請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70314完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 單秋成 | |
| dc.contributor.author | Sheng-Jie Sun | en |
| dc.contributor.author | 孫聖傑 | zh_TW |
| dc.date.accessioned | 2021-06-17T04:25:42Z | - |
| dc.date.available | 2023-08-16 | |
| dc.date.copyright | 2018-08-16 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2018-08-14 | |
| dc.identifier.citation | [1]S. Iijima, “Helical microtubules of graphitic carbon,” Nature, vol. 354, no. 6348, pp. 56–58, 7 1991.
[2]H. Dai, “Carbon Nanotubes: Synthesis, Integration, and Properties,” Acc. Chem. Res., vol. 35, no. 12, pp. 1035–1044, Spring 2002. [3]C. Dekker, “Carbon nanotubes as molecular quantum wires,” Phys. Today, vol. 52, pp. 22–28, Spring 1999. [4] A. Peigney, C. Laurent, E. Flahaut, R. R. Bacsa, and A. Rousset, “Specific surface area of carbon nanotubes and bundles of carbon nanotubes,” Carbon, vol. 39, no. 4, pp. 507–514, 2001. [5]F. H. Gojny, M. H. G. Wichmann, B. Fiedler, and K. Schulte, “Influence of different carbon nanotubes on the mechanical properties of epoxy matrix composites – A comparative study,” Compos. Sci. Technol., vol. 65, no. 15–16, pp. 2300–2313, 2005. [6] J. Shen, W. Huang, L. Wu, Y. Hu, and M. Ye, “Thermo-physical properties of epoxy nanocomposites reinforced with amino-functionalized multi-walled carbon nanotubes,” Compos. Part Appl. Sci. Manuf., vol. 38, no. 5, pp. 1331–1336, May 2007. [7] Ray H. Baughman, Cui Changxing, Anvar A. Zakhidov, Iqbal Zafar, Barisci joseph. “Carbon Nanotube Actuators,”. Science;284(5418):1340-4, 1999 [8] J.K.W. Sandler, J.E. Kirk, I.A. Kinloch, M.S.P. Shaffer1, A.H. Windle ,“Ultra-low electrical percolation threshold in carbon-nanotube-epoxy composites, ” Department of Materials Science and Metallurgy, University of Cambridge. 2003 Elsevier Ltd. [9]Roham Mactabi, losif D. Rosca, Suong V. Hoa ,“Monitoring the integrity of adhesive joints during fatigue loading using carbon nanotubes, ” Composites Science and Technology Volume 78, 1 April 2013 [10] X. J. Wang, D. D. L. Chung, “Self-monitoring of fatigue damage and dynamic strain in carbon fiber polymer-matrix composite, ” Composites Part B: Engineering Volume 29, Issue 1, 1998 [11]Limin Gao, Erik T. Thostenson, Zuoguang Zhang, Tsu-Wei Chou ,“Sensing of Damage Mechanisms in Fiber-Reinforced Composites under Cyclic Loading using Carbon Nanotubes, ” Adv. Funct. Mater., 19, 123–130, 2009 [12] Erik T. Thostenson, Tsu-Wei Chou,“Real-time in situsensing of damage evolution in advanced fiber composites using carbon nanotube networks, ” Nanotechnology19,215713, 2008 [13]Sang-ha Hwang1, Young-Bin Park1 ,“Smart Materials and Structures Based on Carbon Nanotube Composites,”Kumoh National Institute of Technology Korea. [14] Erik T.Thostenson, Tsu-Wei Chou,“Processing-structure-multi-functional property relationship in carbon nanotube/epoxy composites,” Carbon Volume 44, Issue 14, November 2006 [15]QinmingLiu,JinchunTu,XinWang,WenxueYu,WeitaoZheng,ZhudiZhao,“Electrical conductivity of carbon nanotube/poly(vinylidene fluoride) composites prepared by high-speed mechanical,” Carbon Volume 50, Issue 1, January 2012 [16]陳佩雯,“遊艇材料中添加CFM纖維對流動特性之影響,” 台大工程科學與海洋工程學學系 2013 [17]陳奕杰,“具自我健康監測能力之智慧型奈米複合材料之探討,” 台大機械工程學系 2017 [18]M. Kupke, H.-P. Wentzel, and K. Schulte, “Electrically conductive glass fibre reinforced epoxy resin,” Mater. Res. Innov., vol. 2, no. 3, pp. 164–169, Nov. 1998. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70314 | - |
| dc.description.abstract | 隨著材料科學的演進,輕量化且兼具強度的材料逐漸被開發出來,其中纖維增強塑料FRP被廣泛使用在汽車,船舶和風力發電扇葉等行業,在材料結構完整性的監測上多半使用超音波掃描探傷或是在材料製作完成時敲擊聽音,然而這些方法在實際成品的監測應用上有其限制,將多壁奈米碳管添加至FRP使其產生導電性,用其導電性建立完整的破壞監測機制並實現多點監測為本研究之目的。
第一部份先比較在有無分散劑之情況下將多壁奈米碳管混入環氧樹脂A劑之分散效果,並發現只要透過適當製程亦可在無分散劑情況下做到相近效果之分散,並且可以減少後續抽去溶劑會產生之衍生問題。 第二部份則是比較不同真空管路佈管方式對試片成品之影響,並且說明如何佈置電極並得到形狀均勻且碳管分散均勻之多點監測試片。 第三部分則是將CNT GE試片進行直接拉伸,循環加載卸載與疲勞試驗,觀察拉伸試驗與疲勞試驗中各頻道的電壓變化,再將不同疲勞負載下的電壓變化相互比較,以及比較拉伸和疲勞試驗的電壓變化差異,進而分析不同破壞形式對電壓可能產生之影響。 | zh_TW |
| dc.description.abstract | With the evolution of materials science, lightweight and strength materials have been gradually developed. Among them, fiber reinforced plastic FRP is widely used in industries such as automobiles, ships and wind turbine blades, and most of them use ultrasonic waves in the monitoring of structural integrity of materials. Scanning flaw detection or tapping the sound when the material is finished. However, these methods have limitations in the actual application of the finished product. Add MWCNT to the FRP to make it conductive, and use its conductivity to establish a complete damage monitoring mechanism and realization of multi-point monitoring is the purpose of this study. The first part compares the dispersion of multi-walled carbon nanotubes mixed with epoxy resin A with add dispersant or not, and finds that similar effects can be dispersed without dispersing through proper process. And can reduce the problems that can be caused by solvent remove. The second part is to compare the effects of different vacuum pipeline arrange , and explain how to arrange the electrodes and get a multi-point monitoring speciman with uniform shape and uniform carbon tube dispersion. The third part is do tensile test, cyclic loading and unloading test and fatigue test, observe the voltage change of each channel in tensile test and fatigue test, compare the voltage changes under different fatigue loads, and compare the difference in voltage variation between tensile and fatigue tests to analyze the effect of different failure modes on the voltage variation. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T04:25:42Z (GMT). No. of bitstreams: 1 ntu-107-R05522536-1.pdf: 10542044 bytes, checksum: f1ed5c275b5a920afa7d5ecf6c6e0892 (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | 摘要 III
Abstract IV 目錄 V 圖目錄 VII 表目錄 XI 第一章 緒論 1 1.1 前言 1 1.2 研究動機與目的 1 1.3 論文架構 2 第二章 文獻回顧 3 2.1 奈米碳管 3 2.2 奈米碳管-環氧樹脂複合材料 5 2.3 奈米碳管感測器 7 2.4 奈米碳管之分散 11 2.5 真空輔助成型(Vacuum Assisted Resin Transfer Molding) 12 第三章 實驗材料與設備 13 3.1 實驗材料 13 3.2 鑽石切割機 15 3.3 萬能材料試驗機 15 3.4 真空脫泡機 16 3.5 抽真空系統 17 3.6 超音波打碎機 17 3.7 高速組織均質機 17 3.8 磁石攪拌機 18 3.9 電子攪拌機 19 3.10 熱風循環烘箱 19 3.11 萬能數位電表 20 3.12 KEITHLEY 2450電源供應器 20 第四章 試片製作與實驗方法 21 4.1 試片製作 21 4.1.1 多壁奈米碳管與環氧樹脂中之分散 21 4.1.2 纖維強化材的裁切與疊層 25 4.1.3 真空管路佈置與樹脂灌注 27 4.2 電極與量測頻道之佈置 33 4.2.1 電極 33 4.2.2 量測頻道的佈置 34 4.3 多點電壓監測與拉伸疲勞試驗 35 4.3.1 多點電壓監測 35 4.3.2 拉伸試驗 36 4.3.3 疲勞試驗 36 第五章 實驗結果 38 5.1 不同混合方式對分散效果之影響 38 5.2 拉伸與逐步加載卸載 41 5.2.1 直接拉伸 41 5.2.2 逐步加載卸載 42 5.2.3 拉伸與逐步加載卸載小結 49 5.3 不同纖維疊層方式在拉伸過程電壓變化之比較 50 5.3.1 拉伸過程電壓變化比趨勢圖 50 5.3.2 卸載後電壓變化比關係圖 51 5.3.3 破壞處電壓與負載之關係圖 53 5.3.4 不同疊層方式拉伸試驗小結 54 5.4 疲勞試驗 55 5.4.1 不同負載之疲勞結果 55 5.4.2 疲勞過程不同時期升載時電壓變化差異 65 第六章 結論與未來展望 68 6.1結論 …………………………………………………………………….68 6.2未來展望 69 附錄 72 | |
| dc.language.iso | zh-TW | |
| dc.subject | 複合材料破壞 | zh_TW |
| dc.subject | 電壓監測 | zh_TW |
| dc.subject | 真空轉注製程 | zh_TW |
| dc.subject | 奈米碳管 | zh_TW |
| dc.subject | composite damage | en |
| dc.subject | voltage monitoring | en |
| dc.subject | Vacuum Assisted Resin Transfer Molding | en |
| dc.subject | carbon nanotubes | en |
| dc.title | 以導電性監測複合材料破壞之探討 | zh_TW |
| dc.title | Sensing of damage discussion in fiber-epoxy resin composites by conductivity | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 吳文方,莊禮彰 | |
| dc.subject.keyword | 複合材料破壞,電壓監測,真空轉注製程,奈米碳管, | zh_TW |
| dc.subject.keyword | composite damage,voltage monitoring,Vacuum Assisted Resin Transfer Molding,carbon nanotubes, | en |
| dc.relation.page | 77 | |
| dc.identifier.doi | 10.6342/NTU201803154 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2018-08-15 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-1.pdf 未授權公開取用 | 10.29 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
