請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70186完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳永祥 | |
| dc.contributor.author | Wen-Huai Tsao | en |
| dc.contributor.author | 曹文懷 | zh_TW |
| dc.date.accessioned | 2021-06-17T03:48:15Z | - |
| dc.date.available | 2018-02-26 | |
| dc.date.copyright | 2018-02-26 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2018-01-24 | |
| dc.identifier.citation | 英文文獻:
Abramson HN. The dynamic behavior of liquids in moving containers with Application to Space Vehicle Technology. SP-106, NASA, U.S.A, 1966. Aslam M. Finite element analysis of earthquake-induced sloshing in axisymmetric tanks. International Journal for Numerical Methods in Engineering 1981; 17:159-170. API (American Petroleum Institution). API 650: welded steel tanks for oil storage. Washington, D.C., 2007. Aizawa S, Fukao Y, Minewaki S, Hayamizu Y, Abe H, Haniuda N. An experimental study on the active mass damper. Proceedings of Ninth World Conference on Earthquake Engineering 1988; 5:871-876. Amano K, Iwano R, Sibata Y. Three-dimensional analysis method for sloshing behavior and its application to FBRs. Nuclear Engineering and Design 1993; 140(3):297-308. Anderson DA, Tannehill JC, Pletcher RH. Computational fluid mechanics and heat transfer. McGraw-Hill, New York, 1984. Ayorinde EO, Warburton GB. Minimizing structural vibrations with absorbers. Earthquake Engineering and Structural Dynamics 1980; 8:219-236. Bauer HF. Oscillations of immiscible liquids in a rectangular container: A new damper for excited structures. Journal of Sound and Vibration 1984; 93(1):117-133. Brogan WL. Modern control theory. 3rd ed., Prentice Hall, New Jersey, 1991. Brebbia CA, Dominguez J. Boundary elements. McGraw-Hill, New York, 1992. Burden RL, Faires JD. Numerical Analysis. 5th ed., PWS, Boston, 1993. Bakre SV, Jangid RS. Optimum parameters of tuned mass damper for damped main system. Structural Control and Health Monitoring 2007; 14:448-470. Baines WD, Peterson EG. An investigation of flow through screens. Transactions of the ASME 1951; 73:467-79. CEN (European Committee for Standardization). Design provisions of earthquake resistance of structures, Part 4: Silos, tanks and pipelines. Eurocode 8, Brussels, 1998. Currie IG. Fundamental mechanics of fluids. 3rd ed., CRC Press, 2003. Cruse TA, Aithal R. A new integration algorithm for nearly singular BIE kernels. International Journal for Numerical Methods in Engineering 1993; 36:237-254. Chern MJ, Borthwich, AGL, Taylor RE. A pseudo-spectral sigma-transformation model of 2D nonlinear waves. Journal of Fluids and Structures 1999; 13:607-30. Cheng AH.-D and Cheng DT. Heritage and early history of the boundary element method. Engineering Analysis with Boundary Elements 2005; 29:268-302. Chaiseri P, Fujino Y, Pacheco BM, Sun LM. Interaction of tuned liquid damper (TLD) and structure-theory, experimental verification and application. Structural Engineering and Earthquake Engineering 1989; 6:273-282. Chen YH, Hwang WS, Ko CH. Numerical simulation of the three-dimensional sloshing problem by boundary element method. Journal of the Chinese Institute of Engineers 2000; 23(3):321-330. Chen YH, Hwang WS, Ko CH. Sloshing behaviors of rectangular and cylindrical liquid tanks subjected to harmonic and seismic excitations. Earthquake Engineering and Structural Dynamics 2007; 36:1701-1717. Chow SH, Hou AY, Landweber L. Hydrodynamic forces and moments acting on a body emerging from an infinite plane. Physics of Fluids 1976; 19:1439-1449. Chen YH, Hwang WS, Tsao WH. Nonlinear Sloshing Analysis by Regularized Boundary Integral Method. Journal of Engineering Mechanics 2017; 143(8):040170046. Chang JI, Lin CC. A study of storage tank accidents. Journal of Loss Prevention in the Process Industries 2006; 19:51-59. Chang PM, Lou JYK, Lutes LD. Model identification and control of a tuned liquid damper. Engineering Structures 1998; 20(3):155-163. Chang YL, Lee YT, Jiang LJ, Chen JT. Green’s functions problem of Laplace equation with spherical and prolate spheroidal boundaries by using the null-field boundary integral equation. International Journal of Computational Methods 2016; 13(5):1650020. Clough RW, Penzien J. Dynamics of structures. McGraw-Hill, New York, 1993. Crowley S, Porter R. An analysis of screen arrangement for tuned liquid damper. Journal of Fluids and Structures 2012; 34:291-309. Chang JCH, Soong TT. Structural control using active tuned mass dampers. Journal of Engineering Mechanics 1980; 106:1091-1098. Cao Y, Schultz WW, Beck RF. Three-dimension desingularized boundary integral methods for potential problems. International Journal for Numerical Methods in Fluids 1991; 12:785-803. Chen JT, Wu CS. Alternative derivations for the Poisson integral formula. International Journal of Mathematical Education in Science and Technology 2006; 37:165-185. Chen JT, Wu AC. Null-field integral equation approach for multi-inclusion problem under anti-plane shear. Journal of Applied Mechanics 2007; 74:469-487. Den Hartog JP. Mechanical vibrations. 4th ed., McGraw-Hill, New York, 1956. Dirgantara T, Aliabadi MH. Crack Growth analysis of plates Loaded by bending and tension using dual boundary element method. International Journal of Fracture 2000; 105: 27-47. Davis PJ, Robinnowitz P. Method of Numerical Integration. 2nd ed., Academic Press, 1984. Deng X, Tait MJ. Theoretical modeling of TLD with different tank geometries using linear long wave theory. Journal of Vibration and Acoustics 2009; 131(4):041014. Frahm H. Device for damping vibration of bodies. U.S. Patent 1911; 989-958. Faltinsen OM. A nonlinear theory of sloshing in rectangular tanks. Journal of Ship Research 1974; 18(4):224-241. Faltinsen OM. A numerical nonlinear method of sloshing in tanks with two-dimensional flow. Journal of Ship Research 1978; 22(3):193-202. Fediw AA, Isyumov N, Vickery BJ. Performance of a tuned sloshing water damper. Journal of Wind Engineering and Industrial Aerodynamics 1995; 56:237-47. Fairweather G, Karageorghis A. The method of fundamental solutions for elliptic boundary value problems. Advances in Computational Mathematics 1998; 9:69-95. Fujino Y, Pacheco BM, Chaiseri P, Fujii K., An experimental study on tuned liquid damper using circular containers. Journal of Structural Engineering 1988a; 34:603-616. Fujino Y, Pacheco BM, Chaiseri P, Sun LM. Parametric studies on tuned liquid damper (TLD) using circular containers by free-oscillation experiments. Structural Engineering/Earthquake Engineering, JSCE Proceedings 1988b; 5:381-391. Fujino Y, Pacheco BM, Chaiseri P, Sun L, Koga K. Understanding of TLD properties based on TMD analogy. Journal of Structural Engineering 1990; 36(2):577-590. Fujino Y, Sun LM. Vibration control by multiple tuned liquid dampers (MTLDs). Journal of Structural Engineering 1993; 119(12):3482-3502. Fujino Y, Sun LM, Pacheco BM, Chaiseri P. Tuned liquid damper (TLD) for suppressing horizontal motion of structures. Journal of Engineering Mechanics 1992; 118(10):2017-2030. Faltinsen OM, Timokha AN. Sloshing. Cambridge University Press, New York, 2005. Faltinsen OM, Timokha AN. Natural sloshing frequencies and modes in a rectangular tank with a slat type screen. Journal of Sound and Vibration 2011; 330:1490-1503. Gates WE. Elevated and ground-supported steel storage tanks. Reconnaissance report, Imperial County, California Earthquake of October 15, 1979. Earthquake Engineering Research Institute, Oakland, 1980. Guiggiani M. The evaluation of Cauchy principal value integrals in the boundary element method-a review. Mathematical and Computer Modelling 1991; 15:175-184. Ghosh A, Basu B. A closed-form optimal tuning criterion for TMD in damped structures. Structural Control and Health Monitoring 2005; 14:681-692. Guiggiani M, Casalini P. Direct computation of Cauchy principal value integrals in advanced boundary elements. International Journal for Numerical Methods in Engineering 1987; 24:1711-20. Guiggiani M, Casalini P. Rigid-body translation with curved boundary elements. Applied Mathematical Modelling 1989; 13:365-368. Gu Y, Chen W, Zhang C. Stress analysis for thin multilayered coating systems using a sinh transformed boundary element method. International Journal of Solids and Structures 2013a; 50:3460-3471. Gu Y, Chen W, Zhang C. The sinh transformation for evaluating nearly singular boundary element integrals over high-order geometry elements. Engineering Analysis with Boundary Elements 2013b; 37:301-308. Gu Y, Chen W, Zhang J. Investigation on near-boundary solutions by singular boundary method. Engineering Analysis with Boundary Elements 2012; 36:1173-1182. Gu Y, Chen W, Zhang B, Qu W. Two general algorithms for nearly singular integrals in two dimensional anisotropic boundary element method. Computational Mechanics 2014; 53:1223-1234. Gu Y, Gao HW, Chen W, Zhang CZ.A general algorithm for evaluating nearly singular integrals in anisotropic three-dimensional boundary element analysis. Computer Methods in Applied Mechanics and Engineering 2016; 308:483-498. Graham EW, Rodriguez AM. The characteristics of fuel motion which affect airplane dynamics. Journal of Applied Mechanics 1952; 19:381-388. Gardarsson S, Yeh H, Reed D. Behavior of Sloped-Bottom Tuned Liquid Dampers. Journal of Engineering Mechanics 2001; 127(3):266-271. Gao XW, Yang K, Wang J. An adaptive element subdivision technique for evaluation of various 2D singular boundary integrals. Engineering Analysis with Boundary Elements 2008; 32:692-696. Hanson RD. Behavior of liquid-storage tanks, the Great Alaska Earthquake of 1964. Proceedings of the National Academy of Science; 7:331-339, Washington, 1973. Hall JF. Northridge Earthquake of January 17, 1994, reconnaissance report. Earthquake Engineering Research Institute, Oakland, 1995. Hwang WS. A boundary node method for airfoils based on Dirichlet condition. Computer methods in applied mechanics and engineering 2000; 190:1679-1688. Hwang WS. A regularized boundary integral method in potential theory. Computer methods in applied mechanics and engineering 2013; 259:123-129. Housner GW, Bergman LA, Caughey TK, Chassiakos AG, Claus RO, Masri SF, Skelton RE, Soong TT, Spencer BF, Yao JTP. Structural control: past, present, and future. Journal of Engineering Mechanics 1997; 123(9):897-971. Hrovat D, Barak P, Robins M. Semi-active versus passive or active tuned mass dampers for structural control. Journal of Engineering Mechanics 1983; 109:691-701. Huang Q, Cruse TA. Some notes on singular integral techniques in boundary element analysis. International Journal for Numerical Methods in Engineering 1993; 36:2643-2659. Hwang WS, Huang YY. Non-singular direct formulation of boundary integral equations for potential flows. International Journal for Numerical Methods in Fluids 1998; 26:627-635. Hwang WS, Hung LP, Ko CH. Non-singular boundary integral formulations for plane interior potential problems. International Journal for Numerical Methods in Engineering 2002; 53:1751-1762. Hirt CW, Nichols BD. Volume of fluid (VOF) method for the dynamics of free boundaries. Journal of Computational Physics 1981; 39(1):201-225. Han PS, Olson MS. An adaptive boundary element method. International Journal for Numerical Methods in Engineering 1987; 24:1187-1202. Hess JL, Smith AM. Calculation of nonlifting potential flow about arbitrary three-dimensional smooth bodies. Journal of Ship Research 1964; 7:22-44. Ibrahim RA. Liquid sloshing dynamics: theory and applications. Cambridge University Press, New York, 2005. Jaswon MA. Integral equation methods in potential theory I. Proceeding of the Royal Society. Lond. A275:23-32, 1963. Jia J. Modern Earthquake Engineering: Offshore and Land-based Structures. 1st ed., Springer, 2016. Jun L, Beer G, Meek L. The application of double-exponential formulas in the boundary element method, in C.A. Brebbia and G. Maier, (eds.), Boundary Elements 1985; 1:1029-1042; Proc. 7th Int. Cont, Lake Como, Italy, Springer CMP, Berlin, Heidelberg, New York. Johnston PR, Elliott D. A sinh transformation for evaluating nearly singular boundary element integrals. International Journal for Numerical Methods in Engineering 2005; 62:564-578. Johnson RL, Fairweather G. The method of fundamental solutions for problem in potential flow. Applied Mathematical Modelling 1984; 8:265-270. Jin H, Liu Y, Li HJ. Experimental study on sloshing in a tank with an inner horizontal perforated plate. Ocean Engineering 2014; 82:75-84. Ju YK, Yoon SW, Kim SD. Experimental evaluation of a tuned liquid damper system. Structures and Buildings 2004; 157:251-262. Komatsu K. Non-linear sloshing analysis of liquid in tanks with arbitrary geometries. International Journal of Non-Linear Mechanics 1987; 22(3):193-207. Kaneko S, Ishikawa M. Modeling of tuned liquid damper with submerged nets. Journal of Pressure Vessel Technology 1999; 121(3):334-343. Katz J, Plotkin A, Low-speed Aerodynamics: from Wing Theory to Panel Methods. McGraw-Hill. New York, 1991. Kumar A, Sinhamahapatra KP. Effect of porous internal components on liquid slosh dynamics. Journal of Porous Media 2013; 16(8):725-747. Kumar A, Sinhamahapatra KP. Dynamics of rectangular tank with perforated vertical baffle. Ocean Engineering 2016; 126:384-401. Lund LV. Lifeline utilities lessons, Northridge Earthquake. Proceedings of the Fourth U.S. Conference on Lifeline Earthquake Engineering; 676-683, New York, 1995. Lalli F. On the accuracy of the desingularized boundary integral method in free surface flow problems. International Journal for Numerical Methods in Fluids 1997; 25:1163-84. Li WW, Chen W. Boundary Layer Effect in Regularized Meshless Method for Laplace Equation. Computer Modeling in Engineering and Sciences 2014; 100:347-362. Liu PF, Hsu HW, Lean MH. Applications of boundary integral equation methods for two-dimensional non-linear water wave problems. International Journal for Numerical Methods in Fluids 1992; 15:1119-1141. Lee SJ, Kim MH, Lee DH, Kim JW, Kim YH. The effects of LNG-tank sloshing on the global motions of LNG carriers. Ocean Engineering 2007; 34(1):10-20. Liu D, Lin P. A numerical study of three-dimensional liquid sloshing in tanks. Journal of Computational Physics 2008; 227:3921-3939. Landweber L, Macagno M. Irrotational flow about ship forms. IIHR Report 123. 1969. University of Iowa, Iowa City, Iowa. Love JS, Tait MJ. Equivalent linearized mechanical model for tuned liquid dampers of arbitrary tank shape. Journal of Fluids Engineering 2011; 133:061105-1. Lachat JC, Watson JO. Effective numerical treatment of boundary integral equations: a formulation for three-dimensional elastostatics. International Journal for Numerical Methods in Engineering 1976; 10:991-1005. Miles JW. Surface-wave damping in closed basins. Proceedings, Royal Society of London, A297, 459-475, 1967. Manos GC, Clough RW. Tank damage during the May 1983 Coalinga Earthquake. Journal of Earthquake Engineering and Structural Dynamics 1985; 1(4):449-466. Machane R, Canot E. High-order schemes in boundary element methods for transient non-linear free surface problems. International Journal for Numerical Methods in Fluids 1997; 24(10):1049-1072. Maravani M, Hamed MS. Numerical modeling of sloshing motion in a tuned liquid damper outfitted with a submerged slat screen. International Journal for Numerical Methods in Fluids 2011; 65:834-855. Modi VJ, Sun JLC, Shupe LS, Solyomvari AS. Nutation damping of wind induced instabilities, in: Kramer C, Gerhardt HJ, Ruscheweyh H, Hirsch G, (Eds), Proceedings of 4th Colloq. on Industrial Aerodynamics, Aachen, Germany, 1980; 2:270-282. Modi VJ, Welt F. Damping of wind induced oscillations through liquid sloshing. Journal of Wind Engineering and Industrial Aerodynamics 1988; 30:85-94. Malhotra PK, Wenk T, Wieland M. Simple procedure for seismic analysis of liquid-storage tanks. Structural Engineering International 2000; 197-201. Nakayama T. Boundary element analysis of nonlinear water wave problems. International Journal for Numerical Methods in Engineering 1983; 19:953-970. Nagashima I. Optimal displacement feedback control law for active tuned mass damper. Earthquake Engineering and Structural Dynamics 2001; 30:1221-1242. Nayak SK, Biswal KC. Fluid damping in rectangular tank fitted with various internal objects-an experimental investigation. Ocean Engineering 2015; 108:552-562. Nagarajaiah S, Varadarajan N. Novel semiactive variable stiffness tuned mass damper with real time tuning capacity. Proceedings of 13th Engineering Mechanics Conference, Reston,VA, 2000. Nakayama T, Washizu K. The boundary element method applied to the analysis of two-dimensional nonlinear sloshing problems. International Journal for Numerical Methods in Engineering 1981; 17(11):1631-1646. Okamoto T, Kawahara M. Two-dimensional sloshing analysis by the arbitrary Lagrange–Eulerian finite element method. Structural Engineering and Earthquake Engineering 1992; 8(4):207-216. Olson DE, Reed DA. A nonlinear numerical model for sloped-bottom tuned liquid dampers. Earthquake Engineering & Structural Dynamics 2001; 30:731-743. Peek R, Jennings PC. Simplified analysis of unanchored tanks. Journal of Earthquake Engineering and Structural Dynamics 1988; 16(7):1073-1085. Ramaswamy B, Kawahara M, Nakayama T. Lagrangian finite element method for the analysis of two-dimensional sloshing problems. International Journal for Numerical Methods in Fluids 1986; 6(9):659-670. Ruiz RO, Lopez-Garcia D, Taflanidis AA. Modeling and experimental validation of a new type of tuned liquid damper. Acta Mechanica 2016, 227(11):3275-3294. Symm GT. Integral equation methods in potential theory II. Proceeding of the Royal Society. Lond. A275:33-46, 1963. Saranen J. The modified quadrature method for logarithmic-kernel integral equations on closed curves. Journal of Integral Equations and Applications 1991; 3:575-600. Soong TT, Dargush GF. Passive Energy Dissipation Systems in Structural Engineering. 1st ed., Wiley, 1997. Sun LM, Fujino Y. A Semi-analytical model for tuned liquid damper (TLD) with wave breaking. Journal of Fluids and Structures 1994; 8:471-488. Sun LM, Fujino Y, Chaiseri P, Pacheco BM. The properties of tuned liquid dampers using a TMD analogy. Earthquake Engineering & Structural Dynamics 1995; 24:967-976. Sheu TWH, Lee SM. Large-amplitude sloshing in an oil tanker with baffle-plate drilled holes. International Journal of Computational Fluid Dynamics 1998; 10(1):45-60. Sladek V, Sladek J. Singular integrals in boundary element methods. CMP, Southampton, 1998. Su TC, Wang Y. Numerical simulation of three-dimensional large amplitude liquid sloshing in cylinddrical tanks subjected to arbitrary excitations. Flow-Structure Vibration and Sloshing 1990; 191:127-148. Tait MJ. Modelling and preliminary design of a structure-TLD system. Engineering Structures 2008; 30:2644-2655. Turnbull MS, Borthwick AGL, Taylor RE. Wave-structure interaction using coupled structured–unstructured finite element meshes. Applied Ocean Research 2003; 25:63-77. Tait MJ, El Damatty AA, Isyumov N. An investigation of tuned liquid dampers equipped with damping screens under 2D excitation. Earthquake Engineering and Structural Dynamics 2005a; 34:719-735. Tait MJ, El Damatty AA, Isyumov N, Siddique MR. Numerical flow models to simulate tuned liquid dampers (TLD) with slat screens. Journal of Fluids and Structures 2005b; 20:1007-1023. Tait MJ, Deng X. The performance of structure-tuned liquid damper systems with different tank geometries. Structural Control and Health Monitoring 2010; 17:254-277. Tait MJ, Isyumov N, El Damatty AA. Performance of tuned liquid dampers. Journal of Engineering Mechanics 2008; 134(5):417-427. Tamura Y, Fujii K, Ohtsuki K, Wakahara T, Kohsaka R. Effectiveness of tuned liquid dampers under wind excitation. Engineering Structures 1995; 17(9):609-621. Tsao WH, Hwang WS. Regularized boundary integral methods for three-dimensional potential flows. Engineering Analysis with Boundary Elements 2017; 77:49-60. Tait MJ, Isyumov N, El Damatty AA. Performance of tuned liquid dampers. Journal of Engineering Mechanics 2008; 134(5):417-427. Tamura Y, Kohsaka R, Nakamura O, Miyashita K, Modi VJ. Wind induced responses of an airport tower-Efficiency of tuned liquid damper. Journal of Wind Engineering and Industrial Aerodynamics 1996; 65:121-131. Tomishima Y, Yada T. An improvement of boundary element method in the evaluation of boundary stresses. The Japan Society for Technology of Plasticity 1987; 28:805-811. U.S. Department of Commerce. Earthquake damage to water and swage facilities, San Fernando Earthquake of February 9, 1971. Proceedings of the National Oceanic and Atmospheric Administration; 2:135-138, Washington, 1973. Veletsos AS. Seismic response and design of liquid storage tanks. Guidelines for the Seismic Design of Oil and Gas Pipeline Systems 1984; 255-370. Waterman P. Matrix formulation of electromagnetics scattering. Proceedings of the IEEE 1965; 805-812. Webster WC. The flow about arbitrary, three-dimensional smooth bodies. Journal of Ship Research 1975; 19:206-18. Warburton GB. Optimum absorber parameters for various combinations of response and excitation parameters. Earthquake Engineering and Structural Dynamics 1982; 10:381-401. Wakahara T. Wind induced response of TLD-Structure coupled system considering nonlinearity of liquid motion. Shimizu Technical Research Bulletin 1993; 12:41-52. Warburton GB, Ayorinde EO. Optimum absorber parameters for simple systems. Earthquake Engineering and Structural Dynamics 1980; 8:197-217. Wu NJ, Chang KA. Simulation of free-surface waves in liquid sloshing using a domain-type meshless method. International Journal for Numerical Methods in Fluids 2011; 67:269-288. Wu CH, Chen BF. Transient response of sloshing fluid in a three dimensional tank. Journal of Marine Science and Technology 2012; 20(1):26-37. Wu GX, Taylor RE. Finite element analysis of two-dimensional non-linear transient water waves. Applied Ocean Research 1994; 16(6):363-372. Wu NJ, Hsiao SC, Wu HL. Mesh-free simulation of liquid sloshing subjected to harmonic excitations. Engineering Analysis with Boundary Elements 2016; 64:90-100. Wakahara T, Ohyama T, Fujii K. Suppression of Wind-Induced Vibration of a Tall Building using Tuned Liquid Damper. Journal of Wind Engineering and Industrial Aerodynamics 1992; 43:1895-1906. Warnitchai P, Pinkaew T. Modelling of liquid sloshing in rectangular tanks with flow-dampening devices. Engineering Structures 1998; 20(7):593-600. Wu NJ, Tsay TK, Young DL. Computation of Nonlinear Free-Surface Flows by a Meshless Numerical Method. Journal of Waterway, Port, Coastal, and Ocean Engineering 2008; 134(2):97-103. Ye WJ. A new transformation technique for evaluating nearly singular integrals. Computational Mechanics 2008; 42:457-466. Young DL, Hwang WS, Tsai CC, Lu HL. Accuracy of desingularized boundary integral equations for plane exterior potential problems. Engineering Analysis with Boundary Elements 2005; 29:224-231. You KP, Kim YM, Yang CM, Hong DP. Increasing damping ratios in tuned liquid damper using damping bars. Key Engineering Materials 2007; 353-358(4):2652-2655. Zahrai SM, Abbasi S, Samali B, Vrcelj, Z.Experimental investigation of utilizing TLD with baffles in a scaled down 5-story benchmark building. Journal of fluids and structures 2012; 28:194-210. Zhang Y, Gu Y, Chen JT. Boundary element analysis of the thermal behaviour in thin-coated cutting tools, Engineering Analysis with Boundary Elements 2010; 34:775-784. Zhang YM, Gu Y, Chen JT. Boundary element analysis of 2D thin walled structures with high-order geometry elements using transformation. Engineering Analysis with Boundary Elements 2011a; 35:581-586. Zhang YM, Gu Y, Chen JT. A non-linear transformation applied to boundary layer effect and thin-body effect in BEM for 2D potential problems. Journal of the Chinese Institute of Engineers 2011b; 34:905-916. Zhang YM, Gu Y, Chen JT. Stress analysis for multilayered coating systems using semi-analytical BEM with geometric non-linearities. Computational Mechanics 2011c; 47:493-504. Zhang YM, Li XC, Sladek V, Sladek J, Gao XW. Computation of nearly singular integrals in 3D BEM. Engineering Analysis with Boundary Elements 2014; 48:32-42. Zhou HL, Niu ZR, Cheng CZ, Guan ZW. Analytical integral algorithm in the BEM for orthotropic potential problems of thin bodies. Engineering Analysis with Boundary Elements 2007; 31:739-748. Zhou HL, Niu ZR, Cheng CZ, Guan ZW. Analytical integral algorithm applied to boundary layer effect and thin body effect in BEM for anisotropic potential problems. Computers & Structures 2008; 86:1656-1671. Zhang YM, Qu WZ, Chen JT. BEM analysis of thin structures for thermoelastic problems. Engineering Analysis with Boundary Elements 2013; 37:441-52. Zhang YM, Sun CL. A general algorithm for the numerical evaluation of nearly singular boundary integrals in the equivalent non-singular BIEs with indirect unknowns. Journal of the Chinese institute of engineers 2008; 31:437-447. Zhang YM, Sun FL, Young DL, Chen W, Gu Y. Average source boundary node method for potential problems. Engineering Analysis with Boundary Elements 2016; 70:114-125. 中文文獻: 王振平。應用諧調質量阻尼器及諧調液體阻尼器於台北101大樓減振之探討。國立台灣大學土木工程學研究所碩士論文,台北,2008。 吳軒宇。應用諧調質量阻尼器及諧調液柱阻尼器於台北101大樓減振之可行性探討。國立台灣大學土木工程學研究所碩士論文,台北,2007。 林邦駿。應用商用結構分析程式研討U型管液體阻尼器對高樓結構減震之效果。國立台灣大學土木工程學研究所碩士論文,台北,2004。 洪立萍。應用邊界積分法求解二維勢流場問題。國立臺灣大學造船及海洋工程學硏究所碩士論文,台北,2000。 葛家豪。邊界元素法對三維水沖激問題之數值模擬。國立臺灣大學造船及海洋工程學硏究所碩士論文,台北,1998。 葛家豪。液體與結構互制作用理論及其在液體儲油槽及諧調液體阻尼器之應用研究。國立台灣大學土木工程學研究所博士論文,台北,2003。 何明錦,甘錫瀅,謝紹松。台北101大樓結構工程規劃設計紀錄。內政部建築研究所研究報告,2003。 陳永祥、黃維信、王振平、葛家豪。應用諧調液體阻尼器於台北101大樓減振之探討。中國土木水利工程學刊2011; 23(3):275-286。 蔡益超、陳瑞華、項維邦。建築物風力規範條文、解說及示範例之研訂。內政部建築研究所成果報告,1996。 鍾立來、王彥博、楊創盛。結構動力數值分析之穩定性及精確度。中華民國結構工程學會,結構工程 1996; 11(4):55-66。 建築物耐震設計規範及解說。內政部營建署,台北,2011。 建築物耐風設計規範及解說。內政部營建署,台北,2014。 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70186 | - |
| dc.description.abstract | 本文以正規化邊界積分法(regularized boundary integral method, RBIM)模擬液體於二維矩形水槽及三維圓柱形水槽內之非線性沖激(sloshing)行為,以及諧調液體阻尼器(tuned liquid damper, TLD)之應用。沖激問題可視為勢流場(potential flow)中之混和型邊界值問題(mixed type boundary value problem),並由正規化邊界積分法求解之。因利用消除補償技巧(subtracting and adding-back technique),於邊界積分式中減去特定積分式,再以等價之積分式補償,以消除奇異積分(singular integral)及近鄰奇異積分(nearly singular integral),故稱正規化。相較於傳統邊界元素法(boundary element method, BEM),正規化邊界積分法較為準確、穩定及可靠,並透過直接的演算法達成高效率計算。
求得邊界上未知物理量後,利用拉格朗日(Lagragian)座標描述法追蹤自由液面運動,再由伯努力方程式(Bernoulli equation)求得槽壁上的壓力分佈,其槽底合力可視為施加於結構之外力,以此模擬液體與結構的互制行為(liquid-structure interaction)。最後藉由狀態空間法(state-space method),求解液體與結構互制之運動方程式,分析諧調液體阻尼器的動力特徵與減震效果。 為模擬液體阻尼器之消能機制,自由液面之動力邊界條件增加一項與速度相關之線性阻尼,於此稱為人工阻尼,其人工阻尼係數(artificial damping coefficient)係根據試驗求得。以單自由度(Single-degree-of-freedom, SDOF)之單擺結構為例,參考附加諧調液體阻尼器之主結構位移的頻率響應函數(frequency response function),追求設計參數的最佳化。另外,使用等效諧調質量阻尼器模擬,驗證數值方法的適用性,並討論與諧調質量阻尼器(tuned mass damper, TMD)之間的差異與優劣。最後,將研究成果應用於台北101,展現諧調液體阻尼器的經濟性與實用性。本文所使用的理論基礎與數值方法,經過實驗驗證,顯示了良好的準確性、穩定性、可靠性及實用性。 | zh_TW |
| dc.description.abstract | The nonlinear sloshing simulation by the regularized boundary integral method (BIM) and its application on two-dimensional (2D) rectangular and three-dimensional (3D) cylindrical tuned liquid dampers (TLD) are studied. Based on potential flow theory, the sloshing problems can be referred to the boundary value problem (BVP) with mixed type boundary condition, which can be solved by RBIM. By using the subtracting and adding-back technique, several identities are utilized to eliminate the singularities or near-singularities of surface integrals, and then the equivalent integrals are compensated to obtain the regularized boundary integral equation (BIE), therefore it is called as regularization procedure. Compared to traditional boundary element method (BEM), it is not only more accurate and stable to analyze the sloshing problems, but also more efficient due to the simpler algorithm.
When liquid is excited, the free surface motion can be acquired by the Taylor series expansion (TSE) through the Lagrangian description after solving the physical unknowns. The resultant force obtained by summing the pressure on walls from Bernoulli equation, can be regarded as an external force applied to the structure. Therefore the interaction model between liquid and structure can be established to analyze the dynamic responses of the structure and TLD by the state space method. In order to simulate the damping mechanism of TLD, the linear proportional damping term, which is called as artificial damping, is introduced to the dynamic boundary condition on the free surface. Several small-scaled model tests, including harmonic and earthquake excitations, on a shaking table are carried out to verify the artificial damping coefficient for fresh-water TLD or TLD equipped with vertical screens. Therefore the dynamic characteristic of TLD and the optimal design parameter could be drawn by comparing the frequency responses of a single-degree-of-freedom (SDOF) system. On the other hand, the simple equivalent TLD model is employed and then the results by both models are compared with those of tuned mass damper (TMD). At last, the performances of TLD on Taipei 101 are demonstrated to show its advantages of economy and applicability. The fundamental theory and numerical method used in this study shows good agreement with the experimental results, and present the excellent accuracy, stability, practicality and reliability. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T03:48:15Z (GMT). No. of bitstreams: 1 ntu-107-F98521208-1.pdf: 6504680 bytes, checksum: bde79638f4919a7f425e3fa24e77098a (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | 誌 謝 I
摘 要 II Abstract IV 目 錄 VI 圖目錄 IX 表目錄 XVII 1 導論 1 1.1 研究動機 1 1.2 文獻回顧 3 (1) 邊界積分法 3 (2) 液體沖激行為 7 (3) 液體與結構間互制作用與諧調液體阻尼器 8 1.3 研究方法與步驟 12 2 二維矩形槽之液體沖激問題 13 2.1控制方程式、邊界條件及液體阻尼模擬 13 2.2 自由液面描述及數值計算方法 16 2.3二維正規化邊界積分法 18 2.4二維矩形槽沖激數值計算 23 2.5二維矩形槽沖激模型試驗 28 2.6結論 31 3 三維圓柱形槽之液體沖激問題 32 3.1控制方程式、邊界條件及液體阻尼模擬 32 3.2自由液面描述及數值計算方法 35 3.3三維正規化邊界積分法 37 3.4三維圓柱形槽沖激數值計算 41 3.5三維圓柱形槽沖激模型試驗 45 3.6結論 48 4諧調液體阻尼器 49 4.1 RBIM模擬(即液體與結構互制之邊界積分法模擬) 49 4.2 E.TMD模擬(即等效諧調質量阻尼器模擬,Equivalent-tuned-mass-damper model) 53 (1) 等效質量與等效勁度 53 (2) 等效諧調質量阻尼器之分析模擬 56 (3) 液體阻尼器之設計參數 60 4.3 諧調液體阻尼器之動力特性分析 64 (1) 二維矩形諧調液體阻尼器 64 (2) 三維圓柱形諧調液體阻尼器 76 4.4結論 86 5台北101大樓之減震應用 87 5.1 台北101之結構介紹 87 (1) 結構系統 87 (2) 諧調質量阻尼器 89 5.2結構動力特性 92 (1) 台北101之結構分析模擬及動力特性 92 (2) 台北101附加諧調質量阻尼器之動力特性 98 5.3地震及風力紀錄與特徵 100 (1) 地震紀錄 100 (2) 風力紀錄 101 5.4諧調質量阻尼器之減震分析 105 5.5諧調液體阻尼器之減震分析 109 5.6結論 117 6 結論與展望 118 6.1 液體沖激行為研究 118 6.2 諧調液體阻尼器研究 120 6.3 未來展望 121 參考文獻 123 附錄A: 模型實驗介紹 140 A.1 實驗佈置與儀器 140 A.2 實驗結構平台特性 142 A.3 波高量測方法 143 附錄B: 正規化邊界積分法之公式推導 144 B.1 二維奇異及近鄰奇異積分 144 B.2 三維奇異及近鄰奇異積分 147 附錄C: 正規化邊界積分法之誤差及效率分析 150 C.1 正方體混和型邊界值問題 150 C.2 圓柱體混和型邊界值問題 155 附錄D: 數值計算之補充說明 159 D.1 應用迭代法求解線性聯立方程式 159 D.2 計算區間之時間間隔與網格收斂性 161 主要符號表 164 | |
| dc.language.iso | zh-TW | |
| dc.subject | 正規化邊界積分法 | zh_TW |
| dc.subject | 非線性沖激行為 | zh_TW |
| dc.subject | 諧調液體阻尼器 | zh_TW |
| dc.subject | 液體與結構互制作用 | zh_TW |
| dc.subject | 勢流理論 | zh_TW |
| dc.subject | 人工阻尼係數 | zh_TW |
| dc.subject | 等效諧調質量阻尼器 | zh_TW |
| dc.subject | Tuned liquid damper | en |
| dc.subject | Liquid and structure interaction | en |
| dc.subject | Potential flows | en |
| dc.subject | Regularized boundary integral method | en |
| dc.subject | Artificial damping coefficient | en |
| dc.subject | Equivalent mass damper | en |
| dc.subject | Nonlinear sloshing behavior | en |
| dc.title | 以正規化邊界積分法分析非線性液體沖激行為及其在諧調液體阻尼器之應用 | zh_TW |
| dc.title | Study on Nonlinear-Liquid-Sloshing Behavior and Its Application on Tuned-Liquid Damper by Regularized Boundary Integral Method | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-1 | |
| dc.description.degree | 博士 | |
| dc.contributor.coadvisor | 黃維信 | |
| dc.contributor.oralexamcommittee | 張國鎮,黃良雄,陳正宗,曹登皓 | |
| dc.subject.keyword | 非線性沖激行為,諧調液體阻尼器,液體與結構互制作用,勢流理論,正規化邊界積分法,人工阻尼係數,等效諧調質量阻尼器, | zh_TW |
| dc.subject.keyword | Nonlinear sloshing behavior,Tuned liquid damper,Liquid and structure interaction,Potential flows,Regularized boundary integral method,Artificial damping coefficient,Equivalent mass damper, | en |
| dc.relation.page | 166 | |
| dc.identifier.doi | 10.6342/NTU201800148 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2018-01-25 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 土木工程學研究所 | zh_TW |
| 顯示於系所單位: | 土木工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-1.pdf 未授權公開取用 | 6.35 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
