請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70160完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 郭安妮(On-Lei Annie Kwok) | |
| dc.contributor.author | Sung-Han Yang | en |
| dc.contributor.author | 楊淞涵 | zh_TW |
| dc.date.accessioned | 2021-06-17T03:46:48Z | - |
| dc.date.available | 2020-08-24 | |
| dc.date.copyright | 2020-08-24 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-08-19 | |
| dc.identifier.citation | 1 Elgamal,A.W., Zeghal ,M.,Parra,E.,Gunturi,R.,Tang ,H.T., and Stepp,J.C.(1996) . Identification and Modeling of Earthquake Ground Response — I. Site Amplification . Soil Dynamics and Earthquake Engineering. Volume 15, Issue 8, December 1996, Pages 499-522 2 Dujardin, A., Courboulex F., Causse ,M., and Traversa P.(2016). Influence of Source, Path, and Site Effects on the Magnitude Dependence of Ground MotionDecay with Distanceby . January 2016. Seismological Research Letters 87(1):138-148 3 Ajom,B.E. and Bhattacharjee,A.(2017). Numerical Modeling of Site Response Based on the SPT Data Using Opensees. May 2017 Conference: National Conference on Recent Advancement in Geotechnical Investigation and Ground Improvement Technique At: NIT Silchar 4 Hardin, B. O., Drnevich,V. P.(1972). Shear Modulus and Damping in Soils: Design Equations and Curves. January 1972 Geotechnical Special Publication 98(118) 5 Campbell, K. W. and Bozorgnia ,Y.(2008). NGA Ground Motion Model for the Geometric Mean Horizontal Component of PGA, PGV, PGD and 5% Damped Linear Elastic Response Spectra for Periods Ranging from 0.01 to 10s,Earthquake Spectra,24(1), 139-171. (2008). 6 Chaillat, S., Bonnet, M.,and Semblat, J.F.(2009). A New Fast Multi-Domain BEM to Model Seismic Wave Propagation and Amplification in 3D Geological Structures, May 2009 Geophysical Journal International, 177(2), pp.509-531.(2009). 7 Zhu, C. Thambiratnam, D.P., and Zhang, J.(2016). Response of Sedimentary Basin to Obliquely Incident SH Waves. Bulletin of Earthquake Engineering volume 14, pages647–671(2016) 14:647–671 DOI 10.1007/s10518-015-9856-5 8 Deschamps, A., and Lallemand, S. (2002). The West Philippine Basin: An Eocene to Early Oligocene Back arc Basin Opened Between Two Opposed Subduction Zones. December 2002 Journal of Geophysical Research Atmospheres 107(B12) DOI: 10.1029/2001JB001706 9 Lyu, D., Ma, S., Yu C., Liu, C., Wang, X., Yang, B. and Xiao, M.(2020).Effects of Oblique Incidence of SV Waves on Nonlinear Seismic Response of a Lined Arched Tunnel. Volume 2020, Article ID 8093804, 12 pages. 10 Lyu, D., Ma, S., Yu, C., Liu, C., Wang, X., Yang, B.,and Xiao, M.(2020) .Effects of Oblique Incidence of SV Waves on Nonlinear Seismic Response of a Lined Arched Tunnel. Hindawi Shock and Vibration Volume 2020, Article ID 8093804, 12 pagess. 11 Djabali-Mohabeddine, H., Tiliouine, B., Hammoutene, M., Berrah ,M.K.(2017). Seismic site Amplification in Multilayer Soil Under Obliquely Incident SH waves. Soil Dynamics and Earthquake Engineering Volume 95, April 2017, Pages 83-95 12 Houten, H. and Beenakker, C.W.J. (1995).Confined Electrons and Photons. New Physics and Applications (NATO ASI Series; Series B: Physics, vol. 340), Boston, MA: Springer, ISBN 978-1-4615-1963-8, pp. 269–303, doi:10.1007/978-1-4615-1963-8_9, at pp. 272–3. 13 Wolf J.P., and Obernhuber P.(1982). Free‐Field Response from Inclined SH‐waves and Love‐waves. Earthquake Engineering and Structural Dynamics, November/December 1982. 14 Liu J., Tan H., Bao X., Wang D., and Li S.(2019). Seismic Wave Input Method for Three-Dimensional Soil-Structure Dynamic Interaction Analysis Based on the Substructure of Artificial Boundaries. Earthquake Engineering and Engineering Vibration volume 18, pages747–758(2019) 15 Liu J., Lu Y.(2007). A Direct Method for Analysis of Dynamic Soil-Structure Interaction Based on Interface Idea. Department of Civil Engineering, Tsinghua University, Beijing China Available online 2 September 2007. 16 Iida, M.(1993). Source Effects on Strong-Motion Records and Resolving Power of Strong Motion Arrays for SourceInversion. Tectonophysics, 218 (1993) 179-193 17 Cen ,W. J., Du ,X. H., Li ,D. J., and Yuan, L. N.(2018). Oblique Incidence of Seismic Wave Reflecting Two Components of Design Ground Motion, Article ID 4127031, 16 pages,https://doi.org/10.1155/2018/4127031,2018. 18 Ruiz S., Javier O., César P., Cristian O., and Rodrigo S.(2018). Stochastic Strong-Motion Simulation in Borehole and on Surface for the 2011 Mw 9.0 Tohoku-Oki Megathrust Earthquake Considering P, SV, and SH Amplification Transfer Functions. Bulletin of the Seismological Society of America, October 2018. DOI: 10.1785/0120170342 19 Ruiz, S., Ojeda, J., Pastén, C., Otarola, C., and Rodrigo S.(2018). Stochastic Strong-Motion Simulation in Borehole and on Surfacefor the 2011Mw9.0 Tohoku-Oki Megathrust Earthquake Considering P,SV, and SH Amplification Transfer Functions. Bulletin of the Seismological Society of America, vol. 108, issue 5A, pp. 2333-2346. DOI:10.1785/0120170342 20 Gupta S., Vishwakarma S.K.(2011). Propagation of Torsional Surface Waves under the Effect of Irregularity and Initial Stress. Applied Mathematics, January 2011 Applied Mathematics 2(12):1453-1461. DOI: 10.4236/am.2011.212207 21 Sigaki,T., Kiyohara,K., Sono Y., Kinosita D.,Masao T., Tamura R., Yoshimura C. and Ugata T.(2000). Estimation of Earthquake Motion Incident Angle at Rock Site .12WCEE 2000. 22 Sokolov,V., Loh,C.H., and Wen P.K.L.(2000). Empirical Model for Estimating Fourier Amplitude Spectra of Ground Acceleration in Taiwan Region.March 2000 Earthquake Engineering Structural Dynamics 29(3).DOI: 10.1002/(SICI)1096-9845(200003)29:3<339::AID-EQE908>3.0.CO;2-R 23 Zhang N., Gao Y., Wu Y., and Zhang F.(2018). A Note on Near-Field Site Amplification Effects of Ground Motion From a Radially Inhomogeneous Valley. Earthquake Engineering and Engineering Vibration 17:707-718(2018) DOI: https://doi.org/10.1007/s11803-018-0470-9 24 Zhang R.,Lou M.(2010). Study on Numerical Simulation of Obliquely Incident Seismic Waves Based on. State Key Laboratory for Disaster Reduction in Civil Engineering, Tongji University, Shanghai 200092, China;2010. 25 廖振鹏.(1984). 近场波动问题的有限元解法.Earthquake Engineering and Engineering Vibration. June ,1984. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70160 | - |
| dc.description.abstract | 藉由前人的研究我們可以知道當地震波傳達至建築物基礎下方土壤時大多數情況下是以非垂直的入射方式進入,然而在工程問題上,為了計算的方便,地震波入射土壤時常常被簡化為垂直入射,不過隨著近年來計算機設備的進步,模擬非垂直的地震波入射已成為可行的分析方法,因此本研究透過數值軟體FLAC來找出地震波入射角度對於土壤剪切模數、輸入運動頻率、土層厚度、時間延遲方法以及地下土層分布情況之影響。 分析結果顯示,垂直入射所得之水平方向地盤反應皆大於傾斜入射分析,但垂直方向的地盤反應分析中傾斜入射之角度對於其結果具有相當大的影響。 | zh_TW |
| dc.description.abstract | In conventional one-dimensional site response analysis, the waves are assumed to be vertically propagating. However, in reality (especially for shallow earthquakes), when the seismic waves travel from the earthquake source to the sites, the incidence may not be vertical. In this study, two oblique incidence specification methods, which are the vector decomposition method and the time delay method, are considered. These methods are implemented in the numerical software FLAC2D to simulate the oblique incidence of seismic waves and to investigate its impact on seismic site response. In addition, different model geometries, material properties, halfspace condition and predominant frequencies of the input motions would be considered. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T03:46:48Z (GMT). No. of bitstreams: 1 U0001-1708202018041900.pdf: 4312501 bytes, checksum: 6678031d61c0a12fce31c403299382d7 (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 誌謝 II 中文摘要 III Abstract IV Table of Contents V List of Figures VI List of Tables IX Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Research Objective and Method 1 1.3 Thesis Organization 1 Chapter 2 Literature Review 3 2.1 Ground Motion 3 2.1.1 Source effect 3 2.1.2 Path effect 5 2.1.3 Site effect 6 2.2 Ground response modeling 7 2.2.1 Empirical model 7 2.2.2 Numerical model 8 2.3 Oblique Incidence of Seismic Waves 9 2.3.1 Causes 9 2.3.2 Evidence from past ground motion data 12 2.3.3 Previous research on oblique incidence 13 Chapter 3 Numerical Scheme and Numerical Simulations 21 3.1 Research Method 21 3.1.1 Specification of oblique incidence 22 3.1.2 Model geometry and types of oblique incident waves 23 3.1.3 Mesh size 26 3.1.5 Material model 26 Chapter 4 Analysis Results and Discussion 28 4.1 Comparison with theoretical solution 28 4.2 Analysis Results 34 Chapter 5 Conclusions 65 5.1 Conclusions 65 References 67 | |
| dc.language.iso | en | |
| dc.subject | 地盤反應 | zh_TW |
| dc.subject | 傾斜入射 | zh_TW |
| dc.subject | 數值模擬 | zh_TW |
| dc.subject | FLAC | zh_TW |
| dc.subject | 剪力波速 | zh_TW |
| dc.subject | oblique incidence | en |
| dc.subject | numerical simulation | en |
| dc.subject | FLAC | en |
| dc.subject | shear wave velocity | en |
| dc.subject | site response | en |
| dc.title | 以數值方法模擬傾斜入射波造成之地盤反應 | zh_TW |
| dc.title | Numerical Modeling of Ground Response for Sites Subjected to Inclined Incident Waves | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 邱俊翔(Jiunn-Shyang Chiou),許尚逸(Shang-Yi Hsu) | |
| dc.subject.keyword | 傾斜入射,地盤反應,剪力波速,FLAC,數值模擬, | zh_TW |
| dc.subject.keyword | oblique incidence,site response,shear wave velocity,FLAC,numerical simulation, | en |
| dc.relation.page | 71 | |
| dc.identifier.doi | 10.6342/NTU202003832 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2020-08-20 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 土木工程學研究所 | zh_TW |
| 顯示於系所單位: | 土木工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1708202018041900.pdf 未授權公開取用 | 4.21 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
