請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70217完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 盧信嘉(XIN-JIA LU) | |
| dc.contributor.author | Zi-Xian Yang | en |
| dc.contributor.author | 楊子賢 | zh_TW |
| dc.date.accessioned | 2021-06-17T04:24:24Z | - |
| dc.date.available | 2020-11-13 | |
| dc.date.copyright | 2020-11-13 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-10-08 | |
| dc.identifier.citation | [1] 5G. [Online]. Available: https://zh.wikipedia.org/wiki/5G [2] Waymo. [Online]. Available: https://zh.wikipedia.org/wiki/Waymo [3] V. Rabinovich and N. Alexandrov, 'Antenna arrays and automotive applications.' Springer Science Business Media, 2012. [4] MIMO. [Online]. Available: https://zh.wikipedia.org/wiki/MIMO [5] 5G base station antenna design will affect the transmission capacity of the communication system. [Online]. Available:http://technews.tw/2019/08/28/base-station-antenna-design-will-affect-thetransmission-capacity-of-the-communication-system/ [6] E. Taiwan. (2020). 5G mmWave OTA test challenges and solutions.[Online]. Available: https://www.eettaiwan.com/20200107ta31-5g-mmwave-ota-test/ [7] Millimeter wave band battle. [Online]. Available: http://www.ni.com/zhtw/innovations/white-paper/16/mmwave--the-battle-of-the-bands.html [8] The evolution of mobile communications. [online]. Available: https://scitechvista.nat.gov.tw/c/sWgp.html [9] S. Mano and T. Katagi, 'A method for measuring amplitude and phase of each radiating element of a phased array antenna,' Electronics and Communications in Japan (Part I: Communications), vol. 65, no. 5, pp. 58-64, June 1982. [10] C.-U. Lee, H.-J. Dong, Y.-B. Kim, and H. L. Lee, 'Phased array antenna calibration technique based on center-null-tracking (CNT) method,' in 2019 16th European Radar Conference (EuRAD), Jan. 2019, pp. 461-464. [11] Z. Lu and D. Hailong, 'Amplitude and phase correction of the phased array antenna by REV algorithm,' in 2017 2nd International Conference on Image, Vision and Computing (ICIVC), July 2017, pp. 913-917. [12] Y. Dong, S.-W. Dong, Y. Wang, and L. Gong, 'Calibration method of retrodirective antenna array for microwave power transmission,' in 2013 IEEE Wireless Power Transfer (WPT), Sep. 2013, pp. 41-43. [13] W. Chen, Q. Yin, and A. Feng, 'Array calibration for compensating gain/phase mismatch and mutual coupling effects in smart antenna systems,' in 2008 IEEE International Symposium on Wireless Communication Systems, Oct. 2008, pp.483-487. [14] A. O. Fadamiro, A. A.-H. Semomhe, O. J. Famoriji, and F. Lin, 'A multiple element calibration algorithm for active phased array antenna,' IEEE Journal on Multiscale and Multiphysics Computational Techniques, vol. 4, pp. 163-170, Dec.2019. [15] Analysis of the operating principle of long-range early warning radar. [online].Available: https://www.ydn.com.tw/News/238132 [16] overview phased array. [Online]. Available: http://www.mdc.idv.tw/mdc/information/par.htm [17] Radar. [Online]. Available: https://zh.wikipedia.org/wiki/radar [18] Microstrip Antenna - Feeding Methods. [Online]. Available: http://www.antenna-theory.com/antennas/patches/patch3.php [19] H. Werfelli, K. Tayari, M. Chaoui, M. Lahiani, and H. Ghariani, 'Design of rectangular microstrip patch antenna,' in 2016 2nd International Conference on Advanced Technologies for Signal and Image Processing (ATSIP), March 2016,pp. 798-803. [20] P. Hannan, 'The element-gain paradox for a phased-array antenna,' IEEE Transactions on Antennas and Propagation, vol. 12, no. 4, pp. 423-433, Aug. 1964. [21] D. M. Pozar, 'The active element pattern,' IEEE Transactions on Antennas and Propagation, vol. 42, no. 8, pp. 1176-1178, Aug. 1994. [22] W. Wasylkiwskyj and W. Kahn, 'Element patterns and active reflection coefficient in uniform phased arrays,' IEEE Transactions on Antennas and Propagation, vol.22, no. 2, pp. 207-212, Oct. 1974. [23] 曾子軒, '只使用一階藕合的小型偶極天線陣列的互藕補償方法,' 臺灣大學電信工程學研究所碩士學位論文, pp. 1-134, Jan. 2019. [24] Chun-Nien Chen, Li-Cheng Hung, Yi-Hsien Lin, Tzu-Chien Tang, Wei-Pang Chao, Guan-Yu Lin, Wei-Jun Liao, Yu-Hsiang Nien, Wei-Cheng Huang, Tai-Yu Kuo, Kun-You Lin, Tian-Wei Huang, Yi-Cheng Lin, Hsin-Chia Lu, Tsung-Heng Tsai, Huei Wang, 'A 38-GHz 32-element phased-array transmitter based on scalable 8-element phased-array modules for 5G MMW data links,' to be published in 2020 International Microwave Symposium (IMS). [25] Thomas Moon, Junfeng Gaun, Haitham Hassanieh, 'Online millimeter wave phased array calibration based on channel estimation,' IEEE Design Test, Jan.2020, early access. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70217 | - |
| dc.description.abstract | 目前第五代行動通訊正在逐漸的成熟,而相位陣列天線是重要技術之一,為了達到系統的最佳化,需使用校正方法修正陣列中各路徑的差異,讓整個系統的能夠提升傳輸能量,或是增加傳輸的距離。 本論文在電磁模擬採取的架構分別為線性1×4相位陣列天線和線性1×8相位陣列天線,都是使用旋轉單元電場向量法進行相位補償,讓相鄰的天線單元之間沒有相位誤差,進而讓發射天線設置同相饋入時在波束成形θ=0°的位置能夠輻射最大的功率,且在反相饋入時在波束成形θ=0°的方向能夠輻射最小的功率。接者本論文再提出在不同波束成形的方向使用同樣的校正步驟,計算出不同波束成形方向時相鄰天線之間的相位誤差,再由已知的各個不同波束成形位置的相位誤差,透過內插法推算出陣列天線可視區域內每一個角度,波束成形在任意角度所需要的補償的相位,達到陣列天線在可視區域內都能夠輻射最大的功率,進而運用在現代的5G基地台天線,可讓使用者在任意的位置都能收到訊號。 量測方面分別使用雄才大略計畫的38GHz毫米波頻段1*8相位陣列天線波束成形的系統和捷豹公司的60GHz頻段2*4相位陣列天線波束成形的系統,利用第一個1*8相位陣列天線波束成形的系統,來驗證在相位補償後波束成形θ=0°的方向相鄰天線的相位差為0°,使得陣列天線能夠輻射最大功率。接著量測第二個2*4相位陣列天線波束成形的系統,來檢測波束成形在θ=-10°~10°任意一個方向皆能輻射最大功率。根據量測的結果可以知道本論文提出的校正步驟可以讓陣列天線在可視區域內的波束成形皆能輻射最大功率。 | zh_TW |
| dc.description.abstract | The fifth generation of mobile communications is gradually mature. Phased array is an important part in millimeter wave communication. The calibration of the array system is required to improve the power transmission of the entire system. In the simulation, we use a linear 1×4 phase array and a linear 1×8 phase array as examples, to test the rotating element electric field vector (REV) method for phase compensation. After the calibration, the transmitting antenna can radiate the maximum power at the beamforming direction θ = 0° when the array antenna fed in phase, and can radiate the minimum power at the beamforming direction θ = 0° when the array antenna fed in reversed phase. Then the same calibration steps are used at different beamforming direction to calculate the phase error between adjacent antennas, and then use the phase error which is known in specific beamforming positions, to calculate the compensation phase at any other beamforming direction in the visible area of the array antenna by interpolation. In the measurement verification, we use a 38GHz millimeter wave 1*8 phase array antenna beamforming system and the 60GHz band 2*4 phase array antenna beamforming system. First, we use the 1*8 phase array antenna to verify EIRP of adjacent antennas after the phase compensation. The phase array antenna can radiate maximum power. Second, we use a 2*4 phase array. According to the measurement results, the calibration steps proposed in this thesis can allow the array antenna to radiate the maximum power in the visible range. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T04:24:24Z (GMT). No. of bitstreams: 1 U0001-1708202015434500.pdf: 5405680 bytes, checksum: 6e5ccf9a312173fa1388bee9fcab7fbb (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 口試委員會審定書 .........................................# 中文摘要 ................................................i ABSTRACT ...............................................ii 目錄.....................................................iii 圖目錄...................................................v 表目錄...................................................x Chapter 1 緒論...........................................1 1.1 研究背景與動機.........................................1 1.2 行動通訊技術演變.......................................3 1.3 文獻回顧..............................................4 1.4 論文貢獻..............................................11 1.5 各章節介紹............................................12 Chapter 2 陣列天線系統概論.................................13 2.1 通訊系統收發機架構.....................................13 2.2 相位陣列天線演變.......................................14 2.2.1 傳統式雷達[16] .....................................14 2.2.2 被動式相位陣列天線...................................16 2.2.3 主動式相位陣列天線...................................17 2.3 天線單元架構..........................................18 2.3.1 貼片天線原理與特性...................................18 2.3.2 貼片天線理論[18]-[19] ..............................19 2.3.3 貼片天線設計與模擬...................................20 2.4 天線陣列的陣列因子.....................................23 2.4.1 線性陣列的陣列因子...................................24 Chapter 3 天線陣列之互藕與振幅及相位補償.....................26 3.1 天線陣列的場型與互藕關聯性..............................26 3.2 天線陣列藕合矩陣與補償矩陣..............................30 3.3 天線陣列的相位誤差及補償方法............................33 3.4 藕合補償和相位補償的差異...............................35 Chapter 4 使用電磁模擬及Matlab 進行校正驗證................41 4.1 天線陣列相位補償流程..................................41 4.2 線性1×4 天線陣列.....................................43 4.2.1 線性1×4 天線陣列之相位補償過程.......................44 4.2.2 線性1×4 天線陣列之補償前後比較.......................50 4.2.3 線性1×4 天線陣列之擺放誤差後補償比較..................52 4.3 線性1×8 天線陣列.....................................55 4.3.1 線性1×8 天線陣列之相位補償過程.......................57 4.3.2 線性1×8 天線陣列之其他角度相位補償....................65 4.3.3 線性1×8 天線陣列之可視區域場型比較....................72 4.4 模擬點數選擇.........................................78 Chapter 5 量測結果......................................85 5.1 38GHz 線性1×8 相位陣列天線...........................85 5.1.1 陣列天線之量測系統與環境.............................88 5.1.2 陣列天線單元之校正量測..............................90 5.1.3 陣列天線補償前後差異................................96 5.2 60GHz 線性2×4 相位陣列天線...........................100 5.2.1 陣列天線之波束成形補償前後的差異......................102 5.2.2 陣列天線之其他角度相位補償...........................108 5.2.3 陣列天線之在任意角度補償前後比較......................114 Chapter 6 結論與未來展望.................................122 參考文獻................................................124 | |
| dc.language.iso | zh-TW | |
| dc.subject | 相位補償 | zh_TW |
| dc.subject | 旋轉單元電場向量法 | zh_TW |
| dc.subject | 相位陣列天線 | zh_TW |
| dc.subject | 相位陣列校正 | zh_TW |
| dc.subject | phase array antenna | en |
| dc.subject | rotating element electric field vector method | en |
| dc.subject | phase compensate | en |
| dc.subject | phase array calibration | en |
| dc.title | 使用旋轉單元電場向量法進行相位陣列天線系統校正 | zh_TW |
| dc.title | Antenna Phased-Array Calibration Using Rotating-Element Electric-Field Vector Method | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 109-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 邱建文(JIAN-WEN QIU),曾昭雄(ZHAO-XIONG ZENG),饒佩宗(PEI-ZONG RAO),張譽騰(YU-TENG ZHANG) | |
| dc.subject.keyword | 相位陣列天線,旋轉單元電場向量法,相位補償,相位陣列校正, | zh_TW |
| dc.subject.keyword | phase array antenna,rotating element electric field vector method,phase compensate,phase array calibration, | en |
| dc.relation.page | 125 | |
| dc.identifier.doi | 10.6342/NTU202003778 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2020-10-13 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電信工程學研究所 | zh_TW |
| 顯示於系所單位: | 電信工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1708202015434500.pdf 未授權公開取用 | 5.28 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
