Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 環境工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70309
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor侯嘉洪(Chia-Hung Hou)
dc.contributor.authorShan-Wen Wuen
dc.contributor.author吳善文zh_TW
dc.date.accessioned2021-06-17T04:25:38Z-
dc.date.available2023-08-21
dc.date.copyright2018-08-21
dc.date.issued2018
dc.date.submitted2018-08-14
dc.identifier.citationAlfantazi, A. M., & Moskalyk, R. R. (2003). Processing of indium: a review. Minerals Engineering, 16(8), 687-694.
Alguacil, F. J., López, F. A., Rodriguez, O., Martinez-Ramirez, S., & García-Díaz, I. (2016). Sorption of indium (III) onto carbon nanotubes. Ecotoxicology and environmental safety, 130, 81-86.
Andelman, M. D., & Walker, G. S. (2004). U.S. Patent No. 6,709,560. Washington, DC: U.S. Patent and Trademark Office.
Anderson, M. A., Cudero, A. L., & Palma, J. (2010). Capacitive deionization as an electrochemical means of saving energy and delivering clean water. Comparison to present desalination practices: Will it compete? Electrochimica Acta, 55(12), 3845-3856.
Atkins, P. W., & De, P. J. (2006). Atkins' Physical chemistry. Oxford: Oxford University Press.
Bao, S., Duan, J., & Zhang, Y. (2018). Recovery of V (V) from complex vanadium solution using capacitive deionization (CDI) with resin/carbon composite electrode. Chemosphere, 208, 14-20.
Barnabas, M. J., Parambadath, S., Mathew, A., Park, S. S., Vinu, A., & Ha, C. S. (2016). Highly efficient and selective adsorption of In3+ on pristine Zn/Al layered double hydroxide (Zn/Al-LDH) from aqueous solutions. Journal of Solid State Chemistry, 233, 133-142.
Brown, M. A., Goel, A., & Abbas, Z. (2016). Effect of electrolyte concentration on the Stern layer thickness at a charged interface. Angewandte Chemie International Edition, 55(11), 3790-3794.
Calagui, M. J. C., Senoro, D. B., Kan, C. C., Salvacion, J. W., Futalan, C. M., & Wan, M. W. (2014). Adsorption of indium (III) ions from aqueous solution using chitosan-coated bentonite beads. Journal of hazardous materials, 277, 120-126.
Chen, M. M., Wei, D., Chu, W., Wang, T., & Tong, D. G. (2017). One-pot synthesis of O-doped BN nanosheets as a capacitive deionization electrode for efficient removal of heavy metal ions from water. Journal of Materials Chemistry A, 5(32), 17029-17039.
Chen, W., Su, Y., Wen, Z., Zhang, Y., Zhou, X., & Dai, C. (2017). Recovery of indium ions by nanoscale zero-valent iron. Journal of Nanoparticle Research, 19(3), 97.
Chou, W. L., & Huang, Y. H. (2009). Electrochemical removal of indium ions from aqueous solution using iron electrodes. Journal of Hazardous Materials, 172(1), 46-53.
De, A. K., & Sen, A. K. (1967). Solvent extraction and separation of gallium (III), indium (III), and thallium (III) with tributylphosphate. Talanta, 14(6), 629-635
Dean, J. A. (1990). Lange's handbook of chemistry. Material and manufacturing process, 5(4), 687-688.
Fan, C. S., Tseng, S. C., Li, K. C., & Hou, C. H. (2016). Electro-removal of arsenic (III) and arsenic (V) from aqueous solutions by capacitive deionization. Journal of hazardous materials, 312, 208-215.
Fan, C. S., Liou, S. Y. H., & Hou, C. H. (2017). Capacitive deionization of arsenic-contaminated groundwater in a single-pass mode. Chemosphere, 184, 924-931.
Farmer, J. C., Fix, D. V., Mack, G. V., Pekala, R. W., & Poco, J. F. (1996). Capacitive deionization of NaCl and NaNO3 solutions with carbon aerogel electrodes. Journal of the Electrochemical Society, 143(1), 159-169.
Gupta, B., Deep, A., & Malik, P. (2004). Liquid–liquid extraction and recovery of indium using Cyanex 923. Analytica Chimica Acta, 513(2), 463-471.
Gupta, B., Mudhar, N., & Singh, I. (2007). Separations and recovery of indium and gallium using bis (2, 4, 4-trimethylpentyl) phosphinic acid (Cyanex 272). Separation and Purification Technology, 57(2), 294-303.
Hassanvand, A., Chen, G. Q., Webley, P. A., & Kentish, S. E. (2018). A comparison of multicomponent electrosorption in capacitive deionization and membrane capacitive deionization. Water research, 131, 100-109.
Hou, C. H., & Huang, C. Y. (2013). A comparative study of electrosorption selectivity of ions by activated carbon electrodes in capacitive deionization. Desalination, 314, 124-129.
Hou, C. H., Huang, J. F., Lin, H. R., & Wang, B. Y. (2012). Preparation of activated carbon sheet electrode assisted electrosorption process. Journal of the Taiwan Institute of Chemical Engineers, 43(3), 473-479.
Huang, S. Y., Fan, C. S., & Hou, C. H. (2014). Electro-enhanced removal of copper ions from aqueous solutions by capacitive deionization. Journal of hazardous materials, 278, 8-15.
Huang, Z., Lu, L., Cai, Z., & Ren, Z. J. (2016). Individual and competitive removal of heavy metals using capacitive deionization. Journal of hazardous materials, 302, 323-331.
Kim, C., Lee, C. R., Heo, J., Choi, S. M., Lim, D. H., Cho, J., Chung, S., & Kim, J. R. (2018). Spontaneous and applied potential driven indium recovery on carbon electrode and crystallization using a bioelectrochemical system. Bioresource technology, 258, 203-207.
Lee, D. H., Ryu, T., Shin, J., Ryu, J. C., Chung, K. S., & Kim, Y. H. (2017). Selective lithium recovery from aqueous solution using a modified membrane capacitive deionization system. Hydrometallurgy, 173, 283-288.
Lee, S. K., & Lee, U. H. (2016). Adsorption and desorption property of iminodiacetate resin (Lewatit® TP207) for indium recovery. Journal of industrial and engineering chemistry, 40, 23-25.
Li, H., Zou, L., Pan, L., & Sun, Z. (2010). Using graphene nano-flakes as electrodes to remove ferric ions by capacitive deionization. Separation and Purification Technology, 75(1), 8-14.
Liu, L., Guo, X., Tallon, R., Huang, X., & Chen, J. (2017). Highly porous N-doped graphene nanosheets for rapid removal of heavy metals from water by capacitive deionization. Chemical Communications, 53(5), 881-884.
Luo, T., Abdu, S., & Wessling, M. (2018). Selectivity of ion exchange membranes: A review. Journal of Membrane Science, 555, 429-454.
Marcus, Y. (1988). Ionic radii in aqueous solutions. Chemical Reviews, 88(8), 1475-1498.
Mossad, M., & Zou, L. (2012). A study of the capacitive deionisation performance under various operational conditions. Journal of hazardous materials, 213, 491-497.
Mossad, M., Zhang, W., & Zou, L. (2013). Using capacitive deionisation for inland brackish groundwater desalination in a remote location. Desalination, 308, 154-160.
Nightingale Jr, E. R. (1959). Phenomenological theory of ion solvation. Effective radii of hydrated ions. The Journal of Physical Chemistry, 63(9), 1381-1387.
Ogi, T., Tamaoki, K., Saitoh, N., Higashi, A., & Konishi, Y. (2012). Recovery of indium from aqueous solutions by the Gram-negative bacterium Shewanella algae. Biochemical engineering journal, 63, 129-133.
Porada, S., Zhao, R., Van Der Wal, A., Presser, V., & Biesheuvel, P. M. (2013). Review on the science and technology of water desalination by capacitive deionization. Progress in Materials Science, 58(8), 1388-1442
Rakhymbay, G., Nauryzbayev, M. K., Burkitbayeva, B. D., Argimbaeva, A. M., Jumanova, R., Kurbatov, A. P., Eyraud, M. & Vacandio, F. (2016). Electrochemical deposition of indium: nucleation mode and diffusional limitation. Russian Journal of Electrochemistry, 52(2), 99-105.
Rocchetti, L., Amato, A., & Beolchini, F. (2016). Recovery of indium from liquid crystal displays. Journal of Cleaner Production, 116, 299-305.
Sato, T., & Sato, K. (1992). Liquid-liquid extraction of indium (III) from aqueous acid solutions by acid organophosphorus compounds. Hydrometallurgy, 30(1-3), 367-383.
Sing, K. S. (1985). Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure and applied chemistry, 57(4), 603-619.
SMG Indium Resources Ltd. (2012). Form 10-K. Retrieved from https://www.sec.gov/Archives/edgar/data/1426506/000114420413019117/v336853_10k.htm
Strathmann, H., Giorno, L., & Drioli, E. (2011). Introduction to membrane science and technology (Vol. 544). Weinheim: Wiley-VCH.
Suss, M. E., Porada, S., Sun, X., Biesheuvel, P. M., Yoon, J., & Presser, V. (2015). Water desalination via capacitive deionization: what is it and what can we expect from it? Energy & Environmental Science, 8(8), 2296-2319
Virolainen, S., Ibana, D., & Paatero, E. (2011). Recovery of indium from indium tin oxide by solvent extraction. Hydrometallurgy, 107(1-2), 56-61.
Wang, X. Z., Li, M. G., Chen, Y. W., Cheng, R. M., Huang, S. M., Pan, L. K., & Sun, Z. (2006). Electrosorption of ions from aqueous solutions with carbon nanotubes and nanofibers composite film electrodes. Applied Physics Letters, 89(5), 053127.
Wu, M., Sun, D. D., & Tay, J. H. (2004). Effect of operating variables on rejection of indium using nanofiltration membranes. Journal of Membrane Science, 240(1-2), 105-111.
Xu, P., Drewes, J. E., Heil, D., & Wang, G. (2008). Treatment of brackish produced water using carbon aerogel-based capacitive deionization technology. Water research, 42(10-11), 2605-2617.
Yan, T., Long, J., Chen, Y., Wang, X., Li, D., & Fu, X. (2008). Indium hydroxide: A highly active and low deactivated catalyst for photoinduced oxidation of benzene. Comptes Rendus Chimie, 11(1-2), 101-106.
Yang, J., Retegan, T., & Ekberg, C. (2013). Indium recovery from discarded LCD panel glass by solvent extraction. Hydrometallurgy, 137, 68-77.
Yeh, C. L., Hsi, H. C., Li, K. C., & Hou, C. H. (2015). Improved performance in capacitive deionization of activated carbon electrodes with a tunable mesopore and micropore ratio. Desalination, 367, 60-68.
Ying, T. Y., Yang, K. L., Yiacoumi, S., & Tsouris, C. (2002). Electrosorption of ions from aqueous solutions by nanostructured carbon aerogel. Journal of colloid and interface science, 250(1), 18-27.
Yuan, Z., & Shi, L. (2009). Improving enterprise competitive advantage with industrial symbiosis: case study of a smeltery in China. Journal of Cleaner Production, 17(14), 1295-1302.
Yuan-Hui, L., & Gregory, S. (1974). Diffusion of ions in sea water and in deep-sea sediments. Geochimica et cosmochimica acta, 38(5), 703-714.
Zhao, R., Biesheuvel, P. M., & Van der Wal, A. (2012). Energy consumption and constant current operation in membrane capacitive deionization. Energy & Environmental Science, 5(11), 9520-9527.
Zhao, Y., Wang, Y., Wang, R., Wu, Y., Xu, S., & Wang, J. (2013). Performance comparison and energy consumption analysis of capacitive deionization and membrane capacitive deionization processes. Desalination, 324, 127-133.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70309-
dc.description.abstractThe consumption of indium has increased over the past decades due to the development of high-tech industry. It is essential to explore a clean and efficient process for indium ions (In3+) separation from aqueous solutions. Capacitive deionization (CDI) with highly porous carbon electrodes is an energy-efficient and environmentally-friendly process to remove ions via electrical double layer formation. More recently, membrane capacitive deionization (MCDI) has been developed by placing ion-exchange membranes (IEMs) in the front of electrodes to reduce the co-ion effect. Therefore, MCDI has improved salt adsorption capacity and charge efficiency in comparison with CDI.
The objective of this study is to evaluate the feasibility of using CDI to recover In3+. As demonstrated by surface and electrochemical measurements, the activated carbon electrodes with a high specific area and high ratio of mesopores volume and total volume show good capacitive performance for the storage of In3+. The effects of voltage, pH, and In3+ concentration on CDI performance were further investigated to optimize operation parameters for In3+ removal. When increasing potential, pH value, and concentration, the removal capacity of activated carbon electrodes was enhanced. The experimental results show that a high recovery of 90% to recover In3+ can be achieved in CDI, which was conducted at a concentration of 50 mg L−1, pH=3.5 and potential of 1.2 V. Note that the precipitation happened in CDI process at pH=4. Additionally, In3+ selectivity in MCDI process was lower than that in CDI process due to the relatively low mobility of In3+ in the membrane matrix. Overall, CDI can be considered as a promising technology for recovery of In3+.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T04:25:38Z (GMT). No. of bitstreams: 1
ntu-107-R05541122-1.pdf: 3248346 bytes, checksum: e3a0e32f4faf5860a6fd971304cdf57e (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents摘要 I
Abstract II
List of Figures VII
List of Tables X
Chapter 1 Introduction 1
1.1. Background 1
1.2. Objectives 2
Chapter 2 Literature Review 3
2.1. Processes for indium recovery 3
2.1.1 Adsorption 3
2.1.2 Solvent extraction 4
2.2. Capacitive deionization (CDI) 6
2.2.1 Principle of CDI 6
2.2.2 Applications of CDI 8
2.2.3 Ion selectivity in CDI 9
2.2.4 Ion selectivity through ion-exchange membranes (IEMs) 11
2.3 Water Chemistry of Indium 13
Chapter 3 Materials and Methods 16
3.1. Experimental design 16
3.2. Electrode Preparation 17
3.3. Material Characterization 18
3.3.1 Surface area analysis 18
3.3.2 Scanning Electron Microscopy (SEM) and Energy Dispersive Spectroscopy (EDS) 21
3.3.3 X-ray photoelectron spectrometer 21
3.4. Electrochemical Analyses 22
3.4.1 Cyclic voltammetry (CV) 23
3.4.2 Galvanostatic charge/discharge (GC) 25
3.4.3 Electrochemical impedance spectroscopy (EIS) 26
3.5. CDI experiments for indium removal 27
3.5.1 CDI batch mode experiments 27
3.5.2 CDI single-pass mode experiments 28
3.5.3 Indexes for indium removal 29
3.6. Materials and Chemicals 31
3.7. Instruments for experiments 32
Chapter 4 Results and Discussions 34
4.1. Physical properties of activated carbon electrodes 34
4.1.1 Surface morphology and surface area 34
4.2. Electrochemical analyses of activated carbon electrodes 36
4.2.1 Cyclic Voltammetry 36
4.2.2 Galvanostatic charge/discharge 39
4.2.3 Electrochemical impedance spectroscopy 41
4.3. Batch mode CDI for indium removal 42
4.3.1 Effect of applied potential for indium removal 42
4.3.2 Effect of pH for indium removal 45
4.3.3 Effect of initial concentration for indium removal 52
4.4. Comparison of CDI and MCDI 55
4.4.1 Batch mode experiments of CDI and MCDI 55
4.4.2 Single-pass mode experiments of CDI and MCDI 60
Chapter 5 Conclusions and Suggestions 63
5.1. Conclusions 63
5.2. Suggestions 64
References 65
dc.language.isoen
dc.title以電容去離子技術回收銦離子之可行性研究zh_TW
dc.titleA Feasibility Study Evaluating Capacitive Deionization Technology for Recovery of Indium from Aqueous Solutionsen
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林正芳(Cheng-Fang Lin),王大銘(Da-Ming Wang),林逸彬(Yi-Pin Lin),林長華(Chang-Hua Lin)
dc.subject.keyword電容去離子,回收銦離子,選擇性,zh_TW
dc.subject.keywordIndium ions separation,capacitive deionization,ion-exchange membrane,capacitive performance,selectivity,mobility,en
dc.relation.page71
dc.identifier.doi10.6342/NTU201803377
dc.rights.note有償授權
dc.date.accepted2018-08-15
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept環境工程學研究所zh_TW
顯示於系所單位:環境工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  目前未授權公開取用
3.17 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved