Glycotopes by iGODIA.... 71
3.2.2.5 : Relative Quantification of Isomeric Glycotopes by iGODIA with Targeted MS3.. 75
3.2.2.6 : Targeted Glycotopes Analysis of Permethylated O-Glycans of Colon Cancer Tissue by iGODIA... 81
Chapter 4 Discussion 89
4.1 : Strategies for Analytical Workflow 90
4.2 : Future Perspective for LC/MS Based Method Development 95
References 97
dc.language.isoen
dc.subject同分異構醣表位zh_TW
dc.subject醣表位zh_TW
dc.subject醣質體zh_TW
dc.subject數據獨立採集方法zh_TW
dc.subjectiGODIAen
dc.subjectglycomicsen
dc.subjectisomeric glycotopesen
dc.subjectglycotopesen
dc.subjectDIAen
dc.title全面性醣表位精準鑑定分析之質譜方法建立與應用zh_TW
dc.titleDevelopment of Mass Spectrometry-Based Methods for Comprehensive and Quantitative Mapping
of Terminal Glycotopes
en
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree博士
dc.contributor.oralexamcommittee廖寶琦(Pao-Chi Liao),張權發(Chuan-Fa Chang),蕭鶴軒(He-Hsuan Hsiao),辜韋智(Wei-Chi Ku)
dc.subject.keyword醣表位,醣質體,同分異構醣表位,數據獨立採集方法,zh_TW
dc.subject.keywordglycomics,glycotopes,DIA,iGODIA,isomeric glycotopes,en
dc.relation.page105
dc.identifier.doi10.6342/NTU201803292
dc.rights.note有償授權
dc.date.accepted2018-08-15
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生化科學研究所zh_TW
顯示於系所單位:生化科學研究所

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  未授權公開取用
4.47 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved