Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70220Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 牟中原 | |
| dc.contributor.author | Yi-Tzu Lin | en |
| dc.contributor.author | 林憶慈 | zh_TW |
| dc.date.accessioned | 2021-06-17T04:24:26Z | - |
| dc.date.available | 2021-08-20 | |
| dc.date.copyright | 2018-08-20 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2018-08-15 | |
| dc.identifier.citation | 1. Ma, Z.; Dai, S., Development of novel supported gold catalysts: A materials perspective. Nano Research 2010, 4 (1), 3-32.
2. Yang, C.-m.; Kalwei, M.; Schüth, F.; Chao, K.-j., Gold nanoparticles in SBA-15 showing catalytic activity in CO oxidation. Applied Catalysis A: General 2003, 254 (2), 289-296. 3. Shiju, N. R.; Guliants, V. V., Recent developments in catalysis using nanostructured materials. Applied Catalysis A: General 2009, 356 (1), 1-17. 4. Masatake, H.; Tetsuhiko, K.; Hiroshi, S.; Nobumasa, Y., Novel Gold Catalysts for the Oxidation of Carbon Monoxide at a Temperature far Below 0 °C. Chemistry Letters 1987, 16 (2), 405-408. 5. Haruta, M.; Yamada, N.; Kobayashi, T.; Iijima, S., Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon monoxide. Journal of Catalysis 1989, 115 (2), 301-309. 6. Haruta, M.; Tsubota, S.; Kobayashi, T.; Kageyama, H.; Genet, M. J.; Delmon, B., Low-Temperature Oxidation of CO over Gold Supported on TiO2, α-Fe2O3, and Co3O4. Journal of Catalysis 1993, 144 (1), 175-192. 7. Lee, B.; Ma, Z.; Zhang, Z.; Park, C.; Dai, S., Influences of synthesis conditions and mesoporous structures on the gold nanoparticles supported on mesoporous silica hosts. Microporous and Mesoporous Materials 2009, 122 (1-3), 160-167. 8. Kónya, Z.; Puntes, V. F.; Kiricsi, I.; Zhu, J.; Ager, J. W.; Ko, M. K.; Frei, H.; Alivisatos, P.; Somorjai, G. A., Synthetic Insertion of Gold Nanoparticles into Mesoporous Silica. Chemistry of Materials 2003, 15 (6), 1242-1248. 9. Zhu, H.; Lee, B.; Dai, S.; Overbury, S. H., Coassembly Synthesis of Ordered Mesoporous Silica Materials Containing Au Nanoparticles. Langmuir 2003, 19 (9), 3974-3980. 10. Zhao, L.; Zhu, G.; Zhang, D.; Chen, Y.; Qiu, S., A surface modification scheme for incorporation of nanocrystals in mesoporous silica matrix. Journal of Solid State Chemistry 2005, 178 (10), 2980-2986. 11. Zhu, H.; Liang, C.; Yan, W.; Overbury, S. H.; Dai, S., Preparation of Highly Active Silica-Supported Au Catalysts for CO Oxidation by a Solution-Based Technique. The Journal of Physical Chemistry B 2006, 110 (22), 10842-10848. 12. White, R. J.; Luque, R.; Budarin, V. L.; Clark, J. H.; Macquarrie, D. J., Supported metal nanoparticles on porous materials. Methods and applications. Chemical Society Reviews 2009, 38 (2), 481-494. 13. Jackie Y. Ying, C. P. M., and Michael S. Wong, Synthesis and Applications of Supramolecular-Templated Mesoporous Materials. Angewandte Chemie International Edition 1999, 38 (1-2), 56-77. 14. Beck, J. S.; Vartuli, J. C.; Roth, W. J.; Leonowicz, M. E.; Kresge, C. T.; Schmitt, K. D.; Chu, C. T. W.; Olson, D. H.; Sheppard, E. W.; McCullen, S. B.; Higgins, J. B.; Schlenker, J. L., A new family of mesoporous molecular sieves prepared with liquid crystal templates. Journal of the American Chemical Society 1992, 114 (27), 10834-10843. 15. Hoffmann, F.; Cornelius, M.; Morell, J.; Froba, M., Silica-based mesoporous organic-inorganic hybrid materials. Angew Chem Int Ed Engl 2006, 45 (20), 3216-51. 16. Gutiérrez, L.-F.; Hamoudi, S.; Belkacemi, K., Synthesis of Gold Catalysts Supported on Mesoporous Silica Materials: Recent Developments. Catalysts 2011, 1 (1), 97. 17. Kao, K.-C.; Mou, C.-Y., Pore-expanded mesoporous silica nanoparticles with alkanes/ethanol as pore expanding agent. Microporous and Mesoporous Materials 2013, 169, 7-15. 18. Yang, J.; Mou, C.-Y., Ordered mesoporous Au/TiO 2 nanospheres for solvent-free visible-light-driven plasmonic oxidative coupling reactions of amines. Applied Catalysis B: Environmental 2018, 231, 283-291. 19. Corma, A.; Iborra, S.; Velty, A., Chemical Routes for the Transformation of Biomass into Chemicals. Chemical Reviews 2007, 107 (6), 2411-2502. 20. Katryniok, B.; Paul, S.; Bellière-Baca, V.; Rey, P.; Dumeignil, F., Glycerol dehydration to acrolein in the context of new uses of glycerol. Green Chemistry 2010, 12 (12), 2079. 21. Behr, A.; Eilting, J.; Irawadi, K.; Leschinski, J.; Lindner, F., Improved utilisation of renewable resources: New important derivatives of glycerol. Green Chem. 2008, 10 (1), 13-30. 22. Villa, A.; Dimitratos, N.; Chan-Thaw, C. E.; Hammond, C.; Prati, L.; Hutchings, G. J., Glycerol oxidation using gold-containing catalysts. Acc Chem Res 2015, 48 (5), 1403-12. 23. Diaz-Alvarez, A. E.; Francos, J.; Lastra-Barreira, B.; Crochet, P.; Cadierno, V., Glycerol and derived solvents: new sustainable reaction media for organic synthesis. Chem Commun (Camb) 2011, 47 (22), 6208-27. 24. Lin, C. S. K.; Pfaltzgraff, L. A.; Herrero-Davila, L.; Mubofu, E. B.; Abderrahim, S.; Clark, J. H.; Koutinas, A. A.; Kopsahelis, N.; Stamatelatou, K.; Dickson, F.; Thankappan, S.; Mohamed, Z.; Brocklesby, R.; Luque, R., Food waste as a valuable resource for the production of chemicals, materials and fuels. Current situation and global perspective. Energy & Environmental Science 2013, 6 (2), 426-464. 25. Garcia, R.; Besson, M.; Gallezot, P., Chemoselective catalytic oxidation of glycerol with air on platinum metals. Applied Catalysis A: General 1995, 127 (1), 165-176. 26. Fordham, P.; Garcia, R.; Besson, M.; Gallezot, P., Selective catalytic oxidation with air of glycerol and oxygenated derivatives on platinum metals. In Studies in Surface Science and Catalysis, Hightower, J. W.; Nicholas Delgass, W.; Iglesia, E.; Bell, A. T., Eds. Elsevier: 1996; Vol. 101, pp 161-170. 27. Gallezot, P., Selective oxidation with air on metal catalysts. Catalysis Today 1997, 37 (4), 405-418. 28. Kimura, H.; Tsuto, K.; Wakisaka, T.; Kazumi, Y.; Inaya, Y., Selective oxidation of glycerol on a platinum-bismuth catalyst. Applied Catalysis A: General 1993, 96 (2), 217-228. 29. Kimura, H., Selective oxidation of glycerol on a platinum-bismuth catalyst by using a fixed bed reactor. Applied Catalysis A: General 1993, 105 (2), 147-158. 30. Carrettin, S.; McMorn, P.; Johnston, P.; Griffin, K.; Hutchings, G. J., Selective oxidation of glycerol to glyceric acid using a gold catalyst in aqueous sodium hydroxide. Chemical Communications 2002, (7), 696-697. 31. Carrettin, S.; McMorn, P.; Johnston, P.; Griffin, K.; Kiely, C. J.; Hutchings, G. J., Oxidation of glycerol using supported Pt, Pd and Au catalysts. Physical Chemistry Chemical Physics 2003, 5 (6), 1329-1336. 32. Prati, L.; Villa, A.; Chan-Thaw, C. E.; Arrigo, R.; Wang, D.; Su, D. S., Gold catalyzed liquid phase oxidation of alcohol: the issue of selectivity. Faraday Discussions 2011, 152, 353. 33. Porta, F.; Prati, L.; Rossi, M.; Scari, G., New Au(0) Sols as Precursors for Heterogeneous Liquid-Phase Oxidation Catalysts. Journal of Catalysis 2002, 211 (2), 464-469. 34. Porta, F.; Prati, L., Selective oxidation of glycerol to sodium glycerate with gold-on-carbon catalyst: an insight into reaction selectivity. Journal of Catalysis 2004, 224 (2), 397-403. 35. Kim, H. S.; Morgan, R. D.; Gurau, B.; Masel, R. I., A miniature direct formic acid fuel cell battery. Journal of Power Sources 2009, 188 (1), 118-121. 36. Albert, J.; Wölfel, R.; Bösmann, A.; Wasserscheid, P., Selective oxidation of complex, water-insoluble biomass to formic acid using additives as reaction accelerators. Energy & Environmental Science 2012, 5 (7), 7956. 37. Wölfel, R.; Taccardi, N.; Bösmann, A.; Wasserscheid, P., Selective catalytic conversion of biobased carbohydrates to formic acid using molecular oxygen. Green Chemistry 2011, 13 (10), 2759. 38. Khenkin, A. M.; Neumann, R., Oxidative C−C Bond Cleavage of Primary Alcohols and Vicinal Diols Catalyzed by H5PV2Mo10O40 by an Electron Transfer and Oxygen Transfer Reaction Mechanism. Journal of the American Chemical Society 2008, 130 (44), 14474-14476. 39. Katryniok, B.; Kimura, H.; Skrzyńska, E.; Girardon, J.-S.; Fongarland, P.; Capron, M.; Ducoulombier, R.; Mimura, N.; Paul, S.; Dumeignil, F., Selective catalytic oxidation of glycerol: perspectives for high value chemicals. Green Chemistry 2011, 13 (8), 1960. 40. A. Troupis, A. H. a. E. P., Synthesis of Metal Nanoparticles by Using Polyoxometalates as Photocatalysts and Stabilizers. Angewandte Chemie International Edition 2002, 41 (11), 1911-1914. 41. Kapkowski, M.; Bartczak, P.; Korzec, M.; Sitko, R.; Szade, J.; Balin, K.; Lelątko, J.; Polanski, J., SiO2-, Cu-, and Ni-supported Au nanoparticles for selective glycerol oxidation in the liquid phase. Journal of Catalysis 2014, 319, 110-118. 42. Carrettin, S.; McMorn, P.; Johnston, P.; Griffin, K.; Kiely, C. J.; Attard, G. A.; Hutchings, G. J., Oxidation of Glycerol Using Supported Gold Catalysts. Topics in Catalysis 2004, 27 (1), 131-136. 43. Zope, B. N.; Hibbitts, D. D.; Neurock, M.; Davis, R. J., Reactivity of the Gold/Water Interface During Selective Oxidation Catalysis. Science 2010, 330 (6000), 74-78. 44. Ketchie, W. C.; Fang, Y.-L.; Wong, M. S.; Murayama, M.; Davis, R. J., Influence of gold particle size on the aqueous-phase oxidation of carbon monoxide and glycerol. Journal of Catalysis 2007, 250 (1), 94-101. 45. Prati, L.; Spontoni, P.; Gaiassi, A., From Renewable to Fine Chemicals Through Selective Oxidation: The Case of Glycerol. Topics in Catalysis 2009, 52 (3), 288. 46. Demirel-Gülen, S.; Lucas, M.; Claus, P., Liquid phase oxidation of glycerol over carbon supported gold catalysts. Catalysis Today 2005, 102-103, 166-172. 47. Demirel, S.; Lehnert, K.; Lucas, M.; Claus, P., Use of renewables for the production of chemicals: Glycerol oxidation over carbon supported gold catalysts. Applied Catalysis B: Environmental 2007, 70 (1), 637-643. 48. Gao, J.; Liang, D.; Chen, P.; Hou, Z.; Zheng, X., Oxidation of Glycerol with Oxygen in a Base-free Aqueous Solution over Pt/AC and Pt/MWNTs Catalysts. Catalysis Letters 2009, 130 (1), 185-191. 49. Villa, A.; Veith, G. M.; Prati, L., Selective oxidation of glycerol under acidic conditions using gold catalysts. Angew Chem Int Ed Engl 2010, 49 (26), 4499-502. 50. Fleischmann, M.; Hendra, P. J.; McQuillan, A. J., Raman spectra of pyridine adsorbed at a silver electrode. Chemical Physics Letters 1974, 26 (2), 163-166. 51. Jeanmaire, D. L.; Van Duyne, R. P., Surface raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 1977, 84 (1), 1-20. 52. Sharma, B.; Frontiera, R. R.; Henry, A.-I.; Ringe, E.; Van Duyne, R. P., SERS: Materials, applications, and the future. Materials Today 2012, 15 (1-2), 16-25. 53. Tian, Z.-Q.; Ren, B., ADSORPTION AND REACTION AT ELECTROCHEMICAL INTERFACES AS PROBED BY SURFACE-ENHANCED RAMAN SPECTROSCOPY. Annual Review of Physical Chemistry 2004, 55 (1), 197-229. 54. Katrin, K.; Harald, K.; Irving, I.; Ramachandra, R. D.; Michael, S. F., Surface-enhanced Raman scattering and biophysics. Journal of Physics: Condensed Matter 2002, 14 (18), R597. 55. Zhang, X.; Young, M. A.; Lyandres, O.; Van Duyne, R. P., Rapid Detection of an Anthrax Biomarker by Surface-Enhanced Raman Spectroscopy. Journal of the American Chemical Society 2005, 127 (12), 4484-4489. 56. Qian, X.; Peng, X.-H.; Ansari, D. O.; Yin-Goen, Q.; Chen, G. Z.; Shin, D. M.; Yang, L.; Young, A. N.; Wang, M. D.; Nie, S., In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags. Nature Biotechnology 2007, 26, 83. 57. Wustholz, K. L.; Brosseau, C. L.; Casadio, F.; Van Duyne, R. P., Surface-enhanced Raman spectroscopy of dyes: from single molecules to the artists' canvas. Physical Chemistry Chemical Physics 2009, 11 (34), 7350-7359. 58. Stiles, P. L.; Dieringer, J. A.; Shah, N. C.; Duyne, R. P. V., Surface-Enhanced Raman Spectroscopy. Annual Review of Analytical Chemistry 2008, 1 (1), 601-626. 59. Wang, X.; Shi, W.; She, G.; Mu, L., Surface-Enhanced Raman Scattering (SERS) on transition metal and semiconductor nanostructures. Phys Chem Chem Phys 2012, 14 (17), 5891-901. 60. Wei, H.; Hossein Abtahi, S. M.; Vikesland, P. J., Plasmonic colorimetric and SERS sensors for environmental analysis. Environmental Science: Nano 2015, 2 (2), 120-135. 61. Pang, S.; Yang, T.; He, L., Review of surface enhanced Raman spectroscopic (SERS) detection of synthetic chemical pesticides. TrAC Trends in Analytical Chemistry 2016, 85, 73-82. 62. Jensen, L.; Aikens, C. M.; Schatz, G. C., Electronic structure methods for studying surface-enhanced Raman scattering. Chemical Society Reviews 2008, 37 (5), 1061-1073. 63. Ding, S.-Y.; Zhang, X.-M.; Ren, B.; Tian, Z.-Q., Surface-Enhanced Raman Spectroscopy (SERS): General Introduction. 2014, 1-34. 64. Halvorson, R. A.; Vikesland, P. J., Surface-Enhanced Raman Spectroscopy (SERS) for Environmental Analyses. Environmental Science & Technology 2010, 44 (20), 7749-7755. 65. Park, S.; Yang, P.; Corredor, P.; Weaver, M. J., Transition Metal-Coated Nanoparticle Films: Vibrational Characterization with Surface-Enhanced Raman Scattering. Journal of the American Chemical Society 2002, 124 (11), 2428-2429. 66. Yan, X.; Wang, L.; Tan, X.; Tian, B.; Zhang, J., Surface-Enhanced Raman Spectroscopy Assisted by Radical Capturer for Tracking of Plasmon-Driven Redox Reaction. Sci Rep 2016, 6, 30193. 67. Huang, Y.-F.; Zhu, H.-P.; Liu, G.-K.; Wu, D.-Y.; Ren, B.; Tian, Z.-Q., When the Signal Is Not from the Original Molecule To Be Detected: Chemical Transformation of para-Aminothiophenol on Ag during the SERS Measurement. Journal of the American Chemical Society 2010, 132 (27), 9244-9246. 68. Fang, Y.; Li, Y.; Xu, H.; Sun, M., Ascertaining p,p′-Dimercaptoazobenzene Produced from p-Aminothiophenol by Selective Catalytic Coupling Reaction on Silver Nanoparticles. Langmuir 2010, 26 (11), 7737-7746. 69. Xu, P.; Kang, L.; Mack, N. H.; Schanze, K. S.; Han, X.; Wang, H.-L., Mechanistic understanding of surface plasmon assisted catalysis on a single particle: cyclic redox of 4-aminothiophenol. Scientific Reports 2013, 3, 2997. 70. Yi-Fan, H.; Meng, Z.; Liu-Bin, Z.; Jia-Min, F.; De-Yin, W.; Bin, R.; Zhong-Qun, T., Activation of Oxygen on Gold and Silver Nanoparticles Assisted by Surface Plasmon Resonances. Angewandte Chemie International Edition 2014, 53 (9), 2353-2357. 71. Trachta, G.; Schwarze, B.; Sägmüller, B.; Brehm, G.; Schneider, S., Combination of high-performance liquid chromatography and SERS detection applied to the analysis of drugs in human blood and urine. Journal of Molecular Structure 2004, 693 (1-3), 175-185. 72. Tang, L.; Wang, J.-j.; Jia, C.-t.; Lv, G.-x.; Xu, G.; Li, W.-t.; Wang, L.; Zhang, J.-y.; Wu, M.-h., Simulated solar driven catalytic degradation of psychiatric drug carbamazepine with binary BiVO 4 heterostructures sensitized by graphene quantum dots. Applied Catalysis B: Environmental 2017, 205, 587-596. 73. Reichert, J.; Brunner, B.; Jess, A.; Wasserscheid, P.; Albert, J., Biomass oxidation to formic acid in aqueous media using polyoxometalate catalysts – boosting FA selectivity by in-situ extraction. Energy & Environmental Science 2015, 8 (10), 2985-2990. 74. Zhang, J.; Sun, M.; Han, Y., Selective oxidation of glycerol to formic acid in highly concentrated aqueous solutions with molecular oxygen using V-substituted phosphomolybdic acids. RSC Advances 2014, 4 (67), 35463. 75. Kozhevnikov, I. V., Catalysis by Heteropoly Acids and Multicomponent Polyoxometalates in Liquid-Phase Reactions. Chemical Reviews 1998, 98 (1), 171-198. 76. Shatalov, A. A.; Evtuguin, D. V.; Pascoal Neto, C., Cellulose degradation in the reaction system O2/heteropolyanions of series [PMo(12−n)VnO40](3+n)−. Carbohydrate Polymers 2000, 43 (1), 23-32. 77. Yuan, J.; Chen, Y.; Han, D.; Zhang, Y.; Shen, Y.; Wang, Z.; Niu, L., Synthesis of highly faceted multiply twinned gold nanocrystals stabilized by polyoxometalates. Nanotechnology 2006, 17 (18), 4689-94. 78. Huang, F.; Su, Y.; Tao, Y.; Sun, W.; Wang, W., Preparation of 5-hydroxymethylfurfural from glucose catalyzed by silica-supported phosphotungstic acid heterogeneous catalyst. Fuel 2018, 226, 417-422. 79. Wu, L.; Jiao, Z.; Wu, M.; Song, T.; Zhang, H., Formation of mesoporous silica nanoparticles with tunable pore structure as promising nanoreactor and drug delivery vehicle. RSC Advances 2016, 6 (16), 13303-13311. 80. Chen, Y.-H.; Mou, C.-Y.; Wan, B.-Z., Ultrasmall gold nanoparticles confined in zeolite Y: Preparation and activity in CO oxidation. Applied Catalysis B: Environmental 2017, 218, 506-514. 81. Li, Y.; Chen, D.; Caruso, R. A., Enhanced electrochromic performance of WO3 nanowire networks grown directly on fluorine-doped tin oxide substrates. Journal of Materials Chemistry C 2016, 4 (44), 10500-10508. 82. Ju, P.; Wang, Y.; Sun, Y.; Zhang, D., Controllable one-pot synthesis of a nest-like Bi2WO6/BiVO4 composite with enhanced photocatalytic antifouling performance under visible light irradiation. Dalton Trans 2016, 45 (11), 4588-602. 83. Zhou, J.; Wei, Y.; Luo, G.; Zheng, J.; Xu, C., Electrochromic properties of vertically aligned Ni-doped WO3 nanostructure films and their application in complementary electrochromic devices. Journal of Materials Chemistry C 2016, 4 (8), 1613-1622. 84. E., P., On the XPS Analysis of Si–OH Groups at the Surface of Silica. Surface and Interface Analysis 1996, 24 (10), 729-730. 85. Yang, J.; Mou, C.-Y., Ordered mesoporous Au/TiO2 nanospheres for solvent-free visible-light-driven plasmonic oxidative coupling reactions of amines. Applied Catalysis B: Environmental 2018, 231, 283-291. 86. Lin, B.; Wei, K.; Ma, X.; Lin, J.; Ni, J., Study of potassium promoter effect for Ru/AC catalysts for ammonia synthesis. Catalysis Science & Technology 2013, 3 (5), 1367-1374. 87. Yang, X.-j.; Tian, P.-f.; Wang, H.-l.; Xu, J.; Han, Y.-f., Catalytic decomposition of H2O2 over a Au/carbon catalyst: A dual intermediate model for the generation of hydroxyl radicals. Journal of Catalysis 2016, 336, 126-132. 88. Steiner, M. G.; Babbs, C. F., Quantitation of the hydroxyl radical by reaction with dimethyl sulfoxide. Archives of Biochemistry and Biophysics 1990, 278 (2), 478-481. 89. Serpone, N.; Texier, I.; Emeline, A. V.; Pichat, P.; Hidaka, H.; Zhao, J., Post-irradiation effect and reductive dechlorination of chlorophenols at oxygen-free TiO2/water interfaces in the presence of prominent hole scavengers. Journal of Photochemistry and Photobiology A: Chemistry 2000, 136 (3), 145-155. 90. Chandrasekara Pillai, K.; Kwon, T. O.; Moon, I. S., Degradation of wastewater from terephthalic acid manufacturing process by ozonation catalyzed with Fe2+, H2O2 and UV light: Direct versus indirect ozonation reactions. Applied Catalysis B: Environmental 2009, 91 (1), 319-328. 91. Schünemann, S.; Schüth, F.; Tüysüz, H., Selective glycerol oxidation over ordered mesoporous copper aluminum oxide catalysts. Catalysis Science & Technology 2017, 7 (23), 5614-5624. 92. Conte, M.; Miyamura, H.; Kobayashi, S.; Chechik, V., Spin Trapping of Au−H Intermediate in the Alcohol Oxidation by Supported and Unsupported Gold Catalysts. Journal of the American Chemical Society 2009, 131 (20), 7189-7196. 93. Wang, Y.-W.; Kao, K.-C.; Wang, J.-K.; Mou, C.-Y., Large-Scale Uniform Two-Dimensional Hexagonal Arrays of Gold Nanoparticles Templated from Mesoporous Silica Film for Surface-Enhanced Raman Spectroscopy. The Journal of Physical Chemistry C 2016, 120 (42), 24382-24388. 94. Beyer, M.; Budde, K.; Holzapfel, W., Organic contamination of silicon wafers by buffered oxide etching. Applied Surface Science 1993, 63 (1), 88-92. 95. Miki, N.; Spearing, S. M., Effect of nanoscale surface roughness on the bonding energy of direct-bonded silicon wafers. Journal of Applied Physics 2003, 94 (10), 6800-6806. 96. Suni, T.; Henttinen, K.; Suni, I.; Mäkinen, J., Effects of Plasma Activation on Hydrophilic Bonding of Si and SiO2. Journal of The Electrochemical Society 2002, 149 (6), G348-G351. 97. Xu, P.; Kang, L.; Mack, N. H.; Schanze, K. S.; Han, X.; Wang, H. L., Mechanistic understanding of surface plasmon assisted catalysis on a single particle: cyclic redox of 4-aminothiophenol. Sci Rep 2013, 3, 2997. 98. Wang, J.; Ando, R. A.; Camargo, P. H., Controlling the Selectivity of the Surface Plasmon Resonance Mediated Oxidation of p-Aminothiophenol on Au Nanoparticles by Charge Transfer from UV-excited TiO2. Angew Chem Int Ed Engl 2015, 54 (23), 6909-12. 99. Yan, X.; Wang, L.; Tan, X.; Tian, B.; Zhang, J., Surface-Enhanced Raman Spectroscopy Assisted by Radical Capturer for Tracking of Plasmon-Driven Redox Reaction. Scientific Reports 2016, 6, 30193. 100. Tixier, C.; Singer, H. P.; Oellers, S.; Müller, S. R., Occurrence and Fate of Carbamazepine, Clofibric Acid, Diclofenac, Ibuprofen, Ketoprofen, and Naproxen in Surface Waters. Environmental Science & Technology 2003, 37 (6), 1061-1068. 101. Czernicki, W.; Baranska, M., Carbamazepine polymorphs: Theoretical and experimental vibrational spectroscopy studies. Vibrational Spectroscopy 2013, 65, 12-23. 102. Wei, H.; Vikesland, P. J., pH-Triggered Molecular Alignment for Reproducible SERS Detection via an AuNP/Nanocellulose Platform. Sci Rep 2015, 5, 18131. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70220 | - |
| dc.description.abstract | 負載金之中孔洞二氧化矽奈米粒子(mesoporous silica nanoparticles, MSNs)被認為是一種潛在的功能性材料,其可在催化反應、傳感、等離子體光催化、及表面增強拉曼光譜(surface-enhanced Raman spectroscopy, SERS)來檢測內分泌干擾物質等領域具有諸多應用。由於MSN具有均勻的孔徑、有序的孔洞結構和高比表面積,經常用來做為模板以達到限制高度分散且大小均一的金奈米粒子的生長的目的。因此,我們以MSN作為模板,利用後修飾的方法將氨基官能機團修飾於表面,使得金前驅物附著於材料,藉此金奈米顆粒將被限制在孔道中,並且在液相溶液中具有良好的懸浮性,如此一來,即可均勻的塗布在矽晶片上。在這篇論文中,將展示負載金之中孔洞二氧化矽奈米粒子的應用。
在本研究的第一部分,我們設計了負載奈米金之磷鎢酸(Phosphotungstic acid, PTA) 修飾的中孔洞二氧化矽奈米粒子,應用於甘油的選擇性氧化催化反應。我們分別使用了兩種中孔洞二氧化矽材料來做為金奈米粒子的載體,如:具有垂直奈米孔道的中孔洞薄膜材料SBA-15(⊥)及擴孔的中孔洞二氧化矽奈米粒子ex-MSN,並透過後修飾的方法將固體酸(PTA)引入於孔道中,可有效的催化甘油。整體而言,Au/PTA-ex-MSN催化劑在選擇性甘油氧化催化反應中具有優異的甲酸選擇性42.9%,TON高達1576,及雙氧水的消耗率達87.7%。 在第二部分的研究中,我們將Au/ex-MSN塗布在矽晶片上作為SERS的基板,應用於原位光催化反應進行產物變化的檢測,並且也透過SERS檢測低劑量的環境激素。在此,我們透過SERS進行4-氨基苯硫酚(4-aminothiophenol, 4-ATP)的原位氧化追蹤反應,以了解中間產物4,4'-二巰基偶氮苯(4,4’-dimercaptoazobenzene, DMAB)和最終產物4-硝基苯硫酚(4-nitrothiophenol, 4-NTP)的變化,其中,Au/ex-MSN於空氣中透過633奈米雷射光激發顯現高的可見光活性,且具有明顯的拉曼信號,因此,證明4-ATP透過光催化可被激發產生4-NTP。此外,我們也應用Au/ex-MSN作為SERS的基板來檢測水中最常見的環境激素-卡馬西平(carbazepene, CBZ),透過檢測不同濃度的CBZ (10-2 mol/L to 10-7 mol/L)獲得了線性的濃度校正曲線。根據上述結果,Au/ex-MSN可作為高效的SERS基板,並應用於原位光催化反應檢測及低劑量汙染物的偵測。 | zh_TW |
| dc.description.abstract | Gold nanoparticles supported on mesoporous silica nanoparticles (MSNs) have been consider as a potential function material for catalytic reaction, sensing, plasmonic photocatalysis, detecting analytes by surface-enhancement Raman spectroscopy (SERS) and so on. The mesoporous MSNs with uniform pore size, ordered pore structure, and high surface area are promising, supports and/or nano-reaction vessel for synthesis and for confining highly dispersed Au nanoparticles (NPs) with uniform size. Herein, we applied MSNs as a support and then modified amine group on the surface of MSNs to adhere gold precursor. Hence, the Au nanoparticles were confined into the channels of MSNs and it can be well suspended in liquid phase, as well as can uniformly distribute on a silicon wafer. Two parts of relevant applications are demonstrated here for the Au nanoparticles supported on/in MSNs. The first part is about selective glycerol oxidation, the second part is about in situ studies of plasmonic photocatalysis process and detection environmental hormone-carbazepene at low concentration.
In the first part, we designed a mesoporous silica confined Au NPs/phosphotungstic acid (PTA) material for selective catalytic conversion of glycerol oxidation. Two kinds of silica materials were employed as supports for Au NPs, eg, mesoporous thin film with perpendicular nanochannels (SBA-15(⊥)) and pore-expanded mesoporous silica nanoparticles (ex-MSN), respectively. Meanwhile, solid acid PTA was introduced into the silica nanochannels via post-modification, which can efficiently catalyze glycerol. Overall, our Au/PTA-exMSN catalyst shows excellent selective catalysis ability in convert glycerol to formic acid with outstanding selectivity of 42.9%, and TON up to 1576, and a high H2O2 consumption efficiency of 87.7%. In the second part, spin coating Au/ex-MSN on Si wafer was used as substrate for in situ detecting products variation during photocatalytsis reaction and detecting low dose of environmental hormone under SERS. The in situ oxidation tracking reaction of 4-aminothiophenol (4-ATP) was carried out by SERS to understand the variation of intermediate product 4,4’-dimercaptoazobenzene (DMAB) and final product 4-nitrothiophenol (4-NTP). Particularly, the Au/ex-MSN exhibits high visible light activity for photocatalysis 4-ATP into final oxidation product 4-NTP in air atmosphere under 633 nm laser irradiation with showing an obvious Raman signal of final oxidation product. The result indicates that our substrate can be used to study in situ catalytic oxidation reaction mechanism with SERS. In addition, we also conducted experiment to detect the most common pollutant of environmental hormone in water – CBZ. A concentration range from 10-2 mol/L to 10-7 mol/L of CBZ can be detected by applying Au/ex-MSN as SERS substrate. A linear calibration curve was obtained for detecting the concentration of CBZ in nature environment. Based on the above experimental results, the Au/ex-MSN as a highly efficient SERS substrate can be apply in in situ detecting reactions and low dose pollutant. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T04:24:26Z (GMT). No. of bitstreams: 1 ntu-107-R05223143-1.pdf: 8554386 bytes, checksum: 56becf4bf27d236a0bb62f7e0f2d7594 (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | 誌謝.................................................i
摘要.................................................ii Abstract.............................................iv Table of Contents....................................vi List of Figures......................................x List of Table........................................xiii List of Scheme.......................................xiv Chapter 1 Introduction...............................1 1.1 Au Nanoparticles and Mesoporous Materials....1 1.2 Introduction of Glycerol.....................3 1.3 Surface-enhanced Raman Spectroscopy (SERS)...10 Chapter 2 Selective Catalytic Conversion of Glycerol by Au nanoparticles confined in Phosphotungstic acid-functionalized Mesoporous Silica Materials...........14 2.1 Motivation...................................14 2.2 Experimental Section.........................16 2.2.1 Chemical.....................................16 2.2.2 Characterization.............................17 2.2.2.1 Transmission Electron Microscopy (TEM).......17 2.2.2.2 Scanning Electron Microscopy (SEM)...........17 2.2.2.3 Nitrogen Adsorption-Desorption Isotherm......18 2.2.2.4 Powder X-ray Diffraction (XRD)...............18 2.2.2.5 X-ray Photoelectron Spectroscopy (XPS).......18 2.2.2.6 Ultraviolet-visible Absorption Spectroscopy (UV-vis).................................................18 2.2.2.7 Inductively Coupled Plasma Mass Spectrometry (ICP-MS)..................................................18 2.2.2.8 Ammonium Adsorption Temperature Programmed Desorption (NH3-TPD).................................19 2.2.3 Synthetic Procedures.........................19 2.2.3.1 Gold nanoparticles supported on PTA-APTMS-functionalized mesoporous materials (Au/PTA-ex-MSN and Au/PTA-SBA-15(⊥))....................................19 (1) Synthesis of pore-expanded mesoporous silica nanoparticles (ex-MSN)...............................19 (2) Synthesis of mesoporous silica SBA-15 thin films with perpendicular nanochannels ( SBA-15(⊥))..............20 (3) APTMS-functionalized ex-MSN and APTMS-functionalized SBA-15(⊥) thin films.................................20 (4) Post-modification PTA on APTMS-functionalized mesoporous materials.................................21 (5) Gold nanoparticles supported on PTA-APTMS-functionalized mesoporous materials..................21 2.2.3.2 Catalytic Reaction...........................22 2.3 Results and Discussion.......................24 2.3.1 Characterization of Au/PTA-ex-MSN and Au/PTA-SBA-15(⊥)................................................24 (1) TEM and SEM......................................24 (2) Nitrogen adsorption-desorption...................30 (3) Powder X-ray Diffraction (XRD)...................31 (4) X-Ray Photoelectron Spectroscopy (XPS)...........33 (5) Determination of acidity by NH3-TPD..............35 2.3.2 Catalytic activity toward selective glycerol oxidation............................................36 (1) The effect of glycerol/H2O2 molar ratio on glycerol oxidation............................................36 (2) Active radical detection.........................39 (3) Time course......................................40 (4) Propose reaction pathway.........................41 (5) Recycling performance............................42 2.4 Conclusion...................................43 Chapter 3 Hexagonal Arrays of Gold Nanoparticles Templated from Mesoporous Silica for in-situ Studies of Plasmonic Photocatalysis Procedd and Quantitative Detection of Carbamazepine Based on Surface Enhanced Raman Spectroscopy.........................................44 3.1 Motivation...................................44 3.2 Experimental Section.........................45 3.2.1 Chemical.....................................45 3.2.2 Characterization.............................46 3.2.2.1 Transmission Electron Microscopy (TEM).......46 3.2.2.2 Scanning Electron Microscopy (SEM)...........46 3.2.2.3 Raman Spectroscopy...........................46 3.2.3 Synthetic Procedures.........................46 3.2.3.1 Synthesis of Au NPs on APTMS-ex-MSNs.........46 3.2.3.2 Spin Coating Process of APTMS-ex-MSN on Silicon wafer................................................46 3.2.3.3 Gold reduction on APTMS-ex-MSN wafer.........47 3.2.4 SERS detection method........................47 3.2.4.1 Oxidation of 4-aminothiophenol...............47 3.2.4.2 Detection of persistent organic pollutants (POPs) - Carbamazepine......................................48 3.3 Results and discussion.......................48 3.3.1 Characterization of Au/ex-MSN wafer..........48 3.3.2 In-situ Studies of Plasmonic Photocatalysis Process by Au/ex-MSN wafer...........................51 3.3.3 Detecting the persistent organic pollutants (POPs) – Carbamazepine by Au/ex-MSN wafer...................55 3.4 Conclusion...................................57 Reference............................................58 | |
| dc.language.iso | en | |
| dc.subject | 表面增強拉曼光譜 | zh_TW |
| dc.subject | 中孔洞二氧化矽 | zh_TW |
| dc.subject | 金奈米粒子 | zh_TW |
| dc.subject | 甘油 | zh_TW |
| dc.subject | 選擇性氧化 | zh_TW |
| dc.subject | Mesoporous silica | en |
| dc.subject | glycerol | en |
| dc.subject | selective oxidation | en |
| dc.subject | surface-enhanced Raman spectroscopy | en |
| dc.subject | gold nanoparticles | en |
| dc.title | 負載金之中孔洞二氧化矽奈米材料的合成與催化應用 | zh_TW |
| dc.title | Synthesis of Au loaded Mesoporous Silica Nanoparticles for Catalytic Applications | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 鄭淑芬,戴龑 | |
| dc.subject.keyword | 中孔洞二氧化矽,金奈米粒子,甘油,選擇性氧化,表面增強拉曼光譜, | zh_TW |
| dc.subject.keyword | Mesoporous silica,gold nanoparticles,glycerol,selective oxidation,surface-enhanced Raman spectroscopy, | en |
| dc.relation.page | 64 | |
| dc.identifier.doi | 10.6342/NTU201803506 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2018-08-15 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 化學研究所 | zh_TW |
| Appears in Collections: | 化學系 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-107-1.pdf Restricted Access | 8.35 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
