Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 漁業科學研究所
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70223
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor陳弘成
dc.contributor.authorTsui-Ping Weien
dc.contributor.author魏翠萍zh_TW
dc.date.accessioned2021-06-17T04:24:28Z-
dc.date.available2023-08-20
dc.date.copyright2018-08-20
dc.date.issued2018
dc.date.submitted2018-08-15
dc.identifier.citationAbelson, A., B. S. Galil and Y. Loya. 1991. Skeletal modifications in stony corals caused by indwelling crabs: hydrodynamical advantages for crab feeding. Symbiosis 10: 233-248.
Avise, J. C., J. Arnold, R. M. Ball, E. Bermingham, T. Lamb, J. E. Neigel, C.A. Reeb and N.C. Saunders. 1987. Intraspecific phylogeography: the mitochondrial DNA bridge between population genetics and systematics. Annu. Rev. Ecol. Syst. 18: 489- 522.
Avise, J. C. 1994. Molecular marker, natural history and evolution. Chapman and Hall New York. USA. Pp.i-xv, 1-511.
Bickford, D., D. J. Lohman, N. S. Sodhi, P. K. L. Ng, R. Meier, K. Winker, K. K. Ingram and I. Das. 2007. Cryptic species as a window on diversity and conservation. Trends Ecol. Evol. 22: 148-155.
Braga, E., R. Zardoya, A. Meyer and J. Yen. 1999. Mitochondrial and nuclear rRNA based copepod phylogeny with emphasis on the Euchaetidae (Calanoida). Mar. Biol. 133: 79-90.
Carroll, S. P., H. Dingle and S. P. Klassen. 1997. Genetic differentiation of fitness-associated traits among rapidly evolving populations of the soapberry bug. Evolution 51: 1182-1188.
Crowley-Gall, A., P. Date, C. Han, N. Rhodes, P. Andolfatto, J. E. Layne and S. M. Rollmann. 2016. Population differences in olfaction accompany host shift in Drosophila mojavensis. Proc. Biol. Sci. B, 283: 20161562.
Cunningham, C. W., N. W. Blackstone and L. W. Buss. 1992. Evolution of king crabs from hermit crab ancestors. Nature 355: 539-542.
Fitch, W. M. 1971. Toward defining the course of evolution: minimal change for a species tree topology. Syst. Bio. 20: 406-416.
Fize, A. 1956. Inst. Oceanogr. Nhatrang, Viet-Nam Contr. 22,1.
Fize, A. and R. Serène 1957. Les Hapalocarcinidés du Viet-Nam. Arch. Mus. Natn. Hist. nat. 10: 1-202.
Folmer, O., M. Black, W. Hoeh, R. Lutz and R. Vrijenhoek. 1994. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I form diverse metazoan invertebrates. Mol. Mar. Biol. Biotechnol. 3: 294-299.
Harrsion, M. K. and B. J. Crespi. 1999. A phylogenetic test of ecomorphological adaptation in Cancer crabs. Evolution 53 (3): 961-965.
Harrison R. G. 1989. Animal mitochondrial DNA as a genetic maker in population and evolutionary biology. Trends Ecol. Evol. 4: 6-11.
Hebert, P. D., N. S. Ratnasingham and J. R. D. Waard. 2003. Barcoding animal life: cytochrome c oxidase subunit І divergences among closely related species. Proc. Biol. Sci. 270 (suppl.): 96-99.
Henderson, J. R. 1906. On a new species of coral-infesting crab taken by the R. I. M. S. “Investigator” at the Andaman Islands. Ann. Mag. Nat. Hist., series 7. 18: 211-219.
Hilbish, T. J. 1996. Population genetics of marine species: the interaction .of natural selection and historically differentiated populations. J. Exp. Mar. Biol. Ecol. 200: 67–83.
Hiro, F. 1937. Studies on the animals inhabiting reef corals. I. Hapalocarcinus and Cryptochirus. Palao trop. Boil. Sta. stud. 1: 137-154.
Huelsenbeck J. P., F. Ronquist. 2001. Mrbayes: Bayesian inference of phylogenetic trees. Bioinformatics 17: 754-755.
Inbar, M., M. Wink and D. Wool. 2004. The evolution of host plant manipulation by insects: molecular and ecological evidence from gall-forming aphids on Pistacia. Mol. Phylogenet. Evol. 32: 504–511.
Jeng, M. S. 1997. Studies on the land and aquatic decapod crustacean fauna of the Kenting National Park (II) - Communities of decapod crustaceans around the sea: i-ii, 1-66. (Kenting Nat. Park, Min. Int., Pingtung). [In Chinese.]
Jeng, M. S. 1998. The prawns and crabs of the Kenting National Park. Kenting National Park Hand Guides, 14: 133. (Kenting Nat. Park, Min. Int., Pingtung). [In Chinese.]
Keenan, C. P., P. J. F. David and D. L. Mann. 1998. A revision of the genus Scylla de Haan, 1833 (Crustacea: Decapoda: Brachyura: Portunidae). Raffles Bull. Zool. 46: 217-245.
Knowlton, N., L. A. Weight, L.Q. Solorzano, E. K. Mills and E. Bermingham. 1993. Divergence in proteins, mtDNA, and reproductive compatibility across the Isthmus of Panama. Science 260: 1629-1632.
Kotb, M. M. A. and R. G. Hartnoll. 2002. Aspects of the growth and reproduction of the coral gall crab Hapalocarcinus marsupialis. J. Crust. Biol. 22 (3): 558-566.
Kropp, R. K. 1986. Feeding biology and mouthpart morphology of three species of coral gall crabs. (Decapoda: Cryptochiridae). J. Crust. Biol. 6(3): 377-384.
Kropp, R. K. 1987. Description of some endolithic habitats for snapping shrimp (Alpheidae) in Micronesia. Bull. Mar. Sci. 41: 204-213.
Kropp, R. K. 1988. Biology and systematics of coral gall crabs (Crustacea: Cryptochiridae), published doctoral dissertation, University of Maryland College Park, USA.
Kropp, R. K. 1990. Revision of the genera of gall crabs (Crustacea: Cryptochiridae) occurring in the Pacific Ocean. Pac. Sci. 44: 417-448.
Kropp, R. K. 1994. The gall crabs (Crustacea: Decapoda: Brachyura: Cryptochiridae) of the Rumphius expeditions revisited, with descriptions of three new species. Raffles bull. zool. 42(3): 521-538.
Kropp, R. K. 1995. Lithoscaptus pardalotus, a new species of coral-dwelling gall crab (Crustacea: Brachyura: Cryptochiridae) from Belau. Proc. Boil. Soc. Wash. 108(4): 637-642.
Kropp, R. K. and R. B. Manning. 1985. Cryptochiridae, the correct name for the family containing the gall crabs. Proc. Biol. Soc. Wash. 98(4): 954-955.
Kropp, R. K. and R. B. Manning. 1987. The Atlantic gall crabs, Family Cryptochiridae (Crustacea: Decapoda: Brachyura). Smi. Cont. zool. 462: 1-21.
Lewin, R. 1985. Molecules vs. morphology: of mice and men. Science 229: 734-745.
Lyn, G. C. and P. J. Gullan. 2008. Insect, not plant, determines gall morphology in the Apiomorpha pharetrata species-group (Hemiptera: Coccoidea). Aust. J. Entomol. 47: 51–57.
Losos, J. B., T. R. Jackman, A. Larson, K. Queiroz, L. Rodriguez-Schettino. 1998. Contingency and determinism in replicated adaptive radiations of island lizards. Science 279: 2115-2118.
Mathews, L. M., C. D. Schubart, J. E. Neigel, D. L. Felder. 2002. Genetic, ecological, and behavioural divergence between two sibling snapping shrimp species (Crustacea: Decapoda: Alpheus). Mol. Ecol. 11: 1427-1437.
Matzen da Silva J, S. Creer, A. dos Santos, A. C. Costa, M. R. Cunha. 2011. Systematic and Evolutionary Insights Derived from mtDNA COI Barcode Diversity in the Decapoda (Crustacea: Malacostraca). PLOS ONE 6(5): e19449.
Mayr, E. 1948. The Bearing of the New Systematics on Genetical Problems: The Nature of Species. Adv. Genet. 2: 205-237. 
Mayr, E. 1963. Animal species and evolution.: Harvard University Press. Cambridge, MA, USA.
Munday, P. L., L. van Herwerden, and C. L. Dudgeon. 2004. Evidence for sympatric speciation by host shift in the sea. Curr. Biol. 14: 1498-1504.
Ng, P. K. L., C. H. Wang, P. H. Ho and H. T. Shih. 2001. An annotated checklist of brachyuran crabs from Taiwan (Crustacea: Decapoda). Natn. Taiwan Mus. spec. Publ. Ser. 11: 1-86, 8 colour plates.
Ng, P. K. L., H. T. Shih, P. H. Ho, and C. H. Wang. 2017. An updated annotated checklist of brachyuran crabs from Taiwan (Crustacea: Decapoda). J. Nat. Taiwan Mus. 70 (3&4): 1–185, 15 colour plates.
Orr, M. R. and T. B. Smith. 1998. Ecology and speciation. Trends Ecol. Evol. 13: 502-506.
Palumbi, S. R. and J. Benzie. 1991. Large mitochondrial DNA differences between morphologically similar penaeid shrimp. Mol. Mar. Biol. Biotech. 1: 27-34.
Patton, W. K. 1967. Commensal crustacea.- Proceedings of the symposium on crustacea, Ernakulam. Mar. Boil. Ass. India, Part III, Series 2. p1228-1243.
Posada, D. and K. A. Crandall. 1998. Modeltest: testing the model of DNA substitution. Bioinformatics 14(9): 817-818.
Potts, F. A. 1915. Hapalocarcinus, the gall-forming crab, with some notes on the related genus Cryptochirus. Pap. Dep. Mar. Biol. Carnegie. Inst. Wash. 8: 33-69.
Ronquist, F. And J. P. Huelsenbeck. 2003. Mrbayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19: 1572-1574.
Saitou, N. and M. Nei. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406-525.
Santini, S. and G. Polacco. 2006. Finding Nemo: Molecular phylogeny and evolution of the unusual life style of anemonefish, Gene 385: 19-27.
Schander, C. and E. Willassen. 2005. What can biological barcoding do for marine biology? Mar. Biol. Res. 1: 79-83.
Schwarz, D., B.M. Matta, N.L. Shakir-Botteri and B.A. McPheron. 2005. Host shift to an invasive plant triggers rapid animal hybrid speciation. Nature 436(7050): 546-549.
Scotto, L. E. and R. H. Gore. 1981. Studies on decapod Crustacea from the Indian River region of Florida. 23. The laboratory cultured zoeal stages of the coral gall-forming crab Troglocarcinus corallicola Verrill, 1908 (Brachyura: Hapalocarcinidae) and its familial position. J. Crust. Biol., 1 (4): 486-505.
Simon-Blecher, N., A. Chemedanov, N. Eden and Y. Achituv. 1999. Pit structure and trophic relationship of the coral pit crab Cryptochirus coralliodytes. Mar. biol. 134: 711-717.
Simon, C., F. Frati, A. Beckenbach, B. Crespi, H. Liu and P. Flook. 1994. Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Ann. Ent. Soc. America. 87(6): 651-701.
Tamura, K., J. Dudley, M. Nei and S. Kumar. 2007. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24(8): 1596-1599.
Tauber, C. A. and M. J. Tauber. 1989. Sympatric speciation in insects: perception and perspective. In Speciation and its Consequences (Otte D, Endler J. E., editors), Sunderland, Mass: Sinauer Associates. pp. 307-344.
Turelli, M., N. H. Barton and J. A. Coyne. 2001. Theory and speciation. Trends Ecol. Evol. 16: 330-343.

van der Meij S. E. T. 2014. A new species of Opecarcinus Kropp and Manning, 1987 (Crustacea: Brachyura: Cryptochiridae) associated with the stony corals Pavona clavus (Dana, 1846) and P. bipartite Nemenzo, 1980 (Scleractinia: Agariciidae). Zootaxa 3869:44–52.
van der Meij S. E. T. 2015. A new gall crab species (Brachyura, Cryptochiridae) associated with the free–living coral Trachyphyllia geoffroyi (Scleractinia, Merulinidae). ZooKeys 500:61–72.
van der Meij, S. E. T. and B. T. Reijnen. 2014. The courious case of Neotroglocarcinus dawydoffi (Decapoda, Cryptochiridae): Unforeseen biogeographic patterns resulting from isolation. Syst. Biod. 12: 503-512.
van der Meij, S. E. T, M. L. Berumen and G. Paulay. 2015. A new species of Fizesereneia Takeda and Tamura, 1980 (Crustacea: Brachyura: Cryptochiridae) from the Red Sea and Oman. Zootaxa 3931:585- 595.
van der Meij, S. E. T. and A. M. Nieman. 2016. Old and new DNA unweave the phylogenetic position of the eastern Atlantic gall crab Detocarcinus balssi (Monod, 1956) (Decapoda: Cryptochiridae). J. Zool. Syst. Evol. Res. 54(3), 189-196.
Veron, J. 2000. Coral of the world. In: M. Stafford-Smith, Australian Institute of Marine Science (publisher), Australia.
Via, S. 2002. The ecological genetics of speciation. American Nat. 159: 1-7.
Wei, T. P., J. S. Hwang, M. L. Tsai and L. S. Fang. 2005. New records of gall crabs (Decapoda, Cryptochiridae) from Orchid Island, Taiwan, northwestern Pacific, Crustaceana 78(9): 1063-1077.
Wilson, A. C., R. L. Cann, S. M., Carr, M. George, U. B. Gyllensten, K. HelmBychowski, R. C. Higuchi, S. R. Plaumbi, E. M. Prager, R. D. Sage, and M. Stoneking, 1985. Mitochondrial DNA and two perspectives on evolutionary genetics. Biol. Linn. Soc. 26: 375-400.
Yu, H. P., M. S. Jeng, T. Y. Chan, P. H. Ho and J. Y. Shy. 1996. Studies on the land and aquatic decapod crustacean fauna of the Kenting National Park: i-ii, 1-79. (Kenting National Park, Ministry of the Interior, Pingtung). [In Chinese.]
陳易揚。2012。臺灣海域的珊瑚共生藤壺之生物多樣性與寄主專一性。國立臺灣大學碩士學位論文。
戴昌鳳、洪聖雯。2009。台灣珊瑚圖鑑。貓頭鷹出版社。台灣。256頁。
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70223-
dc.description.abstract本研究以潛水的方式在台灣週圍及各離島諸島沿岸海域共採集9屬9種癭蟹(Cryptochirus coralliodytes; Dacryomaia edmonsoni; Hapalocarcinus marsupialis; Hiroia krempfi; Lithoscaptus paradoxus; Neotroglocarcinus hongkongensis; Pseudocryptochirus viridis; Opecarcinus crescentus; Utinomiella dimorpha)。為了探討癭蟹形態上的演化(癭蟹類群)及癭蟹生態上的多樣性(癭蟹與宿主的關係以及洞穴的建構),癭蟹之粒線體COI與16S基因片段合併建構之最大簡約關係樹及相鄰連結關係樹顯示9屬9種癭蟹為一單元系群 (monophyletic),可細分為9個系群。癭蟹分佈之宿主珊瑚種類包含菊珊瑚科(Faviidae)、蕈珊瑚科(Fungiidae)、鹿角珊瑚科(Pocilloporidae)、樹珊瑚科 (Dendrophylliidae)及蓮珊瑚科(Agariciidae)等石珊瑚共計5科18種。各種癭蟹的宿主珊瑚種類及種數不儘相同(介於1-5種),顯示各種癭蟹對宿主珊瑚的特異性程度不同,但各種癭蟹皆存在特定的珊瑚科別(Family)之宿主特異性。因此同一科之宿主珊瑚的癭蟹可能起源於單一共同祖先。
癭蟹的洞穴形態呈現不規則、圓形、橢圓形、半圓形、雙球面形及新月形等多樣化的形態,且洞穴形態具有高度保守性且與癭蟹類緣關係有關,相關性分析結果顯示,癭蟹背甲寬與其對應之洞穴開口直徑呈現顯著之相關性(p<0.01),此結果顯示癭蟹具有塑造洞穴形態之能力,因此“洞穴形態”可延伸做為癭蟹的表徵之一。
袋腹珊隱蟹(H. marsupialis)之粒線體合併COI與16S基因片段建構的相鄰連結關係樹及貝葉氏關係樹樹形顯示,採集自5種不同宿主珊瑚之袋腹珊隱蟹之分子遺傳明顯分歧為四個系群(支持度>90%),各群之遺傳歧異度介於2.2%–7.2%,且遺傳分歧的結果明顯與其棲居的珊瑚的種類相關,而與分佈的地點無關。此結果顯示,袋腹珊隱蟹(H. marsupialis)因宿主特異性及宿主轉換(host-shift)的作用,已導致癭蟹之分子遺傳開始產生分歧。
zh_TW
dc.description.abstractFor this study, nine species of gall crabs belonging to nine genera were collected from scleractinian corals by SCUBA diving from offshore surrounding Taiwan. They were Cryptochirus coralliodytes, Dacryomaia edmonsoni, Hapalocarcinus marsupialis, Hiroia krempfi, Lithoscaptus paradoxus, Neotroglocarcinus hongkongensis, Pseudocryptochirus viridis, Opecarcinus crescentus and Utinomiella dimorpha. In order to understand the evolutions of the morphologic (gall crabs themselves), and ecological diversity (their host relationships, and the construction of their gall/pit) of gall crabs. The phylogenetic tree of Maximum parsimony tree and Neighbor-joining tree (combined partial mt. COI and 16S) illustrated that they belonged to a monophyletic group and subdivided into 9 groups. In addition, host coral species of gall crabs include Faviidae, Fungiidae, Pocilloporidae, Dendrophylliidae and Agariciidae, a total of 5 families and 18 species. A variety of crab host coral species and species vary (ranging from 1-5 species), each gall crab species showed a host-specificity in a Family taxonomic level of their host corals. This might also imply that the members of each gall crab species derived from a common ancestor.
A gall polymorphism, incl. irregular, circular, elliptical, semicircular, spheres by two valves, crescent and high degree of conservation of gall shapes was observed in relation to the gall crabs’ phylogeny. In addition, a significant relationship between the crab size (carapace width) and its gall/pit opening size (p < 0.01) demonstrated that the crabs have an ability to shape the gall/pit which suits to their own size. Thus, the galls/pit morphology might be considered as an extension of the crabs’ phenotypes.
The Neighbor-joining tree and Bayesian inference tree topology (combined partial mt. COI and 16S) of gall crab H. marsupialis collected from 5 different host corals showed that the significant genetic variation and clearly divided into four clades (support >90%), the genetic diversity of each clade ranged from 2.2% to 7.2%. The phylogeny tree reveals that the genetic divergence of H. marsupialis is strongly related to differences among host corals, rather than the geographical distribution of H. marsupialis. The molecular data had revealed a genetic differentiation as a result of the host shift of H. marsupialis.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T04:24:28Z (GMT). No. of bitstreams: 1
ntu-107-D96b45001-1.pdf: 12990343 bytes, checksum: 2074143bf379fdef507e2d76ba4aa4f5 (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents謝辭…………………………….………………………………….………i
中文摘要…………………………….……………………………………ii
英文摘要…………………………………………………………………iv
目錄……………………………………………………………………….vi
表目錄………………………………………………………………….viii
圖目錄………………………………………………………………….ix
附錄目錄………………………………………………………….……….x
第一章 前言……………………………………....……...………………1
第二章 材料與方法…………………..………………………….....…5
實驗架構及流程圖……………………….….…………….…...…......5
2.1癭蟹分子類緣關係之研究……………………….………............5
2.2癭蟹與宿主珊瑚特異性(host specificity)之研究…………….....8
2.3癭蟹的洞穴形式多型性及洞穴大小與癭蟹大小是否存在關係…8
2.4袋腹珊隱蟹(Hapalocarcinus marsupialis)在不同宿主珊瑚上的
適應與分歧…………………………………………...…….……...9
第三章 結果…………………………………………..……………….…10
3.1癭蟹分子類緣關係之研究………..…………….……….….........10
3.2癭蟹與宿主珊瑚特異性(host specificity)之研究…….....….........11
3.3癭蟹的洞穴形式多型性及洞穴大小與癭蟹大小是否存在關係..13
3.4袋腹珊隱蟹(Hapalocarcinus marsupialis)在不同宿主珊瑚上的
適應與分歧...................…………………………………………..14
第四章 討論….………….……….……………….……………16
4.1癭蟹分子類緣關係之研究………..………….……….…….........16
4.2癭蟹與宿主珊瑚特異性(host specificity)之研究.........….….........17
4.3癭蟹的洞穴形式多型性及洞穴大小與癭蟹大小是否存在關係..18
4.4袋腹珊隱蟹(Hapalocarcinus marsupialis)在不同宿主珊瑚上的
適應與分歧….….………………...…………………………...…...19
第五章 結論…..………………………………………….………………23
參考文獻………...………………………………………….………….....24
表……………………….…………………………………………..…......35
圖……………………….…………............................................................44
附錄……………………….…………........................................................65
dc.language.isozh-TW
dc.subject洞穴多型性zh_TW
dc.subject宿主轉換zh_TW
dc.subject遺傳分歧zh_TW
dc.subject宿主特異性zh_TW
dc.subject分子類緣zh_TW
dc.subject隱螯蟹科zh_TW
dc.subject癭蟹zh_TW
dc.subjectgenetic diversityen
dc.subjectgall polymorphismen
dc.subjecthost-shiften
dc.subjectgall craben
dc.subjecthost specificityen
dc.subjectmolecular phylogenyen
dc.subjectCryptochiridaeen
dc.title珊瑚穴居癭蟹的生物學及分子類緣關係之研究zh_TW
dc.titleBiology and Molecular Phylogeny of the Coral-Inhabited Crabs (Decapoda: Cryptochiridae)en
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree博士
dc.contributor.coadvisor李英周
dc.contributor.oralexamcommittee韓玉山,鄭明修,何平合,邱郁文,丁雲源
dc.subject.keyword癭蟹,隱螯蟹科,分子類緣,宿主特異性,洞穴多型性,宿主轉換,遺傳分歧,zh_TW
dc.subject.keywordgall crab,Cryptochiridae,molecular phylogeny,host specificity,gall polymorphism,host-shift,genetic diversity,en
dc.relation.page96
dc.identifier.doi10.6342/NTU201802767
dc.rights.note有償授權
dc.date.accepted2018-08-15
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept漁業科學研究所zh_TW
Appears in Collections:漁業科學研究所

Files in This Item:
File SizeFormat 
ntu-107-1.pdf
  Restricted Access
12.69 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved