Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70298
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張宏鈞
dc.contributor.authorYuan-jing Jiangen
dc.contributor.author蔣沅瑾zh_TW
dc.date.accessioned2021-06-17T04:25:27Z-
dc.date.available2023-08-16
dc.date.copyright2018-08-16
dc.date.issued2018
dc.date.submitted2018-08-15
dc.identifier.citationAlbani, M., and P. Bernardi, “A numerical method based on the discretization of Maxwell equations in integral form,” IEEE Trans. Microwave Theory Tech., vol. 22, pp. 446–450, 1974.
Anger, P., P. Bharadwaj, and L. Novotny, “Enhancement and Quenching of SingleMolecule Fluorescence,” Phys. Rev. Lett., vol. 96, 113002, 2006.
Amendola, V., R. Pilot, M. Frasconi, O. M. Marag`o, and M. A. Iat`i, “Surface plasmon resonance in gold nanoparticles: a review,” J. Phys. Condens. Matter, vol. 29, 203002, 2017.
Austin, L. A., B. Kang, and M. A. El-Sayed, “Probing molecular cell event dynamics at the single-cell level with targeted plasmonic gold nanoparticles: A review,” Nano Today., vol. 10, pp. 542–558, 2015.
Belkhir A., and F. I. Baida, “Three-dimensional finite-difference time-domain algorithm for oblique incidence with adaptation of perfectly matched layers and nonuniform meshing: Application to the study of a radar dome,” Phys. Rev. E, vol. 77, 056701, 2008.
Byun, K. M., and S. J. Kim, “Design study of highly sensitive nanowire-enhanced surface plasmon resonance biosensors using rigorous coupled wave analysis,” Opt. Express, vol. 13, pp. 3737–3742, 2005.
Chamanzar M., Z. Xia, E. S. Hosseini, S. Yegnanarayanan and A. Adibi,“On-chip localized surface plasmon resonance (LSPR) sensing using hybrid plasmonicphotonic-fluidic structures,” in 2012 Conference on Lasers and Electro-Optics (CLEO), San Jose, CA, CTh4L.3, 2012.
Carl P., Anthony G.,”Emulating noreciprocity with spatially dispersive metasurfacs excited at oblique incidence,”Phys. Rev. Lett., vol. 117, 077401, 2016
Chen, M.-Y., C.-H. Lai, and H.-C. Chang, “A general split-field finite-difference time-domain method based on auxiliary differential equations for simulating linear and nonlinear dispersive periodic structures,” unpublished.
Chen, W.-Y., and Lin C.-H., “A standing-wave interpretation of plasmon resonance excitation in split-ring resonators,” Opt. Express, vol. 18, pp. 14280–14292, 2010.
Chen, Y. T., and H. C. Chang, Dipole Nano-Antennas with Multi-Bent-Sections, in Proc. Optics & Photonics Taiwan, International Conference 2015 (OPTIC 2015), paper, 2015-FRI-P0101-P004, National Tsing Hua University, Hsinchu, Taiwan, R.O.C., December, 2015.
Drude, P., “Zur elektronentheorie der metalle,” Ann. Phys., vol. 1, pp. 566–613, 1900.
Ebbesen, T. W., H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature, vol. 391, pp. 667–669, 1998.
Fisher, H., and O. J. F. Martin, “Engineering the optical response of plasmonic nanoantenna,” Opt. Express, vol. 16, pp. 9144–9154, 2008.
Gedney, S. D., and U. Navsariwala, ”An unconditionally stable finite element timedomain solution of the vector wave equation,” IEEE Microwave Guided Wave Lett. , vol. 5, pp. 332–334, 1995.
Hamidi M., F. I. Baida, A. Belkhir, and O. Lamrous, “Implementation of the critical points model in a SFM-FDTD code working in oblique incidence,” J. Phys. D: Appl. Phys., vol. 44, 2011, Art ID. 245101
Hatab, N. A. , C.-H. Hsueh, A. L. Gaddis, S. T. Retterer, J.-H. Li, G. Eres, Z. Zhang, and B. Gu, “Free-standing optical gold bowtie nanoantenna with variable gap size for enhanced Raman spectroscopy,” Nano Lett., vol. 10, no. 12, pp. 4952–4955, 2010.
Harms, P., R. Mittra, and W. Ko, “Implementation of the periodic boundary condition in the finite-difference time-domain algorithm for FSS structures,” IEEE Trans. Antennas Propogat., vol. 42, pp.1317–1324, 1994.
Harms, P. H., J. A. Roden, J. G. Maloney, M. P. Kesler, E. J. Kuster, and S. D.
Gedney, “Numerical analysis of periodic structures using the split-field algorithm,”
Proc. 13th Ann. Review Progress Applied Computational Electromagn., Monterey,
CA, pp. 104–111, 1997.
Harrington, R. F., “The method of moments in electromagnetics,” J. Electromagn. Waves Appl., vol. 1, pp. 181–200, 1987.
Huang, C. -Y., and H.-C. Chang, 3-D FDTD Studies of Coupling Effects of Plasmonic Nanostructures for Sensing Applications. National Taiwan University, 2017.
J.N. Farahani, H.-J. Eisler, D.W. Pohl, M. Pavius, P. Flckiger, P. Gasser, B. Hecht, “Bow-tie optical antenna probes for single-emitter scanning near-field optical microscopy,” Nanotechnol., vol. 18, no. 12, 125506, 2007.
Karumuri, S., and A. K. Kalkan, “Hybrid plasmon damping chemical sensor,” IEEE Trans. Nanotechnology, pp. 790–795, 2011.
Kernighan, B. W., and D. M. Ritchie, The C programming Language, 2nd Edition. Prentice-Hall, 1988.
Liu, Q. H., “The pseudospectral time-domain (PSTD) method: A new algorithm for solutions of Maxwell’s equations,” Proc. IEEE Antennas Propag. Soc. Int. Symp., vol. 1, pp. 122–125, 1997.
Liu, N., L. Langguth, T. Weiss, J. Kstel, M. Fleischhauer, T. Pfau, and H. Giessen, “Plasmonic analogue of electromagentically induced transparency at Drude damping limit,” Nat. Mater., vol. 8, pp. 758–762, 2009.
Liu, Y. -C., Study of Multi-bent-Section Nano-Antenna Structures Using the Parallelized Finite-Difference Time-Domain Method. M. S. Thesis, Graduate Institute
of Photonics and Optoelectronics, National Taiwan University, Taipei, Taiwan, August 2016.
Lorentz, H. A., The Theory of Electrons: Teubner, 1906. vol. 1, pp. 122–125, 1997.
Luk’yanchuk, B., N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater., vol. 9, pp. 707–715, 2010.
Maier, S. A., Plasmonics: Fundamentals and Applications. Springer, New York, 2007.
Murphy, C. J., A. M. Gole, J. W. Stone, P. N. Sisco, A. M. Alkllany, E. C. Goldsmith, S. C. Baxter, “Gold nanoparticles in biology: beyond toxicity to cellular imaging,” Acc. Chem. Res., vol. 41, pp. 1721–1730, 2008.
Okoniewski, M., M. Mrozowski, and M. A. Stuchly, “Simple treatment of multi-term dispersion in FDTD,” IEEE Microwave Guided Wave Lett., vol. 7, pp. 121–123, 1997.
Pendry, J. B., “Negative refraction makes a perfect lens,” Phys. Rev. Lett., vol. 85, pp. 3966–3969, 2000 .
Ren, J., O. P. Gandhi, L. R. Walker, J. Fraschilla, and C. R. Boerman, “Floquentbased FDTD analysis of two-dimensional phased array antennas,” IEEE Microwave Guided Wave Lett., vol. 4, pp. 109–112, 1994.
Roden, J. A., and S. D. Gedney, “Convolutional PML (CPML): An efficient FDTD implementation of the CFS-PML for arbitrary media,” Microwave Opt. Technol. Lett., vol. 27, pp. 334–339, 2000.
Roden J. A., J. P. Skinner and S. L. Johns, “Shielding effectiveness of three dimensional gratings using the periodic FDTD technique and CPML absorbing boundary condition,” in IEEE/ACES International Conference on Wireless Communications and Applied Computational Electromagnetics (IEEE, 2005), pp. 128–131.
Sep´ulveda, B., P. C. Angelom´eb, M.Lechugaa, and M. Liz-Marz´anb, “LSPR-based nanobiosensors,” Nano Today, vol. 4, pp. 244–251, 2009.
Smith, D. R., W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, “Composite medium with mimultaneously negative permeability and permittivity,” Phys. Rev. Lett., vol. 84, pp. 4184–4187, 2000.
Smith, D. R., J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science., vol. 305, pp. 788–792, 2004.
Sundaramurthy, A., P. J. Schuck, N. R. Conley, D. P. Fromm, G. S. Kino, and W. E. Moerner, “Toward nanometer-scale optical photolithography: utilizing the near-field of bowtie optical nanoantennas,” Nano Lett., vol. 6, pp. 355–360, 2006.
Taflove, A., and S. C. Hagness, Computation Electromagnetics: The FiniteDifference Time-Domain Method. Norwood, MA: Artech House, 2005.
Tobing, L. Y. M., L. Tjahjana, D. H. Zhang, Q. Zhang, and Q. Xiong. “Deep
subwavelength fourfold rotationally symmetric split-ring-resonator metamaterials for highly sensitive and robust biosensing platform,” Sci. Rep., vol. 3, 2437, 2013.
Van Labeke, D., D. Grard, B. Guizal, F. Baida, and L. Li, “An angle-independent frequency selective surface in the optical range,” Opts. Express, vol. 14, pp. 11945– 11951, 2006.
Vial A., D. A.-S. Grimault, D. Macas, D. Barchiesi, and M. L. de la Chapelle, “Improved analytical fit of gold dispersion: Application to the modeling of extinction spectra with a finite-difference time-domain method,” Phys. Rev. B, vol. 71, 085416, 2005.
Weiland, T., “A discretization model for the solution of Maxwell’s equations for six-component field,” Archiv Elektronik und Uebertragungstechnik, vol. 31, pp. 116–120, 1977.
Wu, P. C., W. T. Chen, K.-Y. Yang, Y.-W. Huang, Y.-H. Chen, H. L. Huang, W.-L. Hsu, H. P. Chiang, and D. P. Tsai, “Vertical split-ring resonator based nanoplamonic sensor,” Appl. Phys. Lett.,, vol. 105, 033105, 2014.
Yee, K., “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propagat., vol. 14, pp. 302– 307, 1966.
Zhang, W., L. Huang, C. Santschi, and O. J. F. Martin, “Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas,” Nano Lett., vol. 10, pp. 1006–1011, 2010.
Zienkiewicz, O. C., and Y. K. Cheung, “Finite elements in the solution of field problems,” The Engineer, vol. 220, pp. 507–510, 1965.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70298-
dc.description.abstract現今,有很多金奈米結構的電漿子效應的生物應用研究,因為金在生物體中有較佳的化學與物理穩定性。大部分的研究假設在光是垂直入射與結構交互作用下,本研究則討論在斜向入射下的交互作用金奈米結構的電漿子效應。我們利用一個波長介於0.8~2.0微米的高斯波包當作入射源來探討多重金奈米柱在操作波長1.2微米附近作為折射率感測器的靈敏度。我們藉由有限時域差分法來達成理論模擬,並得知局部表面電漿共振會存在於金奈米棒中,也計算在不同入射角度下的反射頻譜。我們嘗試在金奈米棒的垂直方向增加棒子的數量來比較其差異。此外,我們得知不僅入射角與方位角會影響反射頻譜,連金奈米柱之間互相的間距不同也會造成差異。本研究中我們利用資料傳輸介面協定(MPI)來連接多台電腦同時計算來增加程式計算模擬的效率。zh_TW
dc.description.abstractThe surface plasmons generated in gold nanostructures have been studied widely because of its chemical and physical stability in medical applications. Theoretical investigation of such generation has most often assumed that the excitation incident waves are shined normally onto the structure. In this thesis research, we consider the incident waves are shined in the oblique direction. We study the multi-goldnano-rod structures excited by Gaussian-pulse wave in the wavelength range from 0.8 µm to 2.0 µm to theoretically calculate the sensitivity near 1.2 µm of the nanorod structure working as a refractive-index sensor. The numerical simulation tool is based on a split-field finite-difference time-domain (FDTD) method. The electric fields existing in the gold-nano-rods resulting from the phenomenon of localized surface plasmon resonance (LSPR) and the effect on the reflection spectra of different incident angles in the obliquely incident situation are examined. Furthermore, the dependence of the reflection spectra on the number of x-direction gold-rods along the y-axis is investigated. The reflection spectra are found to depend on not only the incident and polarization angle, but the distance between the nano rods. We use the message passing interface (MPI) protocol to connect with several computers in order to improve the efficiency of computation.en
dc.description.provenanceMade available in DSpace on 2021-06-17T04:25:27Z (GMT). No. of bitstreams: 1
ntu-107-R05941062-1.pdf: 4275387 bytes, checksum: 325dbf7ffcdb1fd61cda0e51f6d800c8 (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Introduction to Computational Electromagnetic . . . . . . . . . . . . . . . . . . . . . . .2
1.3 Chapter Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3
2 The Split-Field FDTD Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 The Courant Stability Limit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
2.3 Modeling of Dispersive Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12
2.3.1 The Drude Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.2 The Lorentz Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3.3 The Auxiliary Differential Equation (ADE) Method . . . . . . . . . . . . . . . . . . 14
2.4 Convolutional Perfectly Matched Layer (CPML) . . . . . . . . . . . . . . . . . . . . . 17
2.5 Parallelized Split Field Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.6 Numerical Accuracy Validation for Simulating Periodic Structures with the Split Field Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.6.1 The 3D structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21
3 Analysis of Coupling Effects of Nano-Scale Metal Structures . . . . . . . . . . . . 30
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.2 The Single-Rod Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2.1 Comparison among different azimuthal angles in the normal incidence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.2.2 Comparison among various incident angles in the oblique incidence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.3 The Two-Rod Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.3.1 Comparison among different azimuthal angles in the normal incidence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.3.2 Comparison among various incident angles in the oblique incidence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.4 The Three-Rod Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33
3.4.1 Comparison among different azimuthal angles in the normal incidence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.4.2 Comparison among various incident angles in the oblique incidence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.5 The Four-Rod Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34
3.5.1 Comparison among different azimuthal angles in the normal incidence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.5.2 Comparison among various incident angles in the oblique incidence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.6 The Five-Rod Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36
3.6.1 Comparison among different azimuthal angles in the normal incidence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.6.2 Comparison among various incident angles in the oblique incidence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.7 The Seven-Rod Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.7.1 Comparison among different azimuthal angles in the normal incidence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.7.2 Comparison among various incident angles in the oblique incidence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4 The Sensitivity And Figure of Merit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .81
4.1 The Definition of the Sensitiviy and FOM . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.1.1 The performance of sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.1.2 The Performance of FOM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .82
4.2 The Sensitivity and FOM of Single-Rod Arrays in TE and TM polarizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.3 The Sensitivity and FOM of Two-Rod Arrays in TE and TM polarizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.4 The Sensitivity and FOM of Three-Rod Arrays in TE and TM polarizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.5 The Sensitivity and FOM of Four-Rod Arrays in TE and TM polarizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.6 The Sensitivity and FOM of Five-Rod Arrays in TE and TM polarizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.7 The Sensitivity and FOM of Seven-Rod Arrays in TE and TM polarizations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .102
dc.language.isoen
dc.subject折射率感測器zh_TW
dc.subject感測器靈敏度zh_TW
dc.subject電漿子耦合效應zh_TW
dc.subject分離場形有限差分時域法zh_TW
dc.subject電漿子zh_TW
dc.subjectsensitivityen
dc.subjectrefractive-index sensoren
dc.subjectlocalized surface plasmon resonance (LSPR)en
dc.subjectplasmonic coupling effecten
dc.subjectSplit-field finite-difference time-domain methoden
dc.subjectfigure of merit (FOM)en
dc.title以三維分離場量有限差分時域法分析多重金奈米柱結構之耦合效應與感測應用zh_TW
dc.titleAnalysis of Coupling Effects within Nano-Gold-Rod Structures for Sensing Applications Using Split-Field FDTD Methoden
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.oralexamcommittee楊宗哲,張世慧
dc.subject.keyword分離場形有限差分時域法,電漿子,電漿子耦合效應,折射率感測器,感測器靈敏度,zh_TW
dc.subject.keywordSplit-field finite-difference time-domain method,localized surface plasmon resonance (LSPR),plasmonic coupling effect,refractive-index sensor,sensitivity,figure of merit (FOM),en
dc.relation.page108
dc.identifier.doi10.6342/NTU201801903
dc.rights.note有償授權
dc.date.accepted2018-08-15
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  未授權公開取用
4.18 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved