請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7030
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 常玉強(Yuh-Chyang Charng) | |
dc.contributor.author | Hao-Yen Hsueh | en |
dc.contributor.author | 薛豪彥 | zh_TW |
dc.date.accessioned | 2021-05-17T09:24:32Z | - |
dc.date.available | 2014-08-20 | |
dc.date.available | 2021-05-17T09:24:32Z | - |
dc.date.copyright | 2012-08-20 | |
dc.date.issued | 2012 | |
dc.date.submitted | 2012-08-17 | |
dc.identifier.citation | 卢永根、万常绍、张桂权 (1990). 我国三个野生稻种粗线期核型的研究. 中国水稻科学 4:97-105.
闫素丽、安玉麟、孙瑞芬、李素萍 (2008). 染色体核型分析及染色体显微分离技术研究进展.生物技术通报 4:70-77. 李文靜 (2002). 蝴蝶蘭屬植物核醣體RNA基因的選殖及實質定位. 國立台灣大學植物學研究所碩士論文. 李思誼 (2006). 姬蝴蝶蘭開花時間相關基因(PeSOC1)之選殖與特性分析. 國立成功大學生命科學研究所碩士論文. 李益豪 (2007). 核糖體RNA基因於七種蝴蝶蘭屬植物的分佈.國立台灣大學分子與細胞生物學研究所碩士論文. 佘朝文、张礼华、蒋向辉 (2012). 花生的荧光显带和rDNA 荧光原位杂交核型分析. 作物学报 38(4):754-759. 林晋寬、侯議翔、宮良政 (2008). 台灣蝴蝶蘭產業之技術發展軌跡:專利及品種權分析. 5:1-14. 陳文輝 (2002).蝴蝶蘭的品種改良. 科學發展 351:32-39. 程祝宽、顾铭洪 (1994). 釉、粳稻及其杂种粗线期的核型分析. Acta Genetica Sinica 21:385-392. 程祝宽、颜辉煌、顾铭洪 (1999). 水稻染色体的长度顺序和编号问题. Hereditas 21:46-49. 彭欣羚 (2007). 利用數種重複性DNA序列的分布建立朵麗蘭的核型.國立台灣大學分子與細胞生物學研究所碩士論文. 廖敏卿 (1990). 蝴蝶蘭栽培.台北.pp 1-95. 蔡奇助、莊畫婷 (2009). 遠緣雜交與分子遺傳鑑定技術在蝴蝶蘭育種之應用潛力.農業生技產業季刊 17:37-45. 蔡奇助、莊畫婷 (2010). 搖曳生姿∼蝴蝶蘭.行政院農業委員會高雄區農業改良場.屏東.pp 1-112. 劉麗飛、張松彬 (2008). 植物細胞分子顯微技術. 國立臺灣大學生物技術研究中心出版. Achenbach UC, Tang X, Ballvora A, de Jong H and Gebhardt C (2010). Comparision of the chromosome maps around a resistance hot spot on chromosome 5 of potato and tomato using BAC-FISH painting. Genome 53:103-110. Arends JC (1970). Cytological observations on genome homology in eight interspecific hybrids of Phalaenopsis. Genetica 41:88-100. Chang SB, Yang TJ, Datema E, van Vugt J, Vosman B, Kuipers A, Meznikova M, Szinay D, Lankhorst RK, Jacobsen E and de Jong H (2008). FISH mapping and molecular organization of the major repetitive sequences of tomato. Chromosome research:16:919-933. Chen CC, Chen CM, Hsu FC, Wang CJ, Yang JT and Kao YY (2000). The pachytene chromosomes of maize as revealed by fluorescence in situ hybridization with repetitive DNA sequences. Theoretical and Applied Genetics 101:30-36. Cheng Z, Buell CR, Wing RA, Gu M and Jiang J (2001). Toward a cytological characterization of the rice genome. Genome Research 11:2133-2141. Christenson EA (2001). Phalaenopsis: a monograph. (Oregon: Timber Press). Danilova TV and Birchler JA (2008). Integrated cytogenetic map of mitotic metaphase chromosome 9 of maize: resolution, sensitivity, and banding paint development. Chromosoma 117:345-356. de Bustos A, Cuadrado A, Soler C and Jouve N (1996). Physical mapping of repetitive DNA sequences and 5S and 18S-26S rDNA in five wild species of the genus Hordeum. Chromosome Research 4:491-499. de Jong JH, Fransz PF, Zabel P (1999). High resolution FISH in plants – techniques and applications. Trends Plant Science 4: 258–263. Devi J, Ko JM, and Seo BB (2005). FISH and GISH: Modern cytogenetic techniques. Indian Journal of Biotechnology 4:307-315. Dong F, Song J, Naess SK, Helgeson JP, Gebhardt C and Jiang J (2000). Development and applications of a set of chromosome-specific cytogenetic DNA markers in potato. Theoretical and Applied Genetics 101:1001–1007. Dressler RL (1993). Phylogeny and classification of the orchid family. (Cambridge University Press). Findley SD, Cannon S, Varala K, Du J, Ma J, Hudson ME, Birchler JA and Stacey G (2010). A fluorescence in situ hybridization system for karyotyping soybean. Genetics 185:727-744. Flavell RB, Bennett MD, Smith JB and Smith DB (1974). Genome size and the proportion of repeated nucleotide sequence DNA in plants. Biochemical Genetics 12: 257-268. Fukui K, Nakayama S, Ohmido N, Yoshiaki H and Yamabe M (1998). Quantitative karyotyping of three diploid Brassica species by imaging methods and localization of 45S rDNA loci on the identified chromosomes. Theoretical and Applied Genetics 96:325-330. He Y and Amasino RM (2005). Role of chromatin modification in flowing-time control. Trends Plant Science 10:30-35. Heslop-Harrison JS and Schwarzacher T (2011). Organisation of the plant genome in chromosomes. The Plant Journal 66:18-33. Hoshi Y, Plader W and Malepszy S (1998). New C-banding pattern for chromosome identification in cucumber (Cucumis sativus L.). Plant Breeding 117: 77–82. Iovene M, Wielgus SM, Simon PW, Buell CR, and Jiang J (2008). Chromatin structure and physical mapping of chromosome 6 of potato and comparative analyses with tomato. Genetics 180:1307-1317. Kao YY, Chang SB, Lin TY, Hsieh CH, Chen YH, Chen WH and Chen CC (2001). Differential accumulation of heterochromatin as a cause for karyotype variation in Phalaenopsis orchids. Annals of Botany 87:387-395. Kao YY, Lin CC, Huang CH and Li YH (2007). The cytogenetics of Phalaenopsis orchids. In: Chen, W. H., and Chen,H.H. (eds) Orchid biotechnology. World Scientific, Singapore, pp 115-128. Koo DH, Choi HW, Cho J, Hur Y and Bang JW (2005). A high-resolution karyotype of cucumber (Cucumis sativus L. ‘Winter Long’) revealed by C-banding, pachytene analysis, and RAPD-aided fluorescence in situ hybridization. Genome 48:534-540. Kubis S, Schmidt T and Heslop-Harrison JS (1998). Repetitive DNA elements as a major component of plant genomes. Annals of Botany 82:45-55. Lan T and Albert VA (2011). Dynamic distribution patterns of ribosomal DNA and chromosomal evolution in Paphiopedilum, a lady’s slipper orchid. BMC Plant Biology 11:126-141. Li L and Arumuganathan K (2001). Physical mapping of sorted chromosomes 45S and 5S rDNA on maize metaphase and by FISH. Hereditas 134:141-145. Lin CC, Chen YH, Chen WH, Chen CC and Kao YY (2005). Genome organization and relationship of Phalaenopsis orchids inferred genomic in situ hybridization. Botanical Bulletin of Academia Sinica 46:339-345. Lin S, Lee HC, Chen WH, Chen CC, Kao YY, Fu YM, Chen YH and Lin TY (2001). Nuclear DNA contents of Phalaenopsis sp. and Doritis pulcherrima. Journal of the American Society for Horticultural Science 126:195–199. Liu C, Liu J, Li H, Zhang Z, Han Y, Huang S and Jin W (2010). Karyotyping in melon ( Cucumis melo L.) by cross-species fosmid fluorescence in situ hybridization. Cytogenetic and Genome Research 129:241-249. Miller FP, Vandome AF and McBrewster J (2009). Karyotype. (VDM Publishing House Limited), pp 1-140. Morales AG, Aguiar-Perecin MLR and Mondin M (2012). Karyotype characterization reveals an up and down of 45S and 5S rDNA sites in Crotalaria (Leguminosae-Papilionoideae) species of the section Hedriocarpae subsection Macrostachyae. Genetic Resources and Crop Evolution 59:277–288. Mukai Y, Endo TR and Gill BS (1990). Physical mapping of the 5S rRNA multigene family in common wheat. Hereditas 81:290-29. Murata M, Heslop-Harrison JS and Motoyoshi F (1997). Physical mapping of the 5S ribosomal RNA genes in Arabidopsis thaliana by multi-color fluorescence in situ hybridization with cosmid clones. The Plant Journal 12:31-37. Peterson DG, Price HJ, Johnston JS and Stack SM (1996). DNA content of heterochromatin and euchromatin in tomato (Lycopersicon esculentum) pachytene chromosomes. Genome 39:77-82. Rho IR, Hwang YJ, Lee HI, Lee CH and Lim KB (2012). Karyotype analysis using FISH (fluorescence in situ hybridization) in Fragaria. Scientia Horticulturae 136: 95–100. Richards EJ and Ausubel FM (1988). Isolation of a higher eukaryotic telomere from Arabidopsis thaliana. Cell 53:127-136. Sadder MT, Ponelies N, Born U and Weber G (2000). Physical localization of single-copy sequences on pachytene chromosomes in maize (Zea mays L.) by chromosome in situ suppression hybridization. Genome 43:1081-1083. Schmidt T, Schwarzacher T and Heslop-Harrison JS (1994). Physical mapping of rRNA genes by fluorescent in situ hybridization and structural analysis of 5S rRNA genes and intergenic spacer sequences in sugar beet (Beta vulgaris). Theoretical and Applied Genetics 88:629-636. Schwarzacher T and Heslop-Harrison P (2000). Practical in situ Hybridization. (Oxford: Bios Scientific Publishers Limited), pp 1-203. Shindo K and Kamemoto H (1963). Karyotype analysis of some species of Phalaenopsis. Cytologia 28: 390-398. Singh RJ and Hymowitz T (1988). The genomic relationship between Glycine max (L.) Merr. and G. soja Sieb. and Zucc. as revealed by pachytene chromosome analysis. Theoretical and Applied Genetics 76:705-711. Sumner AT (2003). Chromosomes organization and function. (Blackwell Science Limited). Sweet HR (1980). The Genus Phalaenopsis. (California: Day Printing Corp). Taketa S, Harrison GE and Heslop-Harrison JS (1999). Comparative physical mapping of the 5S and 18S-25S rDNA in nine wild Hordeum species and cytotypes. Theoretical and Applied Genetics 98:1-9. Talia P, Greizerstein E, Quijano CD, Peluffo L, Fernandez L, Fernandez P, Hopp HE, Paniego N, Heinz RA and Poggio L (2010). Cytological characterization of sunflower by in situ hybridization using homologous rDNA sequences and a BAC clone containing highly represented repetitive retrotransposon-like sequences. Genome 53:172-179. Tang CY and Chen WH (2007). Breeding and development of new varieties in Phalaenopsis. Orchid biotechnology. World Scientific, Singapore, pp 1-22. Tang X, Bao W, Zhang W and Cheng Z (2007). Identification of chromosomes from multiple rice genomes using a universal molecular cytogenetic marker system. Journal of Integrative Plant Biology 49:953-960. Trask BJ (1991). Fluorescence in situ hybridization: applications in cytogenetics and gene mapping. Trends in Genetics 7:149-154. Viana AJC and Souza MM (2010). Identification of the pattern of heterochromatin distribution in Passiflora species with C-banding. Genetics and Molecular Research 9:1908-1913. Viotti A, Privitera E, Sala E and Pogna N (1985). Distribution and clustering of two highly repeated sequences in the A and B chromosomes of maize. Theoretical and Applied Genetics 70:234-239. Volpi EV and Bridger JM (2008). FISH glossary: an overview of the fluorescence in situ hybridization technique. BioTechniques 45:385-409. Wang CJ, Harper L and Cande WZ (2006). High-resolution single-copy gene fluorescence in situ hybridization and its use in the construction of a cytogenetic map of maize chromosome 9. The Plant Cell 18:529-544. Wang K, Guo W, Yang Z, Hu Y, Zhang W, Zhou B, Stelly DM, Chen ZJ, and Zhang T (2010). Structure and size variations between 12A and 12D homoeologous chromosomes based on high-resolution cytogenetic map in allotetraploid cotton. Chromosoma 119:255-266. Xiong Z and Pires JC (2010). Karyotype and identification of all homoeologous chromosomes of allopolyploid Brassica napus and its diploid progenitors. Genetics 187: 37-49. Yu H, Liang H and Kofoid KD (1991). Analysis of C-banding chromosome patterns of sorghum. Crop Science 31:1524-1527. Zhao X, Lu J, Zhang Z, Hu J, Huang S and Jin W (2011). Comparison of the distribution of the repetitive DNA sequences in three variants of Cucumis sativus reveals their phylogenetic relationships. Journal of Genetics and Genomics 38:39-45. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7030 | - |
dc.description.abstract | 蝴蝶蘭為國內重要的花卉產業,但蝴蝶蘭生長世代較長,遺傳圖譜尚未建立,細胞遺傳研究也相當缺乏。蘭嶼姬蝴蝶蘭為台灣原生種且具代表性的蘭花,基因組較小適合作為未來蝴蝶蘭基因組定序計畫的材料。蘭嶼姬蝴蝶蘭體細胞中期染色體大小型態相似,以傳統染色法難以鑑別。本實驗分析減數分裂十九對粗絲期染色體,由於收縮程度較低,解析力提升,有助於核型的建構。分析染色體平均長度大小、染色質的分佈、中心節位置以及有無次級收縮區,可描述單一染色體的型態。根據核型分析的結果顯示,姬蝴蝶蘭粗絲期染色體平均長度為21.95 µm,最大與最小相差2.35倍。就染色體型態而論,異染色質皆集中在中心節兩側,但異染色質的大小與分佈位置在不同的染色體之間有很大的差異,有些異染色質節清晰,可辨識不同的染色體。姬蝴蝶蘭多屬於中位中節或次中位中節染色體,只有一對染色體為近端中節,該染色體的短臂末端可觀察到次級收縮區。另外與有絲分裂中期染色體相較,粗絲期染色體提高12倍以上的解析力,可提升染色體圖譜的應用性。進一步以螢光原位雜交技術將5S rDNA、45S rDNA、阿拉伯芥型端粒序列與SOC1基因定位到染色體上,發現5S rDNA 與45S rDNA分別位於第17對及第13對染色體的短臂末端,SOC1位於第1對染色體的短臂上,端粒序列則分佈在每對染色體的端點。依據這些序列在染色體上的分佈位置與訊號的差異,可結合分子標誌建立出更完整的核型,辨別型態相近的染色體。
有別於蝴蝶蘭早期多以有絲分裂中期染色體為主的染色體研究,本實驗首先建立了姬蝴蝶蘭粗絲期高解析核型,可成為模式植物供其他蘭花作比較分析,以了解染色體在蝴蝶蘭屬植物演化過程中核型的演變與排列重組的可能演進。 | zh_TW |
dc.description.abstract | Phalaenopsis orchid is the important floral industry in Taiwan. It however has a long period of life cycle and deficiency of genetic map as well as cytogenetic research. P. equestris is a native and representive orchid in Taiwan, and the kind of its relatively small genome is suitable for analysis in Phalaenopsis genome sequencing project in the future. The size and morphology among somatic metaphase chromosomes were close, and it is difficult to identify each with conventional staining. Ninteen pachytene chromosomes of meiotic stage were studied in this thesis showing their lower contration and high resolution that could contribute to construct a karyotype. Single chromosome morphology can be described by analyzing average length, distribution of chromatin, centromere position and presence of secondary constriction of chromosomes. Based on the results of karyotype, the average length of each pachytene chromosome was 21.95 µm and a 2.35-fold difference between the largest and smallest ones was found. Regarding each chromosome morphology, all heterochromatin were restricted around centromere, but the amount and distribution had significant differences that could distinguish these chromosomes clearly with some heterochromatin knobs. Almost all P. equestris chromosomes are metacentric or submetacentric while only one chromosome which includes a secondary constriction on the end of short arm belonging to subtelocentric. In comparison with mitotic metaphase, pachytene chromosomes possessed more than 12-fold higher resolution and thus they can facilitate the construction of chromosome maps. Furthermore, 5S rDNA,45S rDNA, Arabidopsis-type telomeric sequences and SOC1 gene were mapped to chromosomes using fluorescence in situ hybridization. The results showed that chromosome 17 had a 5S rDNA locus and chromosome 13 had a 45S rDNA locus on the ends of their short arms. Furthermore, SOC1 was located on the short arm of chromosome 1, and telomeric sequences located on both ends of every chromosomes. Based on the variation in the spatial and quantitative distribution of DNA sequences, a complete karyotype could be constructed combined with molecular markers to distinguish similar chromosomes.
In this study we first developed P. equestris high-resolution karyotype better than previous studies which focus on mitotic metaphase chromosomes, and we hope it will become a model plant used for other orchids. In addition, in the future with the research of chromosome rearrangements of Phalaenopsis species, we may understand how Phalaenopsis chromosomes evolved. | en |
dc.description.provenance | Made available in DSpace on 2021-05-17T09:24:32Z (GMT). No. of bitstreams: 1 ntu-101-R96621117-1.pdf: 2176187 bytes, checksum: f7acda521cc2da142a56d82c7d79a956 (MD5) Previous issue date: 2012 | en |
dc.description.tableofcontents | 中文摘要................................................iii
Abstract................................................iv 表目錄..................................................viii 圖目錄..................................................ix 一、前言.......... .......................................1 二、前人研究.............................................3 (一) 蝴蝶蘭屬植物簡介與分類..............................3 (二) 姬蝴蝶蘭型態及特徵描述 ..............................4 (三) 蝴蝶蘭屬植物細胞遺傳之研究..........................4 (四) 螢光原位雜交技術的發展用於核型分析..................5 (五) 利用核醣體基因與端粒序列探討核型....................7 (六) 分子基因庫的開發應用於基因定位與核型分析............9 (七) 以高解析力粗絲期染色體建立核型......................11 (八) 姬蝴蝶蘭功能性基因SOC1之特性及定位..................12 三、材料與方法...........................................14 (一) 材料來源............................................14 (二) 姬蝴蝶蘭粗絲期染色體的製備..........................14 1.試驗材料的收集與保存..............................14 2.花粉細胞粗絲期的鑑定..............................14 3.以加熱板製備染色體(用於核型分析)..................15 4.以液態氮製備染色體(用於核型分析與原位雜交反應)....15 (三) 螢光原位雜交反應....................................16 1.質體DNA抽取.......................................16 2.探針的標定........................................17 3.探針濃度之定量.............. .....................18 4.螢光原位雜交......................................18 (四) 核型分析與雜交訊號影像處理..........................20 四、結果.................................................21 (一) 姬蝴蝶蘭粗絲期染色體型態觀察........................21 (二) 姬蝴蝶蘭粗絲期染色體核型分析........................21 (三) 姬蝴蝶蘭螢光原位雜交與基因定位......................24 (四) 姬蝴蝶蘭結合分子標誌高解析核型......................25 五、討論.................................................28 (一) 姬蝴蝶蘭粗絲期染色體的製備與型態觀察................28 (二) 姬蝴蝶蘭粗絲期染色體核型分析........................28 (三) 姬蝴蝶蘭螢光原位雜交與基因定位......................32 (四) 姬蝴蝶蘭粗絲體染色體的辨識與高解析核型..............34 (五) 核型統計數據的細微探討..............................36 (六) 未來研究方向........................................37 六、參考文獻.............................................38 七、附錄.................................................61 | |
dc.language.iso | zh-TW | |
dc.title | 蘭嶼姬蝴蝶蘭粗絲期染色體螢光原位雜交與核型分析 | zh_TW |
dc.title | Fluorescence in situ hybridization and karyotyping analysis of Phalaenopsis equestris using pachytene chromosomes | en |
dc.type | Thesis | |
dc.date.schoolyear | 100-2 | |
dc.description.degree | 碩士 | |
dc.contributor.coadvisor | 張松彬(Song-Bin Chang) | |
dc.contributor.oralexamcommittee | 陳文輝(Wen-Huei Chen),吳文鑾(Wen-Luan Wu) | |
dc.subject.keyword | 細胞遺傳,蘭嶼姬蝴蝶蘭,粗絲期染色體,核型分析,螢光原位雜交, | zh_TW |
dc.subject.keyword | cytogenetics,P. equestris,pachytene chromosomes,karyotyping,fluorescence in situ hybridization, | en |
dc.relation.page | 72 | |
dc.rights.note | 同意授權(全球公開) | |
dc.date.accepted | 2012-08-18 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 農藝學研究所 | zh_TW |
顯示於系所單位: | 農藝學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-101-1.pdf | 2.13 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。