請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70183完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳逸民 | |
| dc.contributor.author | Kuan-Hsiang Chen | en |
| dc.contributor.author | 陳冠翔 | zh_TW |
| dc.date.accessioned | 2021-06-17T03:48:06Z | - |
| dc.date.available | 2018-02-26 | |
| dc.date.copyright | 2018-02-26 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2018-01-24 | |
| dc.identifier.citation | Altamimi, Z., Collilieux, X. & Métivier, L., 2011. ITRF2008: an improved solution of the terrestrial reference frame, J. Geod., 85, 457–473.
Ando, M., Nakamura, M., Matsumoto, T., Furukawa, M., Tadokoro, K., & Furumoto, M. 2009. Is the Ryukyu subduction zone in Japan coupled or decoupled? The necessity of seafloor crustal deformation observation, Earth Planets Space, 61, 1031–1039. Araki, E., Saffer, D.M., Kopf, A.J., Wallace, L.M., Kimura, T., Machida, Y., et al. 2017. Recurring and triggered slow-slip events near the trench at the Nankai trough subduction megathrust, Science, 356(6343), 1157. Becker, T.W., Hardebeck, J.L. & Anderson, G., 2005. Constraints on fault slip rates of the southern California plate boundary from GPS velocity and stress inversions, Geophys. J. Int., 160, 634–650. Bos, A.G., Spakman, W. & Nyst, M.C.J., 2003. Surface deformation and tectonic setting of Taiwan inferred from a GPS velocity field, J. Geophys. Res., 108(B10), 2458. Canitano, A., Hsu, Y.J., Lee, H.M., Linde, A.T. & Sacks, S., 2017. A first modeling of dynamic and static crustal strain field from near-field dilatation measurements: example of the 2013 Mw 6.2 Ruisui earthquake, Taiwan, J. Geod., 91(1), 1–8. Chan, C.H., Hsu, Y.J. & Wu, Y.M., 2012. Possible stress states adjacent to the rupture zone of the 1999 Chi-Chi, Taiwan, earthquake, Tectonophysics, 541–543, 81–88. Chang, C.P., Chang, T.Y., Angelier, J., Kao, H., Lee, J.C. & Yu, S.B., 2003. Strain and stress field in Taiwan oblique convergent system: constraints from GPS observation and tectonic data, Earth Planet. Sci. Lett., 214, 115–127. Chen, S.K., Chan, Y.C., Hu, J.C. & Kuo, L.C., 2014. Current crustal deformation at the junction of collision to subduction around the Hualien area, Taiwan, Tectonophysics, 617, 58–78. Chen, S.K., Wu, Y.M., Hsu, Y.J. & Chan, Y.C., 2017. Current crustal deformation reassessed by cGPS strain-rate estimation and focal mechanism stress inversion, Geophys. J. Int., 210 (1): 228–239. Chiang, P.J., Hsu, Y.J. & Chang, W.L., 2016. Fault modeling of the 2012 Wutai, Taiwan earthquake and its tectonic implications, Tectonophysics, 666, 66-75. Ching, K.E., Rau, R.J. Johnson, K.M., Lee, J.C. & Hu, J.C., 2011a. Present‐day kinematics of active mountain building in Taiwan from GPS observations during 1995-2005, J. Geophys. Res., 116, B09405. Ching, K.E., Hsieh, M.L., Johnson, K.M., Chen, K.H., Rau, R.J. & Yang, M., 2011b. Modern vertical deformation rates and mountain building in Taiwan from precise leveling and continuous GPS observations, 2000–2008, J. Geophys. Res., 116, B08406. Dach, R., Hugentobler, U., Fridez, P. & Meindl, M., 2007. User manual of Bernese GPS software version 5.0, pp.640, University of Bern, Bern, Switzerland. Delahaye, E.J., Townend, J., Reyners, M.E. & Rogers, G., 2009. Microseismicity but no tremor accompanying slow slip in the Hikurangi subduction zone, New Zealand, Earth Planet. Sci. Lett., 277, 21–28. Dong, D., Fang, P., Bock, Y., Webb, F., Prawirodirdjo, L., Kedar, S. & Jamason, P., 2006. Spatiotemporal filtering using principal component analysis and Karhunen-Loeve expansion approaches for regional GPS network analysis. J. Geophys. Res., 111, B03405. Douglas, A., Beavan, J., Wallace, L. & Townend, J., 2005. Slow slip on the northern Hikurangi subduction interface, New Zealand, Geophys. Res. Lett., 32, L16305. Dragert, H., Wang, K. & James, T.S., 2001. A silent slip event on the deeper Cascadia subduction interface, Science, 292, 1525–1528. Hardebeck, J.L. & Hauksson, E., 2001. The crustal stress field in southern California and its implications for fault mechanics, J. Geophys. Res., 106, 21,859–21,882. Hardebeck, J.L. & Michael, A.J., 2006. Damped regional-scale stress inversions: methodology and examples for southern California and the Coalinga aftershock sequence, J. Geophys. Res., 111, B11310. Hasegawa, A., Yoshida, K., Asano, Y., Okada, T., Iinuma, T. & Ito, Y., 2012. Change in stress field after the 2011 great Tohoku-Oki earthquake, Earth Planet. Sci. Lett., 355–356, 231–243. Heki, K. & Kataoka, T., 2008. On the biannually repeating slow-slip events at the Ryukyu Trench, southwestern Japan, J. Geophys. Res., 113, B11402. Herring, T.A., King, R.W., & McClusky, S.C., 2002. Documentation for the GAMIT analysis software: Cambridge, Massachusetts Institute of Technology, 206 p. Hetland, E., Muse, P., Simons, M., Lin, Y., Agram, P. & DiCaprio, C., 2012. Multiscale InSAR time series (MInTS) analysis of surface deformation, J. Geophys. Res., 117, B02404. Hirose, H., Hirahara, K., Kimata, F., Fujii, N. & Miyazaki, S., 1999. A slow thrust slip event following the two 1996 Hyuganada earthquakes beneath the Bungo Channel, southwest Japan, Geophys. Res. Lett., 26, 3237–3240. Hsieh, H.H & Yen, H.Y., 2016. Three-dimensional density structures of Taiwan and tectonic implications based on the analysis of gravity data, J. Asian Earth Sci., 124, 247–259. Hsu, Y.J., 2004. Modeling studies on interseismic, coseismic and postseismic deformations associated with the 1999 Chi-Chi, Taiwan earthquake. PhD thesis, National Central University, Chungli, Taiwan. Hsu, Y.J., Simons, M., Avouac, J.P., Galetzka, J., Sieh, K., Chlieh, M., Natawidjaja, D., Prawirodirdjo, L. & Bock, Y., 2006. Frictional afterslip following the 2005 Nias-Simeulue earthquake, Sumatra, Science, 312, 1921–1926. Hsu, Y. J., Segall, P., Yu, S. B., Kuo, L. C. & Williams, C. A., 2007. Temporal and spatial variations of postseismic deformation following the 1999 Chi-Chi, Taiwan earthquake, Geophys. J. Int., 169, 367–379. Hsu, Y.J., Yu, S.B., Simons, M., Kuo, L.C. & Chen, H.Y., 2009. Interseismic crustal deformation in the Taiwan plate boundary zone revealed by GPS observations, seismicity, and earthquake focal mechanisms, Tectonophysics, 479, 4–18. Hsu, Y.J., Rivera, L., Wu, Y.M., Chang, C.C. & Kanamori, H., 2010. Spatial heterogeneity of tectonic stress and friction in the crust: new evidence from earthquake focal mechanism in Taiwan, Geophys. J. Int., 182, 329–342. Hsu, Y.J., Ando, M., Yu, S.B. & Simons, M., 2012. The potential for a great earthquake along the southernmost Ryukyu subduction zone, Geophys. Res. Lett., 39, L14302. Hsu Y.J., Chang, Y.S., Liu, C.C., Lee, H.M., Linde, A.T., Sacks, S., Kitagawa, G. & Chen, Y.G., 2015. Revisiting borehole strain, typhoons, and slow earthquakes using quantitative estimates of precipitation-induced strain changes, J. Geophys. Res., 120, 4556–4571. Hu, J.C., Angelier, J., Lee, J.C., Chu, T.H. & Byrne, D., 1996. Kinematics of convergence, deformation and stress distribution in the Taiwan collision area: 2-D finite-element numerical modelling, Tectonophysics, 255, 243–268. Hu, J.C., Yu, S.B., Chu, H.T. & Angelier, J., 2002. Transition tectonics of northern Taiwan induced by convergence and trench retreat, Spec. Pap. Geol. Soc. Am., 358, 149–162. Huang, H.H., Shyu, J.B.H., Wu, Y.M., Chang, C.H., & Chen Y.G., 2012. Seismotectonics of northeastern Taiwan: Kinematics of the transition from waning collision to subduction and postcollisional extension, J. Geophys. Res., 117, B01313. Huang, H.H., Wu, Y.M., Song, X.D., Chang, C.H., Lee, S.C., Chang, T.M. & Hsieh, H.H., 2014. Joint VP and VS tomography of Taiwan: implications for subduction-collision orogeny, Earth Planet. Sci. Lett., 392, 177–191. Huang, T.Y., Gung, Y., Liang, W.T., Chiao, L.Y. & Teng, L.S., 2012. Broad-band Rayleigh wave tomography of Taiwan and its implications on gravity anomalies, Geophys. Res. Lett., 39, L05305. Huang, T.Y., Gung, Y.C., Kuo, B.Y., Chiao, L.Y. & Chen, Y.N., 2015. Layered deformation in the Taiwan orogeny, Science, 349, 720–723. Kao, H., 1998. Can great earthquakes occur in the southernmost Ryukyu arc-Taiwan region?, Terr. Amos. Oceanic Sci., 9, 487–508. Kao, H. & Jian P.R., 2001. Seismogenic patterns in the Taiwan region: insights from source parameter inversion of BATS data, Tectonophysics, 333, 179–198. Keiding, M., Lund, B. & Árnadóttira, T., 2009. Earthquakes, stress, and strain along an obliquely divergent plate boundary: Reykjanes Peninsula, southwest Iceland, J. Geophys. Res., 114, B09306. Ko, Y.T., Kuo, B.Y., Wang, K.L., Lin, S.C. & Hung, S.H., 2012. The southwestern edge of the Ryukyu subduction zone: A high Q mantle wedge, Earth Planet. Sci. Lett., 335-336, 145–153. Koulakov, I., Jakovlev, A., Wu, Y.M., Dobretsov, N.L., Khrepy, S.El. & Al-Arifi, N., 2015. Three-dimensional seismic anisotropy in the crust and uppermost mantle beneath the Taiwan area revealed by passive source tomography, J. Geophys. Res., 120, 7814–7829. Koulali, A., McClusky, S., Wallace, L., Allgeyer, S., Tregoning, P., D’Anastasio, E. & Benavente, R., 2017. Slow slip events and the 2016 Te Araroa Mw 7.1 earthquake interaction: Northern Hikurangi subduction, New Zealand, Geophys. Res. Lett., 44, 8336–8344. Kuo, B.Y., Wang, C.C., Lin, S.C., Lin, C.R., Chen, P.C., Jang, J.P. & Chang, H.K., 2012. Shear-wave splitting at the edge of the Ryukyu subduction zone, Earth Planet. Sci. Lett., 355-356, 262–270. Kuo-Chen, H., Wu, F.T. & Roecker, S.W., 2012. Three-dimensional P velocity structures of the lithosphere beneath Taiwan from the analysis of TAIGER and Related seismic datasets, J. Geophys. Res., 117, B06306. Kuo-Chen, H., Sroda, P., Wu, F.T., Wang, C.Y & Kuo, Y.W., 2013. Seismic anisotropy of the upper crust in the mountain ranges of Taiwan from the TAIGER explosion experiment, Terr. Atmos. Ocean Sci., 24, 963–970. Lee, S.J., Ma, K.F. & Chen, H.W., 2006. Three dimensional dense strong motion waveform inversion for the rupture process of the 1999 Chi-Chi, Taiwan, earthquake, J. Geophys. Res., 111, B11308. Lin, K.C., Hu, J.C., Ching, K.E., Angelier, J., Rau, R.J., Yu, S.B., Tsai, C.H., Shin, T.C. & Huang, M.H., 2010. GPS crustal deformation, strain rate, and seismic activity after the 1999 Chi‐Chi earthquake in Taiwan, J. Geophys. Res., 115, B07404. Lin, S.C. & Kuo, B.Y., 2013. Trench-parallel flow in the southern Ryukyu subduction system: Effects of progressive rifting of the overriding plate, J. Geophys. Res., 118, 302–315. Liu, T.K., 1982. Tectonic implication of fission track ages from the Central Range. Taiwan, Proc. Geol. Soc. China, 25, 22–37. McCaffrey, R., 2009. Time-dependent inversion of three-component continuous GPS for steady and transient sources in northern Cascadia, Geophys. Res. Lett., 36, L07304. Miyazaki, S., Tsuji, H., Hatanaka, Y., Abe, Y., Yoshimura, A., Kamada, K., Kobayashi, K., Morishita, H. & Iimura, Y., 1996. Establishment of the nationwide GPS array (GRAPES) and its initial results on the crustal deformation of Japan, Bull. Geogr. Surv. Inst., 42, 27–41. Nakamura, M., 2004. Crustal deformation in the central and southern Ryukyu Arc estimated from GPS data, Earth Planet. Sci. Lett., 217, 389‒398. Nakamura, M., 2009. Aseismic crustal movement in southern Ryukyu Trench, southwest Japan, Geophys. Res. Lett., 36, L20312. Nikolaidis, R., 2002. Observation of Geodetic and Seismic Deformation with the Global Positioning System, PhD thesis, University of California, San Diego, USA. Nishimura, S., Hashimoto, M. & Ando, M., 2004. A rigid block rotation model for the GPS derived velocity field along the Ryukyu arc, Phys. Earth Planet. Inter., 142, 185–203. Nishimura T., 2014. Short-term slow slip events along the Ryukyu Trench, southwestern Japan, observed by continuous GNSS, Earth Planets Space, 1:22. Obara, K. & Kato, A., 2016. Connecting slow earthquakes to huge earthquakes. Science, 353, 253–257. Okada, Y., 1985. Surface deformation due to shear and tensile faults in a half-space, Bull. Seismol. Soc. Am., 75, 1135–1154. Outerbridge, K.C., Dixon, T.H., Schwartz, S.Y., Walter, J.I., Protti, M., Gonzalez, V., Biggs, J., Thorwart, M. & Rabbel, W., 2010. A tremor and slip event on the Cocos-Caribbean subduction zone as measured by a global positioning system (GPS) and seismic network on the Nicoya Peninsula, Costa Rica, J. Geophys. Res., 115, B10408. Ozawa, S., Miyazaki, S., Hatanaka, Y., Imakiire, T., Kaidzu, M. & Murakami, M., 2003. Characteristic silent earthquakes in the eastern part of the Boso Peninsula, central Japan, Geophys. Res. Lett., 30(6), 1283. Ozawa, S., Yarai, H., Imakiire, T. & Tobita, M., 2013. Spatial and temporal evolution of the long-term slow slip in the Bungo Channel, Japan. Earth Planets Space, 65, 67–73. Palano, M., Cannavò, F., Ferranti, L., Mattia, M. & Mazzella, E., 2011. Strain and stress fields in the Southern Apennines (Italy) constrained by geodetic, seismological and borehole data, Geophys. J. Int., 187(3), 1270–1282. Palano, M., 2015. On the present-day crustal stresses, strain-rate fields and mantle anisotropy pattern of Italy, Geophys. J. Int., 200, 967–983. Peng, Z. & Zhao, P., 2009. Migration of early aftershocks following the 2004 Parkfield earthquake, Nat. Geosci., 2, 877–881. Rau, R.J., Liang, W.T., Kao, H. & Huang, B.S., 2000. Shear wave anisotropy beneath the Taiwan orogen, Earth Planet. Sci. Lett., 177, 177–192. Riel, B., Simons, M., Agram, P. & Zhan, Z., 2014. Detecting transient signals in geodetic time series using sparse estimation techniques, J. Geophys. Res., 119, 5140–5160. Rousset, B., Barbot, S., Avouac, J.P. & Hsu, Y.J., 2012. Postseismic deformation following the 1999 Chi-Chi earthquake, Taiwan: implication for lower-crust rheology, J. Geophys. Res., 117, B12405. Saffer, D.M. & Wallace, L.M., 2015. The frictional, hydrologic, metamorphic and thermal habitat of shallow slow earthquakes, Nat. Geosci., 8, 594–600. Sagiya, T., 2004. Interplate coupling in the Kanto district, central Japan, and the Boso Peninsula silent earthquake in May 1996, Pure Appl. Geophys., 161, 2601–2616. Schwartz, S.Y. & Rokosky, J.M., 2007. Slow slip events and seismic tremor at circum-Pacific subduction zones, Rev Geophys., 45, RG3004. Scholz, C.H. & Campos, J., 2012. The seismic coupling of subduction zones revisited. J. Geophys. Res., 117, B05310. Segall, P., Desmarais, E.K., Shelly, D., Mikilius, A., & Cervelli, P., 2006. Earthquakes triggered by silent slip events on Kilauea volcano, Hawaii, Nature, 442, 71–74. Seno, T., Stein, S., & Gripp, A.E., 1993. A model for the motion of the Philippine Sea plate consistent with Nuvel-1 and geological data, J. Geophys. Res., 98, 17,941–17,948. Shyu, J.B.H., Sieh, K., Chen, Y.G. & Liu, C.S., 2005. Neotectonic architecture of Taiwan and its implications for future large earthquakes, J. Geophys. Res., 110, B08402. Sibuet, J. C., et al., 1987. Back arc extension in the Okinawa Trough, J. Geophys. Res., 92, 14,041–14,063. Simoes, M., Avouac, J.P., Beyssac, O., Goffe´, B., Farley, K.A. & Chen, Y.G., 2007. Mountain building in Taiwan: A thermokinematic model, J. Geophys. Res., 112, B11405. Suppe, J., 1981. Mechanics of mountain building and metamorphism in Taiwan, Geol. Soc. Chin. Mem., 4, 67–89. Suppe, J., 1984. Kinematics of arc–continent collision, flipping of subduction, and back-arc spreading near Taiwan, Geol. Soc. Chin. Mem., 6, 21–33. Teng, L.S., 1990. Geotectonic evolution of late Cenozoic arc continent collision in Taiwan, Tectonophysics, 183, 57–76. Teng, L.S., 1996. Extensional collapse of the northern Taiwan mountain belt. Geology, 26, 949–952. Theunissen, T., Font, Y., Lallemand, S. & Liang, W.T., 2010. The largest instrumentally recorded earthquake in Taiwan: Revised location and magnitude, and tectonic significance of the 1920 event, Geophys. J. Int., 183, 1119–1133. Townend, J. & Zoback, M.D., 2006. Stress, strain, and mountain building in central Japan, J. Geophys. Res., 111, B03411. Tu, Y., Heki, K., 2017. Decadal modulation of repeating slow slip event activity in the southwestern Ryukyu Arc possibly driven by rifting episodes at the Okinawa Trough, Geophys. Res. Lett., 44. 9308–9313. Uyeda, S., & Kanamori, H., 1979. Back-arc opening and the mode of subduction, J. Geophys. Res., 84, 1049–1061. Vallee, M., et al., 2013. Intense interface seismicity triggered by a shallow slow slip event in the Central Ecuador subduction zone, J. Geophys. Res., 118, 2965–2981. Wallace, L.M., Webb, S.C., Ito, Y., Mochizuki, K., Hino, R., Henrys, S., et al. 2016. Slow slip near the trench at the Hikurangi subduction zone, New Zealand, Science, 352(6286), 701–704. Wallace, L. M., Kaneko, Y., Hreinsdóttir, Sigrún., Hamling, Ian., Peng, Z., Bartlow, N., D’Anastasio, E. & Fry, B., 2017. Large-scale dynamic triggering of shallow slow slip enhanced by overlying sedimentary wedge, Nat. Geosci., 10, 765–770. Wang, C.Y., Flesch, L.M., Silver, P.G., Chang, L.J. & Chan, W.W., 2008. Evidence for mechanically coupled lithosphere in central Asia and resulting implications, Geology, 36(5), 363–366. Wessel, P., Smith, W.H.F., Scharroo, R., Luis, J.F. & Wobbe, F., 2013. Generic Mapping Tools: Improved version released, EOS Transactions Am. Geophys. Un., 94(45), 409–420. Wesson, R.L. & Boyd, O.S., 2007. Stress before and after the 2002 Denali fault earthquake, Geophys. Res. Lett., 34, L07303. Wu, F.T., Rau, R.J. & Salzberg, D., 1997. Taiwan orogeny: Thinskinned or lithospheric collision?, Tectonophysics, 274, 191–220. Wu, F.T., Liang, W.T., Lee, J.C., Benz, H. & Villasenor, A., 2009. A model for the termination of the Ryukyu subduction zone against Taiwan: A junction of collision, subduction/separation, and subduction boundaries, J. Geophys. Res., 114, B07404. Wu, Y.M. & Chiao L.Y., 2006. Seismic quiescence before the 1999 Chi-Chi, Taiwan Mw 7.6 earthquake, Bull. Seismol. Soc. Am., 96, 321–327. Wu, Y.M. & Chen, C.C., 2007. Seismic reversal pattern for the 1999 Chi-Chi, Taiwan, Mw 7.6 earthquake, Tectonophysics, 429(1–2), 125–132. Wu, Y.M., Chang, C.H., Zhao, L., Shyu, J.B.H., Chen, Y.G., Sieh, K. & Avouac, J.P., 2007. Seismic tomography of Taiwan: improved constraints from a dense network of strong motion stations, J. Geophys. Res., 112, B08312. Wu, Y.M., Chang, C.H., Zhao, L., Teng, T.L. & Nakamura M., 2008a. A comprehensive relocation of earthquakes in Taiwan from 1991 to 2005, Bull. Seismol. Soc. Am. 98(3), 1471–1481. Wu, Y.M., Zhao, L., Chang, C.H. & Hsu, Y.J., 2008b. Focal mechanism determination in Taiwan by genetic algorithm, Bull. Seismolog. Soc. Am., 98(2), 651–661. Wu, Y.M., Shyu, J.B.H., Chang, C.H., Zhao, L., Nakamura, M. & Hsu, S.K., 2009. Improved seismic tomography offshore northeastern Taiwan: implications for subduction and collision processes between Taiwan and the southernmost Ryukyu. Geophys J Int 178:1042–1054. Wu, Y.M., Hsu, Y.J., Chang, C.H., Teng, L.S. & Nakamura, M., 2010. Temporal and spatial variation of stress field in Taiwan from 1991 to 2007: insights from comprehensive first motion focal mechanism catalog, Earth Planet. Sci. Lett., 298, 306–316. Wu, Y.M., Chang, C.H., Kuo-Chen, H., Huang, H.H. & Wang, C.Y., 2013. On the use of explosion records for examining earthquake location uncertainty in Taiwan. Terr. Atmos. Ocean. Sci., 24, 685–694. Wu, W.N., Kao, H., Hsu, S.K., Lo, C.L. & Chen, H.W., 2010. Spatial variation of the crustal stress along the Ryukyu-Taiwan-Luzon convergence boundary, J. Geophys. Res., 115, B11401. Yang, W. & Hauksson, E., 2013. The tectonic crustal stress field and style of faulting along the Pacific North America Plate boundary in Southern California, Geophys. J. Int., 194, 100–117. Yen, Y.T. & Ma, K.F., 2011. Source-scaling relationship for M 4.6-8.9 earthquakes, specifically for earthquakes in the collision zone of Taiwan, Bull. Seismol. Soc. Am. 101(2), 464–481. Yoshida, K., Hasegawa, A., Okada, T., Iinuma, T., Ito, Y. & Asano, Y., 2012. Stress before and after the 2011 great Tohoku-oki earthquake and induced earthquakes in inland areas of eastern Japan, Geophys. Res. Lett., 39, L03302. Yokota, Y., Ishikawa, T., Watanabe, S., Tashiro, T. & Asada, A., 2016. Seafloor geodetic constraints on interplate coupling of the Nankai Trough megathrust zone, Nature, 534, 374–377. Yu, S.B., Chen, H.Y. & Kuo, L.C., 1997. Velocity field of GPS Stations in the Taiwan area, Tectonophysics, 274, 41–59. Yu, S.B., Hsu, Y.J., Kuo, L.C., Chen, H.Y. & Liu, C.C., 2003. GPS measurement of postseismic deformation following the 1999 Chi-Chi, Taiwan, earthquake, J. Geophys. Res., 108(B11), 2520. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70183 | - |
| dc.description.abstract | 地殼形變是研究地體構造演化與斷層活動災害的重要學問,利用大地測量與地震觀測資料於時間與空間上的取樣以及約制,能幫助地球科學家了解地殼運動速率與斷層面上滑移速率。這兩個議題的了解往往取決於地表與地殼變形的觀測資料在時空上取樣密集與精確程度,因此,觀測資料網的建置與發展是提升區域地殼變形解析能力相當重要的必備工作。本論文以擁有高密度大地測量觀測網與地震觀測網的臺灣地區為例,利用分析多重的更新資料(包含GPS位移、重定位地震、震源機制解)提升臺灣造山帶與其鄰近琉球隱沒帶的地表與地殼變形解析能力,進而對這兩個區域的地殼變形行為做出描述與解釋。
本論文主要由兩個計畫所組成。在第一個計畫中,我結合臺灣地區更新至2015年的GPS連續觀測網位移資料與CWBSN、TSMIP地震觀測網P波初達波資料分析臺灣的近期地表與地震變形。關於臺灣造山帶地殼形變與其機制過去已有許多地球物理觀測資料如地表應變、地殼應力、地殼非均向性構造等累積研究成果,但這些研究的觀測資料對於地殼形變的空間解析能力相異,尤其,普遍在深度上僅呈現整個地殼內部平均結果。近期的非均向性構造研究成果指出造山帶地殼變形在深度上具有層狀變化的現象與機制,因此,我希望以不同於地震波非均向性構造的物理角度,利用最新的地表應變與地殼應力資料提升地殼變形空間解析度,並釐清其內部變形是否存在與深度相關的變化。使用臺灣地區上述大地測量與地震波相更新資料,我求得地表水平速度場與地殼內部震源機制解,進而計算出臺灣地區過去以來在空間上最佳解析度的地表應變場與地殼應力場,以及第一個在深度上具有層狀解析能力的地震斷層區域性型態。計算過程中考慮發生於造山帶內的Mw 7.6集集大地震在震後期間資料所紀錄到的近震源區GPS測站速度偏移以及應力方向偏移等效應做修正,減少其影響應變場與應力場長期平均的計算結果。新的應變與應力場表現出造山帶地殼變形在深度上具有顯著的方向改變與斷層型態變化,造山帶碰撞區以20公里為界呈現上下部地殼之間應力場異質性,此異質性在地殼增厚區與薄化區的整體空間更加顯著;反之,地殼應力場空間上相對均質性則表現於地殼山根區。在第一個計畫中藉此成果,新的地表應變場與地殼應力場大提供了過去相似成果中所無法解析的地殼變形於深度上的變化,同時得出地表應變型態可能反映地殼內部變形的區域性深度範圍。 在第二個計畫中,利用臺灣東北部高密度連續GPS測站網與大量的重定位地震、震源機制解資料聯合分析,我首次研究東北部外海琉球隱沒帶(最南段)之斷層面在間震期潛移滑動行為。過去整個琉球海溝被認為板塊界面屬於弱耦合,並且以潛移方式釋放在間震期隱沒過程中地殼累積應力,因此,歷史紀錄上琉球海溝極少發生規模8以上地震。這個假說已藉由GNSS資料在大部分琉球海溝所觀測的慢滑事件推論得知,但在最南段琉球海溝尚缺乏觀測資料支持此假說。使用上述的連續GPS測站網紀錄到的慢滑事件,以及同步發生區域地震活動觀測資料,我發現時間序列上潛移訊號與區域性地震活動有良好時空對應關係,並在地震活動過後仍有持續潛移的訊號被觀測到。這些潛移訊號藉由計算累積位移與累積地震數量之間所呈現的非線性關係可驗證乃由慢滑事件所引起。為了瞭解這些偶發性長期慢滑事件在隱沒帶可能的發生位置以及時空演育過程,我以格點搜尋法求取斷層錯位模型最佳參數,並且以TDefnode code反演連續GPS三分量時間序列。反演斷層滑移模型能表現連續GPS觀測紀錄最大地表變形量區域,並得出偶發性慢滑事件累積滑移量產生的變形等同於地震矩規模6.4至6.6地震破裂能量釋放。藉由分析慢滑事件與地震在時空上的關係,我們也發現潛移滑動區域與地震密集帶存在著調和現象。這個計畫的研究結果直接驗證了最南段琉球隱沒帶的偶發性潛移機制,並且推論此機制可能重現於多重地震週期中。 最後,我彙整並討論兩個計劃的成果與未來的工作展望。此外,也將另一個在博士期間完成的子計畫:花蓮北部板塊交接帶現今的地殼變形,簡介並附錄於論文之後。 | zh_TW |
| dc.description.abstract | Constraints of geodetic and seismological observations on the crustal deformation in space and time, help geoscientists understand the significant issues about the rates of crustal motion and fault slips. Understanding of the two issues strongly depends on how dense and accurate observations we can have, and it is therefore of importance to develop the networks. In this dissertation, by analyzing multiple data sets from abundant continuous GPS (cGPS) and earthquake observations in Taiwan region, the crustal deformation is better clarified at Taiwan orogen and the nearby Ryukyu Trench.
This dissertation mainly consists of two projects. In the first, crustal deformation of the Taiwan orogen is studied by jointly using the updated data sets of surface positions and P-wave first arrivals from the cGPS and CWBSN/TSMIP networks, respectively. The crustal deformation was estimated from geophysical observations from the states of surface strain, crustal stresses, and anisotropic structures. However, most of them shown average results of the overall crust in depths. Recent anisotropic studies indicate that the Taiwan orogeny is layered mechanism, and therefore new strain and stress data are used to verify the mechanism which is independent of anisotropic structures in physical meanings. By jointly analyzing the two updated data sets, updated strain and stress fields with so far the best resolution in the space is obtained. The styles of faulting in Taiwan orogen with resolution in depths is provided for the first time. In the estimation, to minimize the postseismic effects of Mw 7.6 Chi-Chi earthquake on long-term average of states of strain and stress, the effects on biases of cGPS velocities and stress directions are modified. The deformation fields can present heterogeneity of crustal deformation in the vertical space at a depth of 20 km in the main collision zone. The spatial heterogeneity of faulting styles is founded to be strong and weak in the areas of thinned/thickened and overthickened crust, respectively. According to the results of the first project, new results of strain and stress fields greatly improve the spatial resolution of crustal deformation and reveal regional crustal deformation from the surface to a maximum depth involved in geodetic strains. In the second project, Slow Slip Events (SSEs) in the southernmost Ryukyu Trench is studied for the first time by jointly using data of cGPS, relocated seismicity, and earthquake focal mechanisms. The Ryukyu Trench was considered that the crustal accumulated stresses are released by the interplate aseismic slips partly, in other words, the Trench is interseismic weak coupling. The hypothesis is still an open question at the southernmost Trench. By analyzing the cGPS position time series systematically, transient displacements are founded correlate to strong seismicity spatiotemporally and were succeed by a continued slip. The transient displacements are verified by a nonlinear relationship between cumulative number of earthquakes and cumulative displacements. To know the locations and evolution of episodic, long-term SSEs in the Trench, the displacements are inverted by TDefnode code based on dislocation fault modeling via a grid search method. The best fitting models can explain the areas of peak displacement and reveals slip amounts of the episodic SSEs resulting in deformation which is equivalent to Mw 6.4‒6.6 earthquake failure. Analyzing the relationship between SSEs and seismicity, the aseismic and seismic moment release in the shallow Trench is spatiotemporally modulated. The slow-slip mechanism is directly verified and suggested to exist in multi-earthquake cycles probably. I summarized the achievements for the two projects, and their prospections for future works. Additionally, another side project done in my Ph.D. period is also briefly introduced and supplemented: Current Crustal Deformation at the Junction of Collision to Subduction around Hualien area, Taiwan. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T03:48:06Z (GMT). No. of bitstreams: 1 ntu-107-D00224003-1.pdf: 15467003 bytes, checksum: 89f7b2579951c0d7cb62fa7edd35d36f (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | 論文口試委員會審定書……………………………………………………………....I
中文誌謝…………………………………………………………………………...…II 中文摘要…………………………………………………………………………….III Abstract………………………………………………………………………………V List of Figures.………………………………………………………………………Ⅸ Chapter 1 Introduction...…………………………………………………………….1 1.1 Motivation………………………………………......……….………………….1 1.2 Background of Taiwan orogen and the nearby Ryukyu Trench……………2 1.3 On the cGPS and seismic networks and deformation observations…..11 1.4 Outline of dissertation………………………………………………….............14 Chapter 2 Current crustal deformation of the Taiwan orogen reassessed by cGPS strain-rate estimation and focal mechanism stress inversion……………16 2.0 Abstract...………………………………………......……….………………….16 2.1 Introduction…………………………….………………………….…………..17 2.2 Data and methods…………………...…………………………………….…...21 2.2.1 cGPS velocity field…………………..……………………………….…...21 2.2.2 cGPS-based strain-rate field………………………………………………23 2.2.3 Earthquake focal mechanism determination……………………….……..25 2.2.4 Seismic stress tensor inversion………………...………………………….28 2.2.5 Strategy of comparison of geodetic strain and seismic stress tensors....29 2.3 Renewed geodetic strain and seismic stress fields of Taiwan and their spatial relationship...…………………………………………….……...................31 2.4 Discussion……...………………………………………...................................38 2.4.1 Comparison between results of this study and recent seismic anisotropy..38 2.4.2 Heterogeneity of regional state of stresses and the possible implications..39 2.5 Conclusions….....………………………………………...................................43 Chapter 3 Slow slip events and seismicity-induced continued slip in the southernmost Ryukyu Trench………………………………………....…………...44 3.0 Abstract………...………………………………......……….………………….44 3.1 Introduction…………………………….………………………….…………..45 3.2 Data and methods………………………………………...……………...….…48 3.2.1 cGPS data and time series analysis………...……………………………..48 3.2.2 Earthquake data and cGPS time series inversion…..……….…………….50 3.3 Results and discussion…..…………...…......……………….…………….…...52 3.4 Conclusions…….………………………………………...................................60 Chapter 4 Summary and miscellanea………………………........................61 4.1 Summary and prospection……………………………………………………..61 4.2 Side project..…………………………………………………………………...63 References…..……………………………………………………………………….65 Appendices…..………………………………...…………………………………….77 A. Supplementary to Chapter 2…..…………………...……………………..….....77 A.1 cGPS station velocities of Taiwan from 1994/01/01 to 2015/12/31……….77 A.2 Summary of the earthquake data and the uncertainties within stress tensor Inversion…………………………………………………………………..…….88 B. Supplementary to Chapter 4…..………..…………...……………………..…...89 B.1 Journal paper entitled “Current Crustal Deformation at the Junction of Subduction to Collision Around the Hualien Area, Taiwan”……………...89 Biography…………………………………………………………………………..121 | |
| dc.language.iso | en | |
| dc.subject | 應變與應力 | zh_TW |
| dc.subject | 琉球海溝最南段 | zh_TW |
| dc.subject | 地震活動 | zh_TW |
| dc.subject | 地殼變形 | zh_TW |
| dc.subject | 慢滑事件 | zh_TW |
| dc.subject | 臺灣造山帶 | zh_TW |
| dc.subject | seismicity | en |
| dc.subject | crustal deformation | en |
| dc.subject | Taiwan orogen | en |
| dc.subject | southernmost Ryukyu Trench | en |
| dc.subject | slow slip event | en |
| dc.subject | strain and stress | en |
| dc.title | 利用大地測量與地震觀測資料探討臺灣造山帶與琉球隱沒帶地殼形變 | zh_TW |
| dc.title | Crustal deformation of the Taiwan orogen and the Ryukyu subduction zone revealed by geodetic and seismological observations | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-1 | |
| dc.description.degree | 博士 | |
| dc.contributor.coadvisor | 詹瑜璋 | |
| dc.contributor.oralexamcommittee | 許雅儒,張中白,曾泰琳,張午龍 | |
| dc.subject.keyword | 地殼變形,應變與應力,臺灣造山帶,慢滑事件,地震活動,琉球海溝最南段, | zh_TW |
| dc.subject.keyword | crustal deformation,strain and stress,Taiwan orogen,slow slip event,seismicity,southernmost Ryukyu Trench, | en |
| dc.relation.page | 122 | |
| dc.identifier.doi | 10.6342/NTU201800166 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2018-01-25 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 地質科學研究所 | zh_TW |
| 顯示於系所單位: | 地質科學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-1.pdf 未授權公開取用 | 15.1 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
