Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 動物學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7026
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李心予(Hsinyu Lee)
dc.contributor.authorYu-Nung Linen
dc.contributor.author林予農zh_TW
dc.date.accessioned2021-05-17T09:24:24Z-
dc.date.available2012-08-22
dc.date.available2021-05-17T09:24:24Z-
dc.date.copyright2012-08-22
dc.date.issued2012
dc.date.submitted2012-08-19
dc.identifier.citation1. Aoki J (2004) mechanisms of lysophosphatidic acid production. Seminars in Cell & Developmental Biology 15(5): 477-489
2. Suguira T, et al. (1999) Occurrence of lysophosphatidic acid and its alkyl ether-linked analog in rat brain and comparison of their biological activities toward cultured neural cells. Biochemical Et Biophysical Act-molecular and Cell Biology of Lipids 1440(2-3): 194-204
3. Sano T, et al. (2002) Multiple mechanisms linked to platelet activation result in lysophosphatidic acid and sphingosine 1-phosphate generation in blood. Journal of Biological Chemistry 277(24):21197-21206
4. Choi JW, et al. (2010) LPA Receptors: Subtypes and Biological Actions. Annual Review of Pharmacology and Toxicology 50:157-186
5. Tanaka M, et al. (2006) Autotaxin, a secreted lysophospholipase D, is essential for blood vessel formation during development. Molecular and Cellular Biology 26(13): 5015-5022
6. Van Meeteren LA, et al. (2006) Autotaxin, a secreted lysophospholipase D, is essential for blood vessel formation during development. Molecular and Cellular Biology 26(13): 5015-5022
7. Murata J, et al. (1994) cDNA cloning of the human tumor motility-stimulating protein, autotaxin, reveals a homology with phosphodiesterase. Journal of Biological chemistry 269(48): 30479-10484
8. Chun J, et al. (1996) Ventricular zone gene-1 (vzg-1) encodes a lysophosphatidic acid receptor expressed in neurogenic regions of the developing cerebral cortex. Journal of Cell Biology 135(4): 1071-1083
9. Kimmel, et al. (1995) Stages of embryonic development of the zebrafish. Developmental Dynamics 203:253-310
10. Sumida, et al. (2010) LPA4 regulates blood and lymphatic vessel formation during mouse embryogenesis. Blood 116:5060-5070
11. Yukiura, et al. (2011) Autotaxin regulates vascular development via multiple lysophosphatidic acid (LPA) receptors in zebrafish. Journal of Biological Chemistry 286(51): 43972–43983
12. Lim, et al. (2011) Motoneurons are essential for vascular pathfinding. Development 138: 3847-3857
13. Murata J., et al. (1994) cDNA cloning of the human tumor motility-stimulating protein, autotaxin, reveals a homology with phosphodiesterases. Journal of Biologycal Chemistry 269(48): 30479-30484
14. Baumforth KRN, et al. (2005) Induction of autotaxin by the Epstein-Barr virus promotes the growth and survival of Hodgkin lymphoma cells. Blood 106(6):2138-2146.
15. Zhang GX, Zhao ZQ, Xu SF, Ni L, & Wang XH (1999) Expression of autotaxin mRNA in human hepatocellular carcinoma. Chinese Medical Journal 112(4):330-332.
16. Kishi Y, et al. (2006) Autotaxin is overexpressed in glioblastoma multiforme and contributes to cell motility of glioblastoma by converting lysophosphatidylcholine TO lysophosphatidic acid. Journal of Biological Chemistry 281(25):17492-17500.
17. Stracke ML, et al. (1992) Idnetification, purification, and partial sequence-analysis of autotaxin, a novel motility-stimularing protein. Journal of Biological Chemistry 267(4):2524-2529.
18. Hiramatsu T, et al. (2003) Biochemical and molecular characterization of two phosphatidic acid-selective phospholipase A(1)s, mPA-PLA(1)alpha and mPA-PLA(1)beta. Journal of Biological Chemistry 278(49):49438-49447.
19. Sonoda H, et al. (2002) A novel phosphatidic acid-selective phospholipase A(1) that produces lysophosphatidic acid. Journal of Biological Chemistry 277(37):34254-34263.
20. Aoki J, Inoue A, Makide K, Saiki N, & Arai H (2007) Structure and function of extracellular phospholipase A(1) belonging to the pancreatic lipase gene family. Biochimie 89(2):197-204.
21. Lee H, et al. (2000) Lysophosphatidic acid and sphingosine 1-phosphate stimulate endothelial cell wound healing. Am J Physiol Cell Physiol 278(3):C612-8.
22. Kazantseva A, et al. (2006) Human hair growth deficiency is linked to a genetic defect in the phospholipase gene LIPH. Science 314(5801):982-985.
23. Pasternack SM, et al. (2008) G protein-coupled receptor P2Y5 and its ligand LPA are involved in maintenance of human hair growth. Nature Genetics 40(3):329-334.
24. Shimomura Y, et al. (2008) Disruption of the P2RY5 Gene, an orphan G-protein coupled receptor, underlies autosomal recessive woolly hair. Journal of Investigative Dermatology 40(3):335-9.
25. Contos JJA, Ishii I, & Chun J (2000) Lysophosphatidic acid receptors. Molecular Pharmacology 58(6):1188-1196.
26. Ye XQ (2008) Lysophospholipid signaling in the function and pathology of the reproductive system. Human Reproduction Update 14(5):519-536.
27. An SZ, Bleu T, Hallmark OG, & Goetzl EJ (1998) Characterization of a novel subtype of human G protein-coupled receptor for lysophosphatidic acid. Journal of Biological Chemistry 273(14):7906-7910.
28. Fukushima N, Kimura Y, & Chun J (1998) A single receptor encoded by vzg-1/lp(A1)/edg-2 couples to G proteins and mediates multiple cellular responses to lysophosphatidic acid. Proceedings of the National Academy of Sciences of the United States of America 95(11):6151-6156.
29. Ishii I, Contos JJA, Fukushima N, & Chun J (2000) Functional comparisons of the lysophosphatidic acid receptors, LP(A1)NVZG-1/EDG-2, LPA2/EDG-4, and LPA3/EDG-7 in neuronal cell lines using a retrovirus expression system. Molecular Pharmacology 58(5):895-902.
30. Contos JJA, Fukushima N, Weiner JA, Kaushal D, & Chun J (2000) Requirement for the Ip(A1) lysophosphatidic acid receptor gene in normal suckling behavior. Proceedings of the National Academy of Sciences of the United States of America 97(24):13384-13389.
31. Lee SJ et al. (2008) LPA1 is essential for lymphatic vessel development in zebrafish. Faseb Journal 22(10): 3706-15.
32. Contos JJA & Chun J (2000) Genomic characterization of the lysophosphatidic acid receptor gene, Ip(A2)/Edg4, and identification of a frameshift mutation in a previously characterized cDNA. Genomics 64(2):155-169.
33. Chang CL, et al. (2007) Lysophosphatidic acid inhibits serum deprivation-induced autophagy in human prostate cancer PC-3 cells. Autophagy 3(3):268-70.
34. Noguchi K, et al. (2009) Lysophosphatidic acid (LPA) and its receptors. Curr Opin Pharmacol. 9(1):15-23.
35. Panchatcharam M, et al. (2008) Lysophosphatidic acid receptors 1 and 2 play roles in regulation of vascular injury responses but not blood pressure. Circulation Research 103(6):662-670.
36. Smyth SS, et al. (2008) Roles of lysophosphatidic acid in cardiovascular physiology and disease. Biochim Biophys Acta. 1781(9):563-70.
37. Ye X (2008) Lysophospholipid signaling in the function and pathology of the reproductive system. Hum Reprod Update.14(5):519-36.
38. Chen M, Towers LN, & O'Connor KL (2007) LPA2 (EDG4) mediates Rho-dependent chemotaxis with lower efficacy than LPA1 (EDG2) in breast carcinoma cells. American Journal of Physiology-Cell Physiology 292(5):C1927-C1933.
39. Yu SX, et al. (2008) Lysophosphatidic Acid Receptors Determine Tumorigenicity and Aggressiveness of Ovarian Cancer Cells. Journal of the National Cancer Institute 100(22):1630-1642.
40. Lai YJ, Chen CS, Lin WC, & Lin FT (2005) c-Src-mediated phosphorylation of TRIP6 regulates its function in lysophosphatidic acid-induced cell migration. Molecular and Cellular Biology 25(14):5859-5868.
41. Lai YJ, Lin WC, & Lin FT (2007) PTPL1/FAP-1 negatively regulates TRIP6 function in lysophosphatidic acid-induced cell migration. Journal of Biological Chemistry 282(33):24381-24387.
42. Lin FT & Lai YJ (2008) Regulation of the LPA(2) receptor signaling through the carboxyl-terminal tail-mediated protein-protein interactions. Biochimica Et Biophysica Acta-Molecular and Cell Biology of Lipids 1781(9):558-562.
43. Komachi M, et al. (2009) LPA(1) receptors mediate stimulation, whereas LPA(2) receptors mediate inhibition, of migration of pancreatic cancer cells in response to lysophosphatidic acid and malignant ascites. Carcinogenesis 30(3):457-465.
44. Bandoh K, et al. (1999) Molecular cloning and characterization of a novel human G-protein-coupled receptor, EDG7, for lysophosphatidic acid. Journal of Biological Chemistry 274(39):27776-27785.
45. Im DS, et al. (2000) Molecular cloning and characterization of a lysophosphatidic acid receptor, Edg-7, expressed in prostate. Molecular Pharmacology 57(4):753-759.
46. Ye XQ, et al. (2005) LPA(3)-mediated lysophosphatidic acid signalling in embryo implantation and spacing. Nature 435(7038):104-108.
47. Hama K, et al. (2006) Lysophosphatidic receptor, LPA(3), is positively and negatively regulated by progesterone and estrogen in the mouse uterus. Life Sciences 79(18):1736-1740.
48. Noguchi K, Ishii S, & Shimizu T (2003) Identification of p2y(9)/GPR23 as a novel G protein-coupled receptor for lysophosphatidic acid, structurally distant from the Edg family. Journal of Biological Chemistry 278(28):25600-25606.
49. Lee CW, Rivera R, Dubin AE, & Chun J (2007) LPA(4)/GPR23 is a lysophosphatidic acid (LPA) receptor utilizing G(s)-, G(q)/G(i)-mediated calcium signaling and G(12/13)-mediated Rho activation. Journal of Biological Chemistry 282(7):4310-4317.
50. Yanagida K, Ishii S, Hamano F, Noguchi K, & Shimizu T (2007) LPA(4)/p2y(9)/GPR23 mediates rho-dependent morphological changes in a rat neuronal cell line. Journal of Biological Chemistry 282(8):5814-5824.
51. Janssens R, Boeynaems JM, Godart M, & Communi D (1997) Cloning of a human heptahelical receptor closely related to the P2Y(5) receptor. Biochemical and Biophysical Research Communications 236(1):106-112.
52. Odowd BF, et al. (1997) Cloning and chromosomal mapping of four putative novel human G-protein-coupled receptor genes. Gene 187(1):75-81.
53. Lee Z, et al. (2008) Role of LPA(4)/p2y9/GPR23 in Negative Regulation of Cell Motility. Molecular Biology of the Cell 19(12):5435-5445.
54. Kotarsky K, et al. (2006) Lysophosphatidic acid binds to and activates GPR92, a G protein-coupled receptor highly expressed in gastrointestinal lymphocytes. Journal of Pharmacology and Experimental Therapeutics 318(2):619-628.
55. Lee CW, Rivera R, Gardell S, Dubin AE, & Chun J (2006) GPR92 as a new G(12/13)- and G(q)-coupled lysophosphatidic acid receptor that increases cAMP, LPA(5). Journal of Biological Chemistry 281(33):23589-23597.
56. Oh DY, et al. (2008) Identification of farnesyl pyrophosphate and N-arachidonylglycine as endogenous ligands for GPR92. Journal of Biological Chemistry 283(30):21054-21064.
57. Yin H, et al. (2009) Lipid G Protein-coupled Receptor Ligand Identification Using beta-Arrestin PathHunter (TM) Assay. Journal of Biological Chemistry 284(18):12328-12338.
58. Williams JR, et al. (2009) Unique Ligand Selectivity of the GPR92/LPA(5) Lysophosphatidate Receptor Indicates Role in Human Platelet Activation. Journal of Biological Chemistry 284(25):17304-17319.
59. Sen S, Smeby RR, & Bumpus FM (1968) Antihypertensice effect of an isolated phospholipid. American Journal of Physiology 214(2):337-41.
60. Tokumura A, Fukuzawa K, & Tsukatani H (1978) Effects of synthetic and natural lysophosphatidic acids on arterial blood-pressure of different animal species. Lipids 13(8):572-574.
61. Anliker B & Chun J (2004) Cell surface receptors in lysophospholipid signaling. Seminars in Cell & Developmental Biology 15(5):457-465.
62. Choi JW, Lee CW, & Chun J (2008) Biological roles of lysophospholipid receptors revealed by genetic null mice: An update. Biochimica Et Biophysica Acta-Molecular and Cell Biology of Lipids 1781(9):531-539.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7026-
dc.description.abstract水解磷酸酯 (lysophosphatidic acid) 是一種結構簡單的水解磷酯 (lysophospholipid),它與許多生理作用如傷口癒合、癌症惡化、心血管活動、神經調節運作、生殖系統調節、血小板活化與毛髮生長等過程皆密切相關。水解磷酸酯主要經由一具有水解磷酯酶 (lysophospholipase D) 活性的酵素 (autotaxin) 催化磷酯 (phospholipid) 分解而成,並進一步作為膜外訊息傳遞分子,以活化不同受器,如水解磷酸酯受器1-6。為了解不同受器的功能,前人的研究利用催化水解磷酸酯生成酵素 (autotaxin) 基因被抑制的小鼠,分析在水解磷酸酯缺少的情況下小鼠所受到的影響,進而發現由於血管發育缺陷所導致的早期胚胎死亡。然而,在其他研究中,水解磷酸酯受器1-3基因被抑制的小鼠中並沒有類似的症狀出現。本研究探討水解磷酸酯受器4,以期發現其可能活化的下游途徑。藉由斑馬魚平台,在注射抑制基因表現分子而導致水解磷酸酯受器4缺少的早期斑馬魚胚胎中,發現不正常的發育現象。除了可能由血管滲漏與淋巴管回收體液不完全所導致的心臟水腫,也同時觀察到心跳速率與血液流速的明顯降低。另外,體節間縱向血管數目的減少及異常的生長方向,也顯示出血管發育的異常。但是,在運用注射大分子葡聚糖 (dextran, tetramethylrhodamine) 觀察循環系統的結果中,淋巴管的發育並沒有受到明顯影響。總結以上,我們認為在斑馬魚中,水解磷酸酯4有調控血管發育的可能性。zh_TW
dc.description.abstractLysophosphatidic acid, LPA, is a structurally simple lysophospholipid. Derived from phospholipids through autotaxin catalyzation, LPA acts as an extracellular signaling molecule that activates various receptors, LPA1-6. Activation of these receptors induces wound healing, cancer progression, cardiovascular function, nervous system regulation, reproduction, platelet activation, hair growth, etc. To clarify the function of different LPA receptors, several knockout animals have been obtained. While the autotaxin deficient mice expressed the phenotype of embryonic lethality due to vascular defects, none of the single or double deficient LPA1-3 mice expressed similar phenotypes. In this study, I investigate the physiological roles of LPA4, which is structurally distinct from LPA1-3, using zebrafish as a model. LPA4 morpholino was microinjected into one-cell stage zebrafish embryo to knock down the expression level of LPA4 in embryos. In day two, edema around the pericardial region was observed, suggesting a vascular leakage or failure of lymphatic vessels to absorb body fluids in the LPA4 deficient embryos, which was similar to the result of a previous study where LPA1 was found to be essential for lymphatic vessel development in zebrafish. In addition, a significant decrease in heart rate and blood flow was observed in some individuals. Furthermore, the number of intersegmental vessels decreased, suggesting abnormal blood vessel development. However, the dextran uptake was not affected in the LPA4 knock down embryos, suggesting that the development of lymphatic vessels was normal. We conclude that LPA4 may regulate the vascular development in zebrafish.en
dc.description.provenanceMade available in DSpace on 2021-05-17T09:24:24Z (GMT). No. of bitstreams: 1
ntu-101-R99b41010-1.pdf: 20128456 bytes, checksum: 4994c7b041d379320ef3e6e3fc01ecee (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents口試委員會審定書 i
致謝 ii
摘要 iii
ABSTRACT iv
CATALOG vi
INTRODUCTION 1
Metabolism of LPA 1
LPA receptors 2
Functions of LPA receptors 3
RATIONALE 5
MODEL 6
MATERIALS AND METHODS 7
Maintenance of zebrafish 7
The expression profiling of LPA4 in zebrafish by RT-PCR 7
Microinjection procedures 8
Design of morpholino oligonucleotides 9
Edema examination 9
Rhodamine-dextran injection 10
Microscopic analysis and live imaging 10
RESULTS 11
Expression profile of LPA4 in zebrafish 11
Edema under zebrafish LPA4 morpholino microinjection 11
Abnormal heartbeat and circulation in LPA4 deficient zebrafish 12
Abnormal vascular pattern in LPA4 knock down zebrafish 13
Lymphatic development in LPA4 deficient zebrafish 13
DISCUSSION 15
REFERENCES 18
FIGURES 28
Fig. 1 Expression profile of LPA4 in zebrafish 28
Fig. 2 Edema under zebrafish LPA4 morpholino microinjection 29
Fig. 3 Edema reamain under homeostasis condition 30
Fig. 4 Heartbeat and blood flow decrease under zebrafish LPA4 morpholino microinjection 31
Fig. 5 Normal developed vascular pattern 32
Fig. 6 Abnormal of vascular pattern in knock down LPA4 zebrafish 33
Fig. 7 Absence of intersegmental vessels in knock down LPA4 zebrafish 34
Fig. 8 Lymphatic development under zebrafish LPA4 morpholino microinjection 35
TABLES 36
Table 1 Analysis of pericardial abnormality under knock down of LPA4 in zebrafish 36
Table 2 Analysis of blood circulation slowdown under knock down of LPA4 in zebrafish 37
Table 3 Analysis of vascular defects under knock down of LPA4 in zebrafish 38
dc.language.isoen
dc.title斑馬魚水解磷酸酯受器4功能之研究zh_TW
dc.titleThe Investigation of LPA Receptor 4 Functions in Zebrafishen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.oralexamcommittee張百恩(Bei-En Chang),蕭崇德(Chung-Der Hsiao)
dc.subject.keyword水解磷酸酯,水解磷酸酯受器,血管,發育,斑馬魚,zh_TW
dc.subject.keywordlysophosphatidic acid,G-protein coupled receptor,blood vessel,development,zebrafish,en
dc.relation.page38
dc.rights.note同意授權(全球公開)
dc.date.accepted2012-08-19
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept動物學研究所zh_TW
顯示於系所單位:動物學研究所

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf19.66 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved