Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物機電工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70272
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳倩瑜(Chien-Yu Chen)
dc.contributor.authorHsin-Hsiang Maoen
dc.contributor.author毛信翔zh_TW
dc.date.accessioned2021-06-17T04:25:05Z-
dc.date.available2020-09-29
dc.date.copyright2020-09-29
dc.date.issued2020
dc.date.submitted2020-08-18
dc.identifier.citationCrick, F.H., Griffith, J.S. and Orgel, L.E. Codes without Commas. Proc Natl Acad Sci U S A 1957;43(5):416-421.
Crick, F. Central dogma of molecular biology. Nature 1970;227(5258):561-563.
Lewis, B.P., Burge, C.B. and Bartel, D.P. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 2005;120(1):15-20.
Jensen, K.B. and Darnell, R.B. CLIP: crosslinking and immunoprecipitation of in vivo RNA targets of RNA-binding proteins. Methods Mol Biol 2008;488:85-98.
Huang, Z., et al. HMDD v3.0: a database for experimentally supported human microRNA-disease associations. Nucleic Acids Res 2019;47(D1):D1013-D1017.
Gibney, E. Google AI algorithm masters ancient game of Go. Nature 2016;529(7587):445-446.
Devlin, J., et al. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 2018.
Tan, M. and Le, Q.V. Efficientnet: Rethinking model scaling for convolutional neural networks. arXiv preprint arXiv:1905.11946 2019.
Rosenblatt, F. The perceptron: a probabilistic model for information storage and organization in the brain. Psychol Rev 1958;65(6):386-408.
Jurtz, V.I., et al. An introduction to deep learning on biological sequence data: examples and solutions. Bioinformatics 2017;33(22):3685-3690.
Rumelhart, D.E., Hinton, G.E. and Williams, R.J. Learning representations by back-propagating errors. nature 1986;323(6088):533-536.
Rumelhart, D.E., Hinton, G.E. and Williams, R.J. Learning internal representations by error propagation. In.: California Univ San Diego La Jolla Inst for Cognitive Science; 1985.
Gers, F.A., Schmidhuber, J. and Cummins, F. Learning to forget: Continual prediction with LSTM. 1999.
Bao, W., Yue, J. and Rao, Y. A deep learning framework for financial time series using stacked autoencoders and long-short term memory. PloS one 2017;12(7):e0180944.
O'Brien, J., et al. Overview of microRNA biogenesis, mechanisms of actions, and circulation. Frontiers in endocrinology 2018;9:402.
Agarwal, V., et al. Predicting effective microRNA target sites in mammalian mRNAs. elife 2015;4:e05005.
Kertesz, M., et al. The role of site accessibility in microRNA target recognition. Nature genetics 2007;39(10):1278-1284.
Rehmsmeier, M., et al. Fast and effective prediction of microRNA/target duplexes. Rna 2004;10(10):1507-1517.
Lee, B., et al. deepTarget: end-to-end learning framework for microRNA target prediction using deep recurrent neural networks. In, Proceedings of the 7th ACM International Conference on Bioinformatics, Computational Biology, and Health Informatics. 2016. p. 434-442.
Menor, M., et al. mirMark: a site-level and UTR-level classifier for miRNA target prediction. Genome biology 2014;15(10):1-16.
Bengio, Y. Learning deep architectures for AI. Now Publishers Inc; 2009.
Wen, M., et al. DeepMirTar: a deep-learning approach for predicting human miRNA targets. Bioinformatics 2018;34(22):3781-3787.
Huang, H.-Y., et al. miRTarBase 2020: updates to the experimentally validated microRNA–target interaction database. Nucleic acids research 2020;48(D1):D148-D154.
Griffiths-Jones, S., et al. miRBase: tools for microRNA genomics. Nucleic acids research 2007;36(suppl_1):D154-D158.
John, B., et al. Human microRNA targets. PLoS biol 2004;2(11):e363.
Paszke, A., et al. Pytorch: An imperative style, high-performance deep learning library. In, Advances in neural information processing systems. 2019. p. 8026-8037.
Agarwal, B., et al. A deep network model for paraphrase detection in short text messages. Information Processing Management 2018;54(6):922-937.
Kingma, D.P. and Ba, J. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 2014.
Simonyan, K., Vedaldi, A. and Zisserman, A. Deep inside convolutional networks: Visualising image classification models and saliency maps. arXiv preprint arXiv:1312.6034 2013.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70272-
dc.description.abstract次世代定序、高通量技術使得定序的成本大幅下降、大量的定序資料產生,再加上電腦運算加快與演算法的開發,讓生物學家能和電腦科學家合作探討不同問題。基因調控是眾多生物資訊問題中重要的一環,基因的調控會影響生物體產生蛋白質的能力,不當的調控會使生物體產生疾病,在人類和哺乳類中,microRNA約調控60%的基因,microRNA的失調也與眾多疾病有關。本研究著重於預測microRNA(微核醣核酸)與mRNA(信使核醣核酸)之間的結合關係,旨於協助基因調控網路的建立。
過往研究對於microRNA與mRNA之間的結合關係,主要是將microRNA和mRNA之間的種子區域互補關係、序列保守性、結合穩定性等等資料當成特徵來預測可能的結合位,但這種使用人類定義的生物特徵方法無法完全掌握序列未知的結合關係,有鑒於此,本研究使用深度學習方法進行預測,利用深度學習強大的特徵擷取能力,以microRNA序列和mRNA結合位序列當成輸入進行microRNA與mRNA結合位點的預測。本論文所提出的深度學習模型於兩個測試集上的表現結果,V1資料集達到98%的準確度、V2資料集則達到95%的準確度,相較於其他現有基於規則或深度學習方法均有所提升。相信這個研究的成果與所累績的經驗,將對microRNA調控網路的建立有莫大的幫助。
zh_TW
dc.description.abstractWith the advanced of Next Generation Sequencing (NGS) and high-throughput technologies, the cost of sequencing greatly reduced and a large amount of sequencing data produced. In addition, the acceleration of computer operations and the development of algorithms, allowing biologists and computer scientists to collaborate on different issues. Gene regulation is an important part of many biological information issues, improper regulation may cause diseases. In humans and mammals, microRNA regulates approximately 60% of genes, and the dysregulation of microRNA is also related to many diseases. This research focuses on predicting the binding relationship between microRNA and mRNA, aiming to help the establishment of gene regulatory networks. Previous research mainly considered the complementary relationship between microRNA and mRNA, including seed regions, sequence conservation, binding stability and other data as features to predict possible binding sites. But the human defined biometric methods cannot fully interpret the binding relationship of all kinds of interaction pairs. In view of this, this research used a deep learning approach, utilizomg the powerful feature extraction capabilities of deep learning to overcome the problem. In this research, we constructed an end-to-end deep learning framework, given a microRNA sequence and mRNA binding site sequence as input, the model will predict whether it’s a functional interaction pair or not. The performance on the V1 testing set achieved 98% accuracy, and on the V2 testing set achieved 95% accuracy, which is a huge improvement when compared with other existing rule-based or deep learning method tools. It is believed that the proposed method and the accumulated experiences of this study can largely benefit the future research of constructing microRNA regulatory networks.en
dc.description.provenanceMade available in DSpace on 2021-06-17T04:25:05Z (GMT). No. of bitstreams: 1
U0001-1408202014053400.pdf: 4599905 bytes, checksum: d598f2b92230022778d433670ff10005 (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents目錄
致謝 i
摘要 ii
Abstract iii
目錄 v
圖目錄 viii
表目錄 xi
第一章 研究目的 1
第二章 文獻探討 3
2.1 分子生物學中心法則 3
2.2 微核醣核酸 4
2.2.1 種子區域 (seed region) 4
2.2.2 MBS (MicroRNA Binding Sites) 4
2.3 交聯免疫沉澱定序 (CLIP-seq) 5
2.4 HMDD (Human MicroRNA Disease Database) 6
2.4.1 HMDD關連性數量 6
2.4.2 HMDD疾病分類 7
2.5 深度學習 (Deep Learning) 8
2.5.1 深度神經網路 (Deep Neural Network) 9
2.5.2 遞歸神經網路 (Recurrent Neural Network) 10
2.5.3 卷積神經網路 (Convolution Neural Network) 11
2.6 microRNA調控預測工具 12
2.6.1 TargetScan 12
2.6.2 PITA 14
2.6.3 RNAhybrid 14
2.6.4 deepTarget 15
2.6.5 DeepMirTar 17
第三章 研究方法 20
3.1 資料庫介紹 20
3.1.1 miRTarBase 20
3.2 實驗流程 21
3.2.1 MTI (MicroRNA target interaction)資料收集 22
3.2.2 序列標註檢查 22
3.2.3 miRanda過濾、模擬負面資料產生 23
3.2.4 序列資料前處理 24
3.2.5 深度學習模型訓練 24
3.2.6 訓練結果評估 25
3.3 實驗模型介紹 26
3.3.1 深度學習模型架構 26
3.3.2 損失函數 29
3.3.3 模型優化器 30
第四章 結果與討論 33
4.1 V1與V2資料集組成 33
4.1.1 序列長度統計 33
4.1.2 V1、V2資料集文氏圖 34
4.2 參數對訓練集與驗證集影響 36
4.2.1 預設參數模型 36
4.2.2嘗試不同超參數 38
4.2.3不同二元分類閥值 42
4.3 V1、V2驗證集交互預測 43
4.4 不同預測工具表現 44
4.5 模型解釋力 47
第五章 結論 49
參考文獻 50
dc.language.isozh-TW
dc.subject深度學習zh_TW
dc.subject次世代定序zh_TW
dc.subject微核醣核酸zh_TW
dc.subject信使核醣核酸zh_TW
dc.subject基因調控網路zh_TW
dc.subjectgene regulatory networken
dc.subjectNext generation sequencingen
dc.subjectmicroRNAen
dc.subjectmRNAen
dc.subjectdeep learningen
dc.title利用深度學習預測微核醣核酸可能結合之信使核糖核酸結合位zh_TW
dc.titlePredicting microRNA binding sites on mRNA by deep learningen
dc.typeThesis
dc.date.schoolyear109-1
dc.description.degree碩士
dc.contributor.oralexamcommittee蔡懷寬(Huai-Kuang Tsai),阮雪芬(Hsueh-Fen Juan),黃宣誠(Hsuan-Cheng Huang)
dc.subject.keyword次世代定序,微核醣核酸,信使核醣核酸,基因調控網路,深度學習,zh_TW
dc.subject.keywordNext generation sequencing,microRNA,mRNA,gene regulatory network,deep learning,en
dc.relation.page51
dc.identifier.doi10.6342/NTU202003410
dc.rights.note有償授權
dc.date.accepted2020-08-19
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept生物機電工程學系zh_TW
顯示於系所單位:生物機電工程學系

文件中的檔案:
檔案 大小格式 
U0001-1408202014053400.pdf
  未授權公開取用
4.49 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved