Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 應用力學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70249
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor舒貽忠(Yi-Chung Shu)
dc.contributor.authorYu-Cheng Changen
dc.contributor.author張祐誠zh_TW
dc.date.accessioned2021-06-17T04:24:47Z-
dc.date.available2018-08-16
dc.date.copyright2018-08-16
dc.date.issued2018
dc.date.submitted2018-08-15
dc.identifier.citation[1] Abdi, H., Mohajer, N. and Nahavandi, Saied.(2014). Human passive motions and a user-friendly energy harvesting system. Journal of Intelligent Material Systems and Structures, Vol. 25:923–936.
[2] Aboulfotoh, N. and Twiefel, J. (2017). A Study on Bandwidth and Performance Limitations of Array Vibration Harvester Configurations. Energy Harvesting and Systems, 4, 47-56.
[3] Al-Ashtari, W., Hunstig, M., Hemsel, T. and Sextro, W. (2012). Analytical Determination of Characteristic Frequencies and Equivalent Circuit Parameters of a Piezoelectric Bimorph. Journal of Intelligent Material Systems and Structures, 23, 15-23.
[4] Allen, J. J. and Smits, A. J. (2001). Energy Harvesting Eel. Journal of Fluids and Structures, 15, 629-640.
[5] Amoroso, F., Pecora, R., Ciminello, M. and Concilio, A. (2015). An Original Device for Train Bogie Energy Harvesting: a Real Application Scenario. Smart Structures and Systems, 16, 383-399.
[6] Anton, S. R. and Sodano, H. A. (2007). A Review of Power Harvesting Usingpiezoelectric Materials (2003-2006), Smart Materials and Structures 16:R1-R21.
[7] Aridogan, U., Basdogan, I. and Erturk, A. (2014). Multiple Patch-Based Broadband Piezoelectric Energy Harvesting on Plate-Based Structures. Journal of Intelligent Material Systems and Structures, 25, 1664-1680.
[8] Bafqi, M. S. S., Bagherzadeh, R. and Latifi, M. (2015). Fabrication of Composite PVDF-ZnO Nanofiber Mats by Electrospinning for Energy Scavenging Application with Enhanced Efficiency. Journal of Polymer Research, 22, 130.
[9] Bayik, B., Aghakhani, A., Basdogan, I. and Erturk, A. (2016). Equivalent Circuit Modeling of a Piezo-Patch Energy Harvester on a Thin Plate With AC–DC Conversion. Smart Materials and Structures, 25: 055015.
[10] Bryant, M., Mahtani, R. L. and Garcia, E. (2012). Wake Synergies Enhance Performance in Aeroelastic Vibration Energy Harvesting. Journal of Intelligent Material Systems and Structures, 23: 1131-1141.
[11] Castagnetti, D. (2012). Experimental Modal Analysis of Fractal-Inspired Multi-Frequency Structures for Piezoelectric Energy Converters. Smart Materials and Structures, 21, 094009.
[12] Castagnetti, D.(2013). A wideband fractal-inspired piezoelectric energy converter: design, simulation and experimental characterization. Smart Materials and Structures, 22: 094024.
[13] Challa, V. R., Prasad, M. G. and Fisher, F. T. (2011). Towards an Autonomous Self-Tuning Vibration Energy Harvesting Device for Wireless Sensor Network Applications. Smart Materials and Structures, 20, 025004.
[14] Cornwell, P. J., Goethal, J., Kowko, J. and Damianakis, M. (2005). Enhancing Power Harvesting using a Tuned Auxiliary Structure. Journal of Intelligent Material Systems and Structures, 16, 825-834.
[15] Dechant, E., Fedulov, F.,Fetisov, L. Y. and Shamonin, M. (2017). Bandwidth Widening of Piezoelectric Cantilever Beam Arrys by Mass-Tip Tuning for Low-Frequency Vibration Energy Harvesting. Applied Sciences, 7: 1324.
[16] duToit, N. E., Wardle, B. L. and Kim, S.-G. (2005). Design Considerations for MEMS-Scale Piezoelectric Mechanical Vibration Energy Harvesters. Integrated Ferroelectrics, 71, 121–160.
[17] Elvin, N., Elvin, A. and Choi, D. H. (2003). A Self-Powered Damage Detection Sensor. Journal of Strain Analysis, 38, 115-124.
[18] Elvin, N. G., Elvin, A. A. and Spector, M. (2001). A Self-Powered Mechanical Strain Energy Sensor. Smart Materials and Structures, 10, 293-299.
[19] Ericka, M., Vasic, D., Costa, F., Poulin, G. and Tliba, S. (2005). Energy Harvesting from Vibration Using a Piezoelectric Membrane. Journal de Physique IV France, 128, 187-193.
[20] Erturk, A. and Inman, D. J. (2008). A Distributed Parameter Electromechanical Model for Cantilevered Piezoelectric Energy Harvesters. Journal of Vibration and Acoustics, 130, 041002.
[21] Erturk, A., Renno, J. M. and Inman, D. J. (2009). Modeling of Piezoelectric Energy Harvesting from an L-shaped Beam-mass Structure with an Application to UAVs. Journal of Intelligent Material Systems and Structures, 20, 529-544.
[22] Ferrari, M., Ferrari, V., Guizzetti, M., Marioli, D. and Taroni, A. (2008). Piezoelectric Multifrequency Energy Converter for Power Harvesting in Autonomous Microsystems. Sensors and Actuators A, 142, 329-335.
[23] Gardonio, P. and Zilletti, M. (2016). Vibration Energy Harvesting From an Array of Flexible Stalks Exposed to Airflow: a Theoretical Study. Smart Materials and Structures, 25: 035014.
[24] Guyomar, D., Benayad, A., Lefeuvre, E. and Richard, C. (2005). Toward Energy Harvesting Using Active Materials and Conversion Improvement by Nonlinear Processing. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 53, 673-684.
[25] Jeon, Y. B., Sood, R., Jeong, J.-h. and Kim, S.-G. (2005). MEMS Power Generator with Transverse Mode Thin Film PZT. Sensors and Actuators A, 122, 16-22.
[26] Kim, S., Clark, W. W. and Wang, Q. M. (2005a). Piezoelectric Energy Harvesting with a Clamped Circular Plate: Analysis. Journal of Intelligent Material Systems and Structures, 16, 847-854.
[27] Kim, S., Clark, W. W. and Wang, Q. M. (2005b). Piezoelectric Energy Harvesting with a Clamped Circular Plate: Experimental Study. Journal of Intelligent Material Systems and Structures, 16, 855-863.
[28] Koka, A. and Sodano, H.A. (2013). High-Sensitivity Accelerometer Composed of Ultra-Long, Vertically Aligned Barium Titanate Nanowire Arrays. Nature Communications, 4, 2682.
[29] Kuang, Y. and Zhu, M. (2016). Characterisation of a Knee-joint Energy Harvester Powering a Wireless Communication Sensing Node. Smart Materials and Structures, 25: 055013.
[30] Lallart, M., Anton, S. R. and Inman, D. J. (2010). Frequency Self-Tuning Scheme for Broadband Vibration Energy Harvesting. Journal of Intelligent Material Systems and Structures, 21, 897-906.
[31] Lefeuvre, E., Badel, A., Benayad, A., Lebrun, L., Richard, C. and Guyomar, D.
(2005). A Comparison Between Several Approachs of Piezoelectric Energy Harvesting. Journal de Physique IV France, 128, 177-186.
[32] Lefeuvre, E., Badel, A., Richard, C. and Guyomar, D. (2005). Piezoelectric Energy Harvesting Device Optimization by Synchronous Electric Charge Extraction. Journal of Intelligent Material Systems and Structures, 16, 865-876.
[33] Lesieutrea, G. A., Ottmanb, G.K., Hofmannb, H.F. (2004). Damping as a Result of Piezoelectric Energy Harvesting. Journal of Sound and Vibration 269:991-1001.
[34] Li, B. and You, J. H. (2015). Experimental Study on Self-Powered Synchronized Switch Harvesting on Inductor Circuits for Multiple Piezoelectric Plates in Acoustic Energy Harvesting. Journal of Intelligent Material Systems and Structures, 26, 1646–1655.
[35] Liao, W. H., Wang, D. H. and Huang, S. L. (2001). Wireless Monitoring of Cable Tension of Cable-Stayed Bridges Using PVDF Piezoelectric Films. Journal of Intelligent Material Systems and Structures, 12, 331-339.
[36] Liao, Y. and Sodano, H. A. (2009). Optimal Parameters and Power Characteristics of Piezoelectric Energy Harvesters with An RC Circuit. Smart Materials and Structures, 18, 045011.
[37] Lien, I. C. (2012). Dynamic Analysis of an Array of Piezo-Energy Harvesting System Endowed with Various Interface Circuit. Graduate Institute of Applied Mechanics College of Engineering National Taiwan University Doctoral Dissertation.
[38] Lin, H. C., Wu, P. H., Lien, I. C., and Shu, Y. C. (2013). Analysis of An Array of Piezoelectric Energy Harvesters Connected In Series. Smart Materials and Structures. 22 :094026.
[39] Lumentut, M. F. and Howard, I. M. (2014). Electromechanical Piezoelectric Power Harvester Frequency Response Modeling Using Closed-Form Boundary Value Methods. IEEE, 19, 32-44.
[40] Mateu, L. and Moll, F. (2005). Optimum Piezoelectric Bending Beam Structures for Energy Harvesting using Shoe Inserts. Journal of Intelligent Material Systems and Structures, 20, 835-845.
[41] Mathers, A., Moon, K. S. and Yi, J. (2009). A Vibration-Based PMN-PT Energy Harvester. IEEE Sensors Journal, 9, 731-739.
[42] Moon, J. W., Jung, H. J., Baek, K. H., Song, D., Kim, S. B., Kim, J. H. and Sung, T. H. (2014). Optimal Design and Application of a Piezoelectric Energy Harvesting System Using Multiple Piezoelectric Modules. Journal of Electroceramics, 32, 396-403.
[43] Moro, L. and Benasciutti. D. (2010). Harvested Power and Sensitivity Analysis of Vibrating Shoe-Mounted Piezoelectric Cantilevers. Smart Materials and Structures, 19, 115011.
[44] Mossi, K., Green, C., Ounaies, Z. and Hughes, E. (2005). Harvesting Energy Using a Thin Unimorph Prestressed Bender: Geometrical Effects. Journal of Intelligent Material Systems and Structures, 16, 249-261.
[45] Ng, T. H. and Liao, W. H. (2005). Sensitivity Analysis and Energy Harvesting for a Self-powered Piezoelectric Sensor. Journal of Intelligent Material Systems and Structures, 16, 785-797.
[46] Ottman, G. K., Hofmann, H. F., Bhatt, A. C. and Lesieutre, G. A. (2002). Adaptive Piezoelectric Energy Harvesting Circuit for Wireless Remote Power Supply. IEEE Transactions on Power Electronics 17(5):669-676.
[47] Ottman, G. K., Hofmann, H. F. and Lesieutre, G. A. (2003). Optimized Piezoelectric Energy Harvesting Circuit Using Step-Down Converter in Discontinuous Conduction Mode. IEEE Transactions on Power Electronics 18(2):696-703.
[48] Ou, Q., Chen, X., Gutschmidt, S., Wood, A., Leigh, N. and Arrieta, A. F. (2012). An Experimentally Validated Double-Mass Piezoelectric Cantilever Model for Broadband Vibration-Based Energy Harvesting. Journal of Intelligent Material Systems and Structures, 23, 117-126.
[49] Poulin, G., Sarraute, E. and Costa, F. (2004). Generation of Electrical Energy for Portable Devices Comparative Study of an Electromagnetic and a Piezoelectric System. Sensors and Actuators A, 116, 461-471.
[50] Pozzi, M. (2016). Magnetic Plucking of Piezoelectric Bimorphs for a Wearable Energy Harvester. Smart Materials and Structures, 25: 045008.
[51] Qin, Y., Wang. X. and Wang, Z. L. (2008). Microfibre-Nanowire Hybrid Structure for Energy Scavenging. Nature 451:809-814.
[52] Priya, S., Chen, C.-T., Fye, D. and Zahnd, J. (2005). Piezoelectric Windmill: A Novel Solution to Remote Sensing. Japanese Journal of Applied Physics, 44, 104-107.
[53] Rabaey, J. M., Ammer, J. M., da Silva Jr., J. L., Patel, D. and Roundy, S. (2000). PicoRadio Supports Ad Hoc Ultra-Low Power Wireless Networking. Computer July: 42-47.
[54] Rafique, S. and Bonello, P. (2010). Experimental Validation of a Distributed Parameter Piezoelectric Bimorph Cantilever Energy Harvester. Smart Materials and Structures, 19, 094008.
[55] Rodig, T. and Schonecker, A. (2010). A Survey on Piezoelectric Ceramics for Generator Applications. Journal of the American Ceramic Society, 93, 901-912.
[56] Roundy, S. (2005). On the Effectiveness of Vibration-based Energy Harvesting. Journal of Intelligent Material Systems and Structures, 16, 809-823.
[57] Roundy, S. and Wright, P. K. (2004). A Piezoelectric Vibration Based Generator for Wireless Electronics. Smart Materials and Structures, 13, 1132-1142.
[58] Roundy, S., Wright, P. K. and Rabaey, J. (2003). A Study of Low Level Vibrations as a Power Source for Wireless Sensor Nodes. Computer Communications, 26, 1131-1144.
[59] Rupp, C. J., Evgrafov, A., Maute, K. and Dunn, M. L. (2009). Design of Piezoelectric Energy Harvesting Systems: A Topology Optimization Approach Based on Multilayer Plates and Shells. Journal of Intelligent Material Systems and Structures, 20, 1923-1939.
[60] Scruggs, J. T. (2009). An Optimal Stochastic Control Theory for Distributed Energy Harvesting Networks. Journal of Sound and Vibration, 320, 707-725.
[61] Shafer, M. W., MacCurdy, R., Shipley, J. R., Winkler, D., Guglielmo, C. G. and Garcia, E. (2015). The Case for Energy Harvesting on Wildlife in Flight. Smart Materials and Structures, 24, 025031.
[62] Shu, Y. C. and Lien, I. C. (2006). Analysis of Power Output for Piezoelectric Energy Harvesting Systems. Smart Materials and Structures, 15, 1499-1512.
[63] Shu, Y. C., Lien, I. C. and Wu, W. J. (2007). An Improved analysis of the SSHI Interface in Piezoelectric Energy Harvesting. Smart Materials and Structures, 16, 2253-2264.
[64] Shu, Y. C., Wu, P. H., Chen, Y. J. and Li, B. Y. (2017). Wideband Energy Harvesting Based on Mixed Connection of Piezoelectric Oscillators. Smart Materials and Structures, 26: 094005.
[65] Sodano, H. A., Inman, D. J. and Park, G. (2004). A Review of Power Harvesting from Vibration using Piezoelectric Materials. The Shock and Vibration Digest 36(3):197-205.
[66] Sodano, H. A., Inman, D. J. and Park, G. (2005). Comparison of Piezoelectric Energy Harvesting Devices for Recharging Batteries. Journal of Intelligent Material Systems and Structures, 16, 799-807.
[67] Sodano, H. A., Inman, D. J. and Park, G. (2005). Generation and Storage of Electricity from Power Harvesting Devices. Journal of Intelligent Material Systems and Structures, 16, 67-75.
[68] Song, H. J., Choi, Y. T., Purekar, A. S. and Wereley, N. M. (2009). Performance Evaluation of Multi-Tier Energy Harvesters Using Macro-Fiber Composite Patches. Journal of Intelligent Material Systems and Structures, 20, 2077-2088.
[69] Taylor, G. W., Burns, J. R., Kammann, S. M., Powers, W. B. and Welsh, T. R. (2001). The Energy Harvesting Eel: A Small Subsurface Ocean/River Power Generator. IEEE Journal of Oceanic Engineering, 26, 539-547.
[70] Umeda, M., Nakamura, K. and Ueha, S. (1996). Analysis of the Transformation of Mechanical Imapct Energy to Electric Energy Using Piezoelectric Vibrator. Japanese Journal of Applied Physics, 35, 3267-3273.
[71] Umeda, M., Nakamura, K. and Ueha, S. (1997). Energy Storage Characteristics of a Piezo-Generator using Impact Induced Vibration. Japanese Journal of Applied Physics, 36, 3146-3151.
[72] Wang, G. and Lu, Y. (2014). An Improved Lumped Parameter Model for a Piezoelectric Energy Harvester in Transverse Vibration Hindawi Publishing Corporation Shock and Vibration.
[73] Wang, W., Huang, R. J., Huang, C. J. and Li, L. F. (2014). Energy Harvester Array Using Piezoelectric Circular Diaphragm for Rail Vibration. Acta Mechanica Sinica, 30, 884-888.
[74] White, N. M., Glynne-Jones, P. and Beeby, S. P. (2001). A Novel Thick-Film Piezoelectric Micro-Generator. Smart Materials and Structures, 10, 850-852.
[75] Wickenheiser, A. M. and Garcia, E. (2010). Broadband Vibration-Based Energy Harvesting Improvement through Frequency Up-Conversion by Magnetic Excitation. Smart Materials and Structures, 19, 065020.
[76] Williams, C. B. and Yates, R. B. (1996). Analysis of a Micro-Electric Generator for Microsystems. Sensors and Actuators A, 52, 8-11.
[77] Voigt, W. Lehrbuch Der Kristallphysik. (1910).Berlin, Germany: B. G. Teubner,
[78] Wu, H., Tang, L., Yang, Y. and Soh, C. K. (2013). A novel two-degrees-of-freedom piezoelectric energy harvester. Journal of Intelligent Material Systems and Structures, 24,357-368.
[79] Xia, H. and Chen, R. (2014). Design and Analysis of a Scalable Harvesting Interface for Multi-Source Piezoelectric Energy Harvesting. Sensors and Actuators A: Physical, 218, 33-40.
[80] Xiong, X. Y. and Oyadiji, S. O. (2015). Modal Optimization of Doubly Clamped Base-Excited Multilayer Broadband Vibration Energy Harvesters. Journal of Intelligent Material Systems and Structures, 26, 2216-2241.
[81] Xiao, Z., Yang, T. Q., Dong, Y. and Wang, X. C. (2014). Energy Harvester Array Using Piezoelectric Circular Diaphragm for Broadband Vibration. Applied Physics Letters, 104, 223904.
[82] Yang, Z. and Yang, J. (2009). Connected Vibrating Piezoelectric Bimorph Beams as a Wide-band Piezoelectric Power Harvester. Journal of Intelligent Material Systems and Structures, 20, 569-574.
[83] Yoon, H. S., Washington, G. and Danak, A. (2005). Modeling, Optimization, and Design of Efficient Initially Curved Piezoceramic Unimorphs for Energy Harvesting Applications. Journal of Intelligent Material Systems and Structures, 16, 877-888.
[84] Zhang, J., Kong, L., Zhang, L., Li, F., Zhou, W., Ma, S. and Qin, L. (2016). A Novel Ropes-DrivenWideband Piezoelectric Vibration Energy Harvester. Applied Sciences, 6:402.
[85] Zhao, L. and Yang, Y. (2015). Analytical Solutions for Galloping-Based Piezoelectric Energy Harvesters with Various Interfacing Circuits. Smart Materials and Structures, 24, 075023.
[86] Zhou, W., Penamalli, G. R. and Zuo, L. (2013). An Efficient Vibration Energy Harvester with a Multi-Mode Dynamic Magnifier. Smart Materials and Structures, 21, 015014.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70249-
dc.description.abstract本論文探討的目標,為在各種力電耦合係數下之多整流壓電陣列與單整流混合陣列之優劣比較。比較方向是其功率表現、頻寬拓寬與二極體損耗,比較方法為透過理想係數之假設,製造出不同力電耦合下的環境,再利用單整流混合陣列之理論推導與多整流壓電陣列之理論推導,進行理論分析與其模擬。結果顯示,在強力電耦合係數的環境下,不管是在功率表現或二極體損耗,單整流混合陣列會有更優異於多整流混合陣列之表現。最後進行強力電耦合係數下之兩系統實驗,來驗證先前之預測的正確性。zh_TW
dc.description.abstractThe goal of this thesis is to carry out the performance evaluation of an array of piezoelectric oscillators based on multiple rectifiers for respective electrical rectification and a single rectifier for overall electrical rectification. Such comparisons are evaluated based on various electromechanical couplings for output power, bandwidth and electric diode loss. The methodology is based on the theoretical analysis and SPICE numerical simulations under the condition of virtual system parameters for producing different electromechanical couplings. From the point of view of output power and diode loss, the simulations show the mixed array with overall electrical rectification outperforms the array with respective electrical rectification. Finally, these predictions are validated by experiment.en
dc.description.provenanceMade available in DSpace on 2021-06-17T04:24:47Z (GMT). No. of bitstreams: 1
ntu-107-R05543063-1.pdf: 2642186 bytes, checksum: 5a03142960b3e31c8864d89faf145f7d (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents口試委員會審定書 #
誌謝 i
中文摘要 ii
ABSTRACT iii
CONTENTS iv
圖目錄 vi
表目錄 viii
Chapter 1 導論 1
1.1 研究動機 1
1.2 文獻回顧 2
1.3 論文架構 4
Chapter 2 壓電振動子理論 5
2.1 壓電效應 5
2.1.1 正壓電效應 6
2.1.2 逆壓電效應 7
2.2 壓電材料之本構方程式 8
2.3 壓電懸臂樑之數學模型 10
2.4 壓電懸臂樑第一模態之等效係數 18
2.5 壓電懸臂樑之電路模型 19
2.6 壓電懸臂樑之標準電路模型 21
Chapter 3 單整流混合陣列與多整流壓電陣列之電路模型 24
3.1 單整流混合陣列之電路模型 25
3.2 單整流混合陣列之理論解 27
3.3 多整流壓電陣列之電路模型 30
3.4 多整流壓電陣列之理論解 31
Chapter 4 理論分析 35
4.1 理想參數假設 35
4.2 強力電耦合分析 39
4.3 中力電耦合分析 42
4.4 弱力電耦合分析 45
4.5 單整流混合陣列與多整流壓電陣列優劣比較 48
Chapter 5 模擬分析 51
5.1 各力電耦合係數下模擬 51
5.2 二極體損耗探討 56
5.3 單整流混合陣列與多整流壓電陣列優劣比較 57
5.4 實驗之模擬 58
Chapter 6 實驗驗證 60
6.1 實驗架設 60
6.2 實驗結果驗證 68
Chapter 7 結論與未來展望 69
7.1 實驗結論 69
7.2 未來展望 71
REFERENCE 88
dc.language.isozh-TW
dc.subject力電耦合zh_TW
dc.subject多整流壓電陣列zh_TW
dc.subject頻寬zh_TW
dc.subject單整流混合陣列zh_TW
dc.subject壓電陣列zh_TW
dc.subject功率zh_TW
dc.subject二極體損耗zh_TW
dc.subjectbandwidthen
dc.subjectArray of piezoelectric oscillatorsen
dc.subjectMixed array based on overall electrical rectificationen
dc.subjectArray based on respective electric rectificationen
dc.subjectelectromechanical couplingen
dc.subjectoutput poweren
dc.subjectdiode lossen
dc.title多整流壓電陣列與單整流混合陣列應用於能量擷取之比較zh_TW
dc.titleThe Comparison between Piezoelectric Array Based on Respective Electric Rectification and Mixed Connection for Energy Harvestingen
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.oralexamcommittee黃育熙(Yu-Hsi Huang),林祺皓(Chi-Hao Lin)
dc.subject.keyword壓電陣列,單整流混合陣列,多整流壓電陣列,力電耦合,功率,二極體損耗,頻寬,zh_TW
dc.subject.keywordArray of piezoelectric oscillators,Mixed array based on overall electrical rectification,Array based on respective electric rectification,electromechanical coupling,output power,diode loss,bandwidth,en
dc.relation.page98
dc.identifier.doi10.6342/NTU201803405
dc.rights.note有償授權
dc.date.accepted2018-08-15
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept應用力學研究所zh_TW
顯示於系所單位:應用力學研究所

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  未授權公開取用
2.58 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved