Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生化科技學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7018
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor楊健志
dc.contributor.authorYuan-Fang Lien
dc.contributor.author李源芳zh_TW
dc.date.accessioned2021-05-17T09:24:09Z-
dc.date.available2015-08-22
dc.date.available2021-05-17T09:24:09Z-
dc.date.copyright2012-08-22
dc.date.issued2012
dc.date.submitted2012-08-18
dc.identifier.citationAbrams, S.R., Rose, P.A., Cutler, A.J., Balsevich, J.J., Lei, B., and Walker-Simmons, M.K. (1997). 8'-Methylene Abscisic Acid (An Effective and Persistent Analog of Abscisic Acid). Plant Physiol 114, 89-97.
Bensmihen, S., Giraudat, J., and Parcy, F. (2005). Characterization of three homologous basic leucine zipper transcription factors (bZIP) of the ABI5 family during Arabidopsis thaliana embryo maturation. J Exp Bot 56, 597-603.
Bensmihen, S., Rippa, S., Lambert, G., Jublot, D., Pautot, V., Granier, F., Giraudat, J., and Parcy, F. (2002). The homologous ABI5 and EEL transcription factors function antagonistically to fine-tune gene expression during late embryogenesis. Plant Cell 14, 1391-1403.
Bent, A.F. (2000). Arabidopsis in planta transformation. Uses, mechanisms, and prospects for transformation of other species. Plant Physiol 124, 1540-1547.
Bright, J., Desikan, R., Hancock, J.T., Weir, I.S., and Neill, S.J. (2006). ABA-induced NO generation and stomatal closure in Arabidopsis are dependent on H2O2 synthesis. Plant J 45, 113-122.
Chen, C.C., Liang, C.S., Kao, A.L., and Yang, C.C. (2009). HHP1 is involved in osmotic stress sensitivity in Arabidopsis. J Exp Bot 60, 1589-1604.
Chen, C.C., Liang, C.S., Kao, A.L., and Yang, C.C. (2010). HHP1, a novel signalling component in the cross-talk between the cold and osmotic signalling pathways in Arabidopsis. J Exp Bot 61, 3305-3320.
Cheng, W.H., Endo, A., Zhou, L., Penney, J., Chen, H.C., Arroyo, A., Leon, P., Nambara, E., Asami, T., Seo, M., Koshiba, T., and Sheen, J. (2002). A unique short-chain dehydrogenase/reductase in Arabidopsis glucose signaling and abscisic acid biosynthesis and functions. Plant Cell 14, 2723-2743.
Desikan, R., Last, K., Harrett-Williams, R., Tagliavia, C., Harter, K., Hooley, R., Hancock, J.T., and Neill, S.J. (2006). Ethylene-induced stomatal closure in Arabidopsis occurs via AtrbohF-mediated hydrogen peroxide synthesis. Plant J 47, 907-916.
Endo, A., Sawada, Y., Takahashi, H., Okamoto, M., Ikegami, K., Koiwai, H., Seo, M., Toyomasu, T., Mitsuhashi, W., Shinozaki, K., Nakazono, M., Kamiya, Y., Koshiba, T., and Nambara, E. (2008). Drought induction of Arabidopsis 9-cis-epoxycarotenoid dioxygenase occurs in vascular parenchyma cells. Plant Physiol 147, 1984-1993.
Ephritikhine, G., Fellner, M., Vannini, C., Lapous, D., and Barbier-Brygoo, H. (1999). The sax1 dwarf mutant of Arabidopsis thaliana shows altered sensitivity of growth responses to abscisic acid, auxin, gibberellins and ethylene and is partially rescued by exogenous brassinosteroid. Plant J 18, 303-314.
Finkelstein, R.R., and Lynch, T.J. (2000a). The Arabidopsis abscisic acid response gene ABI5 encodes a basic leucine zipper transcription factor. Plant Cell 12, 599-609.
Finkelstein, R.R., and Lynch, T.J. (2000b). Abscisic acid inhibition of radicle emergence but not seedling growth is suppressed by sugars. Plant Physiol 122, 1179-1186.
Fujii, H., Verslues, P.E., and Zhu, J.K. (2007). Identification of two protein kinases required for abscisic acid regulation of seed germination, root growth, and gene expression in Arabidopsis. Plant Cell 19, 485-494.
Fujii, H., Chinnusamy, V., Rodrigues, A., Rubio, S., Antoni, R., Park, S.Y., Cutler, S.R., Sheen, J., Rodriguez, P.L., and Zhu, J.K. (2009). In vitro reconstitution of an abscisic acid signalling pathway. Nature 462, 660-664.
Fujita, Y., Fujita, M., Shinozaki, K., and Yamaguchi-Shinozaki, K. (2011). ABA-mediated transcriptional regulation in response to osmotic stress in plants. J Plant Res 124, 509-525.
Fujita, Y., Fujita, M., Satoh, R., Maruyama, K., Parvez, M.M., Seki, M., Hiratsu, K., Ohme-Takagi, M., Shinozaki, K., and Yamaguchi-Shinozaki, K. (2005). AREB1 is a transcription activator of novel ABRE-dependent ABA signaling that enhances drought stress tolerance in Arabidopsis. Plant Cell 17, 3470-3488.
Geiger, D., Scherzer, S., Mumm, P., Stange, A., Marten, I., Bauer, H., Ache, P., Matschi, S., Liese, A., Al-Rasheid, K.A., Romeis, T., and Hedrich, R. (2009). Activity of guard cell anion channel SLAC1 is controlled by drought-stress signaling kinase-phosphatase pair. Proc Natl Acad Sci U S A 106, 21425-21430.
Hao, F., Zhao, S., Dong, H., Zhang, H., Sun, L., and Miao, C. (2010). Nia1 and Nia2 are involved in exogenous salicylic acid-induced nitric oxide generation and stomatal closure in Arabidopsis. J Integr Plant Biol 52, 298-307.
Hauser, F., Waadt, R., and Schroeder, J.I. (2011). Evolution of abscisic acid synthesis and signaling mechanisms. Curr Biol 21, R346-355.
Hruz, T., Laule, O., Szabo, G., Wessendorp, F., Bleuler, S., Oertle, L., Widmayer, P., Gruissem, W., and Zimmermann, P. (2008). Genevestigator v3: a reference expression database for the meta-analysis of transcriptomes. Adv Bioinformatics 2008, 420747.
Hsieh, M.H., and Goodman, H.M. (2005). A novel gene family in Arabidopsis encoding putative heptahelical transmembrane proteins homologous to human adiponectin receptors and progestin receptors. J Exp Bot 56, 3137-3147.
Joshi-Saha, A., Valon, C., and Leung, J. (2011a). Abscisic acid signal off the STARting block. Mol Plant 4, 562-580.
Joshi-Saha, A., Valon, C., and Leung, J. (2011b). A brand new START: abscisic acid perception and transduction in the guard cell. Sci Signal 4, re4.
Kang, J., Hwang, J.U., Lee, M., Kim, Y.Y., Assmann, S.M., Martinoia, E., and Lee, Y. (2010). PDR-type ABC transporter mediates cellular uptake of the phytohormone abscisic acid. Proc Natl Acad Sci U S A 107, 2355-2360.
Kang, J.Y., Choi, H.I., Im, M.Y., and Kim, S.Y. (2002). Arabidopsis basic leucine zipper proteins that mediate stress-responsive abscisic acid signaling. Plant Cell 14, 343-357.
Kim, S.Y., Ma, J., Perret, P., Li, Z., and Thomas, T.L. (2002). Arabidopsis ABI5 subfamily members have distinct DNA-binding and transcriptional activities. Plant Physiol 130, 688-697.
Kinoshita, T., and Shimazaki, K. (1999). Blue light activates the plasma membrane H+-ATPase by phosphorylation of the C-terminus in stomatal guard cells. EMBO J 18, 5548-5558.
Koiwai, H., Nakaminami, K., Seo, M., Mitsuhashi, W., Toyomasu, T., and Koshiba, T. (2004). Tissue-specific localization of an abscisic acid biosynthetic enzyme, AAO3, in Arabidopsis. Plant Physiol 134, 1697-1707.
Koornneef, M., Jorna, M.L., Brinkhorst-van der Swan, D.L.C., and Karssen, C.M. (1982). The isolation of abscisic acid (ABA) deficient mutants by selection of induced revertants in non-germinating gibberellin sensitive lines of Arabidopsis thaliana. TAG Theoretical and Applied Genetics 61, 385-393.
Krochko, J.E., Abrams, G.D., Loewen, M.K., Abrams, S.R., and Cutler, A.J. (1998). (+)-Abscisic acid 8'-hydroxylase is a cytochrome P450 monooxygenase. Plant Physiol 118, 849-860.
Kuromori, T., Miyaji, T., Yabuuchi, H., Shimizu, H., Sugimoto, E., Kamiya, A., Moriyama, Y., and Shinozaki, K. (2010). ABC transporter AtABCG25 is involved in abscisic acid transport and responses. Proc Natl Acad Sci U S A 107, 2361-2366.
Kwak, J.M., Mori, I.C., Pei, Z.M., Leonhardt, N., Torres, M.A., Dangl, J.L., Bloom, R.E., Bodde, S., Jones, J.D., and Schroeder, J.I. (2003). NADPH oxidase AtrbohD and AtrbohF genes function in ROS-dependent ABA signaling in Arabidopsis. EMBO J 22, 2623-2633.
Leon-Kloosterziel, K.M., van de Bunt, G.A., Zeevaart, J.A., and Koornneef, M. (1996). Arabidopsis mutants with a reduced seed dormancy. Plant Physiol 110, 233-240.
Li, J.H., Liu, Y.Q., Lu, P., Lin, H.F., Bai, Y., Wang, X.C., and Chen, Y.L. (2009). A signaling pathway linking nitric oxide production to heterotrimeric G protein and hydrogen peroxide regulates extracellular calmodulin induction of stomatal closure in Arabidopsis. Plant Physiol 150, 114-124.
Lin, B.L., Wang, H.J., Wang, J.S., Zaharia, L.I., and Abrams, S.R. (2005). Abscisic acid regulation of heterophylly in Marsilea quadrifolia L.: effects of R-(-) and S-(+) isomers. J Exp Bot 56, 2935-2948.
Lu, D., Zhang, X., Jiang, J., An, G.Y., Zhang, L.R., and Song, C.P. (2005). NO may function in the downstream of H2O2 in ABA-induced stomatal closure in Vicia faba. Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao 31, 62-70.
Ma, Y., Szostkiewicz, I., Korte, A., Moes, D., Yang, Y., Christmann, A., and Grill, E. (2009). Regulators of PP2C phosphatase activity function as abscisic acid sensors. Science 324, 1064-1068.
Marten, H., Hedrich, R., and Roelfsema, M.R. (2007). Blue light inhibits guard cell plasma membrane anion channels in a phototropin-dependent manner. Plant J 50, 29-39.
Melcher, K., Ng, L.M., Zhou, X.E., Soon, F.F., Xu, Y., Suino-Powell, K.M., Park, S.Y., Weiner, J.J., Fujii, H., Chinnusamy, V., Kovach, A., Li, J., Wang, Y., Peterson, F.C., Jensen, D.R., Yong, E.L., Volkman, B.F., Cutler, S.R., Zhu, J.K., and Xu, H.E. (2009). A gate-latch-lock mechanism for hormone signalling by abscisic acid receptors. Nature 462, 602-608.
Miyazono, K., Miyakawa, T., Sawano, Y., Kubota, K., Kang, H.J., Asano, A., Miyauchi, Y., Takahashi, M., Zhi, Y., Fujita, Y., Yoshida, T., Kodaira, K.S., Yamaguchi-Shinozaki, K., and Tanokura, M. (2009). Structural basis of abscisic acid signalling. Nature 462, 609-614.
Murashige, T., and Skoog, F. (1962). A Revised Medium for Rapid Growth and Bio Assays with Tobacco Tissue Cultures. Physiologia Plantarum 15, 473-497.
Nakashima, K., Fujita, Y., Kanamori, N., Katagiri, T., Umezawa, T., Kidokoro, S., Maruyama, K., Yoshida, T., Ishiyama, K., Kobayashi, M., Shinozaki, K., and Yamaguchi-Shinozaki, K. (2009). Three Arabidopsis SnRK2 protein kinases, SRK2D/SnRK2.2, SRK2E/SnRK2.6/OST1 and SRK2I/SnRK2.3, involved in ABA signaling are essential for the control of seed development and dormancy. Plant Cell Physiol 50, 1345-1363.
Nambara, E., and Marion-Poll, A. (2005). Abscisic acid biosynthesis and catabolism. Annu Rev Plant Biol 56, 165-185.
Narusaka, Y., Nakashima, K., Shinwari, Z.K., Sakuma, Y., Furihata, T., Abe, H., Narusaka, M., Shinozaki, K., and Yamaguchi-Shinozaki, K. (2003). Interaction between two cis-acting elements, ABRE and DRE, in ABA-dependent expression of Arabidopsis rd29A gene in response to dehydration and high-salinity stresses. Plant J 34, 137-148.
Neill, S., Barros, R., Bright, J., Desikan, R., Hancock, J., Harrison, J., Morris, P., Ribeiro, D., and Wilson, I. (2008). Nitric oxide, stomatal closure, and abiotic stress. J Exp Bot 59, 165-176.
Nemhauser, J.L., Hong, F., and Chory, J. (2006). Different plant hormones regulate similar processes through largely nonoverlapping transcriptional responses. Cell 126, 467-475.
Nishimura, N., Hitomi, K., Arvai, A.S., Rambo, R.P., Hitomi, C., Cutler, S.R., Schroeder, J.I., and Getzoff, E.D. (2009). Structural mechanism of abscisic acid binding and signaling by dimeric PYR1. Science 326, 1373-1379.
Nishimura, N., Sarkeshik, A., Nito, K., Park, S.Y., Wang, A., Carvalho, P.C., Lee, S., Caddell, D.F., Cutler, S.R., Chory, J., Yates, J.R., and Schroeder, J.I. (2010). PYR/PYL/RCAR family members are major in-vivo ABI1 protein phosphatase 2C-interacting proteins in Arabidopsis. Plant J 61, 290-299.
Park, S.Y., Fung, P., Nishimura, N., Jensen, D.R., Fujii, H., Zhao, Y., Lumba, S., Santiago, J., Rodrigues, A., Chow, T.F., Alfred, S.E., Bonetta, D., Finkelstein, R., Provart, N.J., Desveaux, D., Rodriguez, P.L., McCourt, P., Zhu, J.K., Schroeder, J.I., Volkman, B.F., and Cutler, S.R. (2009). Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins. Science 324, 1068-1071.
Pei, Z.M., Murata, Y., Benning, G., Thomine, S., Klusener, B., Allen, G.J., Grill, E., and Schroeder, J.I. (2000). Calcium channels activated by hydrogen peroxide mediate abscisic acid signalling in guard cells. Nature 406, 731-734.
Rook, F., Corke, F., Card, R., Munz, G., Smith, C., and Bevan, M.W. (2001). Impaired sucrose-induction mutants reveal the modulation of sugar-induced starch biosynthetic gene expression by abscisic acid signalling. Plant J 26, 421-433.
Saito, S., Hirai, N., Matsumoto, C., Ohigashi, H., Ohta, D., Sakata, K., and Mizutani, M. (2004). Arabidopsis CYP707As encode (+)-abscisic acid 8'-hydroxylase, a key enzyme in the oxidative catabolism of abscisic acid. Plant Physiol 134, 1439-1449.
Santiago, J., Dupeux, F., Round, A., Antoni, R., Park, S.Y., Jamin, M., Cutler, S.R., Rodriguez, P.L., and Marquez, J.A. (2009a). The abscisic acid receptor PYR1 in complex with abscisic acid. Nature 462, 665-668.
Santiago, J., Rodrigues, A., Saez, A., Rubio, S., Antoni, R., Dupeux, F., Park, S.Y., Marquez, J.A., Cutler, S.R., and Rodriguez, P.L. (2009b). Modulation of drought resistance by the abscisic acid receptor PYL5 through inhibition of clade A PP2Cs. Plant J 60, 575-588.
Sato, A., Sato, Y., Fukao, Y., Fujiwara, M., Umezawa, T., Shinozaki, K., Hibi, T., Taniguchi, M., Miyake, H., Goto, D.B., and Uozumi, N. (2009). Threonine at position 306 of the KAT1 potassium channel is essential for channel activity and is a target site for ABA-activated SnRK2/OST1/SnRK2.6 protein kinase. Biochem J 424, 439-448.
Schwartz, S.H., and Zeevaart, J.A.D. (2010). Abscisic Acid Biosynthesis and Metabolism. Plant Hormones, P.J. Davies, ed (Springer Netherlands), pp. 137-155.
Seo, M., Peeters, A.J., Koiwai, H., Oritani, T., Marion-Poll, A., Zeevaart, J.A., Koornneef, M., Kamiya, Y., and Koshiba, T. (2000). The Arabidopsis aldehyde oxidase 3 (AAO3) gene product catalyzes the final step in abscisic acid biosynthesis in leaves. Proc Natl Acad Sci U S A 97, 12908-12913.
Shinozaki, K., Yamaguchi-Shinozaki, K., and Seki, M. (2003). Regulatory network of gene expression in the drought and cold stress responses. Curr Opin Plant Biol 6, 410-417.
Sirichandra, C., Gu, D., Hu, H.C., Davanture, M., Lee, S., Djaoui, M., Valot, B., Zivy, M., Leung, J., Merlot, S., and Kwak, J.M. (2009). Phosphorylation of the Arabidopsis AtrbohF NADPH oxidase by OST1 protein kinase. FEBS Lett 583, 2982-2986.
Sun, L.R., Hao, F.S., Lu, B.S., and Ma, L.Y. (2010). AtNOA1 modulates nitric oxide accumulation and stomatal closure induced by salicylic acid in Arabidopsis. Plant Signal Behav 5, 1022-1024.
Umezawa, T., Nakashima, K., Miyakawa, T., Kuromori, T., Tanokura, M., Shinozaki, K., and Yamaguchi-Shinozaki, K. (2010). Molecular basis of the core regulatory network in ABA responses: sensing, signaling and transport. Plant Cell Physiol 51, 1821-1839.
Uno, Y., Furihata, T., Abe, H., Yoshida, R., Shinozaki, K., and Yamaguchi-Shinozaki, K. (2000). Arabidopsis basic leucine zipper transcription factors involved in an abscisic acid-dependent signal transduction pathway under drought and high-salinity conditions. Proc Natl Acad Sci U S A 97, 11632-11637.
Walker-Simmons, M.K., Anderberg, R.J., Rose, P.A., and Abrams, S.R. (1992). Optically pure abscisic Acid analogs-tools for relating germination inhibition and gene expression in wheat embryos. Plant Physiol 99, 501-507.
Yin, P., Fan, H., Hao, Q., Yuan, X., Wu, D., Pang, Y., Yan, C., Li, W., Wang, J., and Yan, N. (2009). Structural insights into the mechanism of abscisic acid signaling by PYL proteins. Nat Struct Mol Biol 16, 1230-1236.
Zaharia, L., Walker-Simmon, M., Rodriguez, C., and Abrams, S. (2005). Chemistry of Abscisic Acid, Abscisic Acid Catabolites and Analogs. Journal of Plant Growth Regulation 24, 274-284.
Zhao, X., Qiao, X.R., Yuan, J., Ma, X.F., and Zhang, X. (2012). Nitric oxide inhibits blue light-induced stomatal opening by regulating the K+ influx in guard cells. Plant Sci 184, 29-35.
Zhou, R., Cutler, A.J., Ambrose, S.J., Galka, M.M., Nelson, K.M., Squires, T.M., Loewen, M.K., Jadhav, A.S., Ross, A.R., Taylor, D.C., and Abrams, S.R. (2004). A new abscisic acid catabolic pathway. Plant Physiol 134, 361-369.
Zou, J., Abrams, G.D., Barton, D.L., Taylor, D.C., Pomeroy, M.K., and Abrams, S.R. (1995). Induction of Lipid and Oleosin Biosynthesis by (+)-Abscisic Acid and Its Metabolites in Microspore-Derived Embryos of Brassica napus L.cv Reston (Biological Responses in the Presence of 8'-Hydroxyabscisic Acid). Plant Physiol 108, 563-571.
陳勁中. (2009). 阿拉伯芥新穎蛋白質 HHP1 之功能研究. 國立臺灣大學微生物與生化學研究所博士論文.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/7018-
dc.description.abstract為瞭解 HHP1 在離層酸作用的影響及方式,測試突變株 hhp1-1氣孔對避光處理、離層酸及其下游訊息分子 H2O2 與一氧化氮的反應,以及離層酸處理主根生長受抑制的程度。氣孔行為實驗中,避光、離層酸、H2O2 或一氧化氮處理之下,野生株及hhp1-1的氣孔均產生反應而縮小。然而,在光照及避光的處理之下,hhp1-1 氣孔寬度都較野生株為大,顯示 hhp1-1 的氣孔可能有開口較大現象,推測 HHP1影響保衛細胞離子進出平衡。
三次獨立實驗以離層酸處理的結果再現性不佳,尚不能推測 hhp1-1 的氣孔行為對離層酸敏感性有何不同。而離層酸訊息傳遞的兩個下游訊息分子H2O2及一氧化氮造成野生株及 hhp1-1 氣孔開口縮小的現象並無顯著差異,因此推測,如果 hhp1-1 的氣孔行為對離層酸較不敏感,HHP1應是作用於H2O2 及一氧化氮上游的訊息傳遞。
主根生長實驗則發現 hhp1-1受離層酸抑制明顯小野生株,因此推測HHP1促進離層酸抑制主根生長的生理作用。
本論文的主要發現在於 HHP1 可能參與離層酸抑制主根生長調控,及在離層酸引發氣孔關閉訊息傳導路徑,HHP1 可能作用於 H2O2 和一氧化氮上游。然而離層酸處理則因實驗再現性較不穩定,無法推測 hhp1-1 氣孔是否有不同的敏感性。而 HHP1 如何調控離層酸訊息傳遞的生理作用,有待後續實驗釐清。
zh_TW
dc.description.abstractTo understand the involvement of HHP1 in ABA responses in this study, stomatal behavior was examined using hhp1-1 with known stomatal regulator, hydrogen peroxide and nitric oxide. The inhibition of primary root growth by ABA was also examined.
Dark-, ABA-, H2O2-, or NO-induced stomatal closure were observed in both wild-type and hhp1-1. The mutant hhp1-1 was found to have larger stomatal aperture width than wild-type in the absence of regulators, indicating the altered balance of ion strength in guard cells by the loss of HHP1.
The three independent experiments of ABA treatment didn’t show good consistency, so it would not be able to tell whether hhp1-1 stoma has different sensitivity to ABA. The induced stomatal closure by the treatment of H2O2 and NO did not show significant differences between wild-type and hhp1-1 plants. It is suggested that HHP1 acts upstream of H2O2 and NO in the signaling of ABA in guard cells, if hhp1-1 does have less sensitivity in stomatal ABA response.
It was also found that the elongation of primary roots inhibited by ABA is less severe in hhp1-1 mutants than in wild-type plants, indicating that HHP1 promotes the ABA-induced inhibition of primary root elongation.
HHP1 might be involved in ABA-inhibited primary root growth, and HHP1 might act upstream of H2O2 and NO in ABA response in guard cells. Due to the inconsistency in the results of ABA-treated stomatal behavior, the sensitivity of hhp1-1 to ABA in stomatal response was unknown. Improvement is still required to further investigate how HHP1 regulates the ABA responses in plants.
en
dc.description.provenanceMade available in DSpace on 2021-05-17T09:24:09Z (GMT). No. of bitstreams: 1
ntu-101-R99b22017-1.pdf: 8221137 bytes, checksum: 1fbf9eab9b542039fe124f0648278446 (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents中文摘要 I
Abstract II
縮寫表 V
圖目錄 VII
表目錄 IX
第一章 緒論 10
1.1. 離層酸─植物生長調節因子 10
1.1.1. 離層酸分子性質 10
1.1.2. 離層酸訊息傳遞層次 16
1.1.3. 氣孔行為調控 22
1.1.4. 離層酸調控主根生長 26
1.2. HHP蛋白質家族與 HHP1 27
1.2.1. 表現 HHP1之組織與誘導表現的因子 27
1.2.2. HHP1對離層酸及冷逆境訊息傳遞的影響 28
1.2.3. HHP1 與離層酸相關之生理反應 29
1.3. 研究方向 31
第二章 材料與方法 32
2.1. 植物材料 32
2.1.1. 阿拉伯芥 Arabidopsis thaliana 32
2.1.2. HHP1基因互補之植株─ c-hhp1-1 32
2.2. 試劑 33
2.2.1. 離層酸 33
2.2.2. 過氧化氫 33
2.2.3. 亞硝基氰化鈉 33
2.2.4. Stomatal opening buffer 34
2.3. 阿拉伯芥種植 34
2.3.1. 培養介質 34
2.3.2. 生長環境 35
2.3.3. 種子表面滅菌處理及發芽同步化 35
2.3.4. 種子與幼苗移植 35
2.4. 氣孔關閉實驗 36
2.4.1. 植物下表皮材料 36
2.4.2. 下表皮處理 36
2.4.3. 氣孔開口測量 38
2.5. 離層酸主根生長抑制實驗 38
2.6. 實驗結果統計與分析 39
第三章 結果與討論 40
3.1. 氣孔行為實驗 40
3.1.1. 光照下 hhp1-1 氣孔寬度大於野生株 40
3.1.2. 黑暗中 hhp1-1氣孔寬度大於野生株氣孔 40
3.1.3. H2O2 處理 hhp1-1氣孔寬度與野生株氣孔相近 40
3.1.4. SNP 處理 hhp1-1氣孔寬度與野生株植株氣孔相近 41
3.1.5. ABA 處理 hhp1-1氣孔寬度可能與野生株氣孔相近 41
3.1.6. hhp1-1與野生株在氣孔行為的差異 42
3.2. hhp1-1主根生長對於離層酸之抑制作用較野生株不敏感 43
第四章 未來展望 44
4.1. 植株氣孔行為探討 44
4.2. 訊息傳遞物含量及氣孔反應分析 44
4.3. In vivo HHP1蛋白質特性探討 44
4.4. 離層酸訊息傳遞成員組成探討 45
第五章 圖與表 46
5.1. 氣孔行為實驗 46
5.2. 主根生長抑制實驗 57
參考文獻 58
問答集 66
dc.language.isozh-TW
dc.title阿拉伯芥 Heptahelical Protein 1參與離層酸造成之氣孔及主根反應研究zh_TW
dc.titleStudies on the Involvement of Arabidopsis thaliana Heptahelical Protein 1 in Stoma and Primary Root Responses to Abscisic Aciden
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.oralexamcommittee李平篤,李昆達,黃楓婷,廖憶純
dc.subject.keyword離層酸,訊息傳遞,氣孔,HHP1,一氧化氮,阿拉伯芥,zh_TW
dc.subject.keywordabscisic acid,signal transduction,stoma,heptahelical protein 1,nitric oxide,Arabidopsis thaliana,en
dc.relation.page69
dc.rights.note同意授權(全球公開)
dc.date.accepted2012-08-20
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生化科技學系zh_TW
顯示於系所單位:生化科技學系

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf8.03 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved