Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 地質科學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70155
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor施路易(Ludvig Lowemark)
dc.contributor.authorChung-Ping Yehen
dc.contributor.author葉崇平zh_TW
dc.date.accessioned2021-06-17T03:46:32Z-
dc.date.available2019-02-23
dc.date.copyright2018-02-23
dc.date.issued2017
dc.date.submitted2018-01-29
dc.identifier.citationAnderson, B. G., & Droser, M. L. (1998). Ichnofabrics and geometric configurations of Ophiomorpha within a sequence stratigraphic framework: an example from the Upper Cretaceous US western interior. Sedimentology, 45(2), 379-396.
Berkenbusch, K., & Rowden, A. A. (1998). Population dynamics of the burrowing ghost shrimp Callianassa filholi on an intertidal sandflat in New Zealand (Decapoda: Thalassinidea). Ophelia, 49(1), 55-69.
Bromley, R. G., & Asgaard, U. (1991). Ichnofacies: a mixture of taphofacies and biofacies. Lethaia, 24(2), 153-163.
Bromley, R. G., & Frey, R. W. (1974). Redescription of the trace fossil Gyrolithes and taxonomic evaluation of Thalassinoides, Ophiomorpha and Spongeliomorpha. Bulletin of the Geological Society of Denmark, 23(3-4), 311-335.
Bromley, R. G., & Pedersen, G. K. (2008). Ophiomorpha irregulaire, Mesozoic trace fossil that is either well understood but rare in outcrop or poorly understood but common in core. Palaeogeography, Palaeoclimatology, Palaeoecology, 270(3-4), 295-298. doi:10.1016/j.palaeo.2008.07.017
Buatois, L. A., Gingras, M. K., MacEachern, J., Mángano, M. G., Zonneveld, J.-P., Pemberton, S. G., Netto Renata G, Martin, A. (2005). Colonization of brackish-water systems through time: evidence from the trace-fossil record. Palaios, 20(4), 321-347.
Chai, B. H. (1972). Structure and tectonic evolution of Taiwan. Am. J. Sci, 272(5), 389-422.
Curran, H., & Frey, R. (1977). Pleistocene trace fossils from North Carolina (USA), and their Holocene analogues. Trace fossils, 2, 139-162.
Curran, H., & White, B. (1999). Ichnology of Holocene carbonate eolianites on San Salvador Island, Bahamas: diversity and significance. Paper presented at the 9th Symposium on the Geology of the Bahamas and Other Carbonate Regions: San Salvador, Bahamian Field Station, Proceedings.
Curran, H. A. (1976). A trace fossil brood structure of probable callianassid origin. Journal of Paleontology, 249-259.
Curran, H. A. (1994). The palaeobiology of ichnocoenoses in Quaternary, Bahamian-style carbonate environments: the modern to fossil transition.

Curran, H. A., & Martin, A. J. (2003). Complex decapod burrows and ecological relationships in modern and Pleistocene intertidal carbonate environments, San Salvador Island, Bahamas. Palaeogeography, Palaeoclimatology, Palaeoecology, 192(1), 229-245.
Curran, H. A., & White, B. (1991). Trace fossils of shallow subtidal to dunal ichnofacies in Bahamian Quaternary carbonates. Palaios, 498-510.
Dadson, S. J., Hovius, N., Chen, H., Dade, W. B., Hsieh, M.-L., Willett, S. D., . . . Stark, C. P. (2003). Links between erosion, runoff variability and seismicity in the Taiwan orogen. Nature, 426(6967), 648-651.
de Gibert, J. M., Netto, R. G., Tognoli, F. M. W., & Grangeiro, M. E. (2006). Commensal worm traces and possible juvenile thalassinidean burrows associated with Ophiomorpha nodosa, Pleistocene, southern Brazil. Palaeogeography, Palaeoclimatology, Palaeoecology, 230(1-2), 70-84. doi:10.1016/j.palaeo.2005.07.008
Droser, M. L. (1991). Ichnofabric of the Paleozoic Skolithos ichnofacies and the nature and distribution of Skolithos piperock. Palaios, 316-325.
Droser, M. L., & Bottjer, D. J. (1989). Ichnofabric of sandstones deposited in high-energy nearshore environments: measurement and utilization. Palaios, 598-604.
Ekdale, A. (1988). Pitfalls of paleobathymetric interpretations based on trace fossil assemblages. Palaios, 464-472.
Fürsich, F. (1973). A revision of the trace fossils Spongeliomorpha, Ophiomorpha and Thalassinoides. Neues Jahrbuch für Geologie und Paläontologie, Monatshefte, 12, 719-735.
Farrow, G. (1971). Back-reef and lagoonal environments of Aldabra Atoll distinguished by their crustacea burrows.
Fischer-Ooster, C. (1858). Die fossilen Fucoiden der Schweizer-Alpen, nebst Erörterungen über deren geologisches Alter: In Comm bei der Buchh. Huber u. Comp.
Frey, R., & Howard, J. (1972). Georgia coastal region. Sapelo Island, USA, sedimentology and biology, VI, radiographic study of sedimentary structures made by beach and offshore animals in aquaria: Senckenbergiana Maritima, 4, 169-182.
Frey, R., & Mayou, T. (1971). Decapod burrows in Holocene barrier island beaches and washover fans, Georgia. Senckenbergiana maritima, 3, 53-77.
Frey, R. W., & Howard, J. D. (1975). Endobenthic adaptations of juvenile thalassinidean shrimp. Bulletin of the Geological Society of Denmark, 24, 283-297.
Frey, R. W., Howard, J. D., & Pryor, W. A. (1978). Ophiomorpha: its morphologic, taxonomic, and environmental significance. Palaeogeography, Palaeoclimatology, Palaeoecology, 23, 199-229.
Fuller, C. W., Willett, S. D., Hovius, N., & Slingerland, R. (2003). Erosion rates for Taiwan mountain basins: New determinations from suspended sediment records and a stochastic model of their temporal variation. The Journal of geology, 111(1), 71-87.
Herringshaw, L. G., Sherwood, O. A., & McILROY, D. (2010). Ecosystem engineering by bioturbating polychaetes in event bed microcosms. Palaios, 25(1), 46-58.
Hester, N., & Pryor, W. (1972). Blade-shaped crustacean burrows of Eocene age: a composite form of Ophiomorpha. Geological Society of America Bulletin, 83(3), 677-688.
Jones, B., & Pemberton, S. G. (1989). Sedimentology and ichnology of a Pleistocene unconformity-bounded, shallowing-upward carbonate sequence: the Ironshore Formation, Salt Creek, Grand Cayman. Palaios, 343-355.
Keij, A. J. (1965). Miocene Trace Fossils from Borneo. Paläontologische Zeitschrift, 39(3), 220-228. doi:10.1007/bf02990166
Knaust, D., Curran, H. A., & Dronov, A. V. (2012). Shallow-marine carbonates. Trace Fossils as Indicators of Sedimentary Environments: Amsterdam, Elsevier, Developments in Sedimentology, 64, 703-750.
Ksiaikiewicz, M. (1977). Trace fossils in the flysch of the Polish Carpathians. Paleontologia Polonica, 3611-3208.
Löwemark, L., Zheng, Y. C., Das, S., Yeh, C. P., & Chen, T. T. (2015). A peculiar reworking of Ophiomorph ashafts in the Miocene Nangang Formation, Taiwan. Geodinamica Acta, 28(1-2), 71-85. doi:10.1080/09853111.2015.1035208
Leaman, M., McIlroy, D., Herringshaw, L. G., Boyd, C., & Callow, R. H. T. (2015). What does Ophiomorpha irregulaire really look like? Palaeogeography, Palaeoclimatology, Palaeoecology, 439, 38-49. doi:10.1016/j.palaeo.2015.01.022
MacEachern, J. A., & Pemberton, S. G. (1994). Ichnological aspects of incised-valley fill systems from the Viking Formation of the Western Canada sedimentary basin, Alberta, Canada.
MacEachern, J. A., Raychaudhuri, I., & Pemberton, S. G. (1992). Stratigraphic applications of the Glossifungites ichnofacies: delineating discontinuities in the rock record.
Miller, M. F., Curran, H. A., & Martino, R. L. (1998). Ophiomorpha nodosa in estuarine sands of the lower Miocene Calvert Formation at the Pollack Farm Site, Delaware. Geology and paleontology of the lower Miocene Pollack Farm Fossil Site, Delaware: Delaware Geological Survey Special Publication(21), 41-46.
Netto, R. G., Curran, H. A., Belaústegui, Z., & Tognoli, F. M. (2017). Solving a cold case: New occurrences reinforce juvenile callianassids as the Ophiomorpha puerilis tracemakers. Palaeogeography, Palaeoclimatology, Palaeoecology, 475, 93-105.
Pemberton, S. G., & Frey, R. W. (1984). The Glossifungites ichnofacies: modern examples from the Georgia coast, USA.
Pemberton, S. G., Van Wagoner, J. C., & Wach, G. D. (1992). Ichnofacies of a wave-dominated shoreline.
Pollard, J. E., Goldring, R., & Buck, S. G. (1993). Ichnofabrics containing Ophiomorpha: significance in shallow-water facies interpretation. Journal of the Geological Society, 150(1), 149-164. doi:10.1144/gsjgs.150.1.0149
Pryor, W. A. (1973). Petrology and Sedimentology of Ophiomorpha Nodosa and Modern Callianasid Burrows. AAPG Bulletin, 57(4), 801-801.
Rodríguez-Tovar, F. J., Uchman, A., Payros, A., Orue-Etxebarria, X., Apellaniz, E., & Molina, E. (2010). Sea-level dynamics and palaeoecological factors affecting trace fossil distribution in Eocene turbiditic deposits (Gorrondatxe section, N Spain). Palaeogeography, Palaeoclimatology, Palaeoecology, 285(1-2), 50-65. doi:10.1016/j.palaeo.2009.10.022
Seikeb, H. A. C. a. K. (2016). Modern and fossil callianassid burrows of the bahamas: comparisons and implications for paleoenvironmental analysis.
Seilacher, A. (1967). Bathymetry of trace fossils. Marine geology, 5(5), 413-428.
Stewart, D. J. (1978). Ophiomorpha: a marine indicator? Proceedings of the Geologists' Association, 89(1), 3339-3741.
Strasser, K., & Felder, D. (1999a). Sand as a stimulus for settlement in the ghost shrimp Callichirus major (Say) and C. islagrande (Schmitt)(Crustacea: Decapoda: Thalassinidea). Journal of Experimental Marine Biology and Ecology, 239(2), 211-222.
Strasser, K., & Felder, D. (1999b). Settlement cues in an Atlantic coast population of the ghost shrimp Callichirus major (Crustacea: Decapoda: Thalassinidea). Marine Ecology Progress Series, 183, 217-225.
Suppe, J. (1984). Kinematics of arc-continent collision, flipping of subduction, and back-arc spreading near Taiwan. Mem. Geol. Soc. China, 6(21), V33.

Swinbanks, D. D., & Luternauer, J. L. (1987). Burrow distribution of thalassinidean shrimp on a Fraser Delta tidal flat, British Columbia. Journal of Paleontology, 61(02), 315-332.
Tamaki, A., & Ingole, B. (1993). Distribution of juvenile and adult ghost shrimps, Callianassa japonica Ortmann (Thalassinidea), on an intertidal sand flat: intraspecific facilitation as a possible pattern-generating factor. Journal of Crustacean Biology, 13(1), 175-183.
Tchoumatchenco, P., & Uchman, A. (2001). The oldest deep-sea Ophiomorpha and Scolicia and associated trace fossils from the Upper Jurassic–Lower Cretaceous deep-water turbidite deposits of SW Bulgaria. Palaeogeography, Palaeoclimatology, Palaeoecology, 169(1), 85-99.
Ter, P. C., & Buckeridge, J. S. J. (2012). Ophiomorpha beaumarisensis isp. Nov., a trace fossil from the late neogene beaumaris sanstone is the burrow of a thalassinidean lobster. Proceedings of the Royal Society of Victoria, 124(2), 223.
Uchman, A. (1998). Taxonomy and ethology of flysch trace fossils: revision of the Marian Ksiazkiewicz collection and studies of complementary material. Paper presented at the Annales Societatis Geologorum Poloniae.
Uchman, A. (2007). Deep-sea trace fossils from the mixed carbonate-siliciclastic flysch of the Monte Antola Formation (Late Campanian-Maastrichtian), North Apennines, Italy. Cretaceous Research, 28(6), 980-1004.
Uchman, A. (2009). The Ophiomorpha rudis ichnosubfacies of the Nereites ichnofacies: Characteristics and constraints. Palaeogeography, Palaeoclimatology, Palaeoecology, 276(1-4), 107-119. doi:10.1016/j.palaeo.2009.03.003
Uchman, A., & Krenmayr, H. G. (1995). Trace fossils from lower Miocene (Ottnangian) molasse deposits of Upper Austria. Paläontologische Zeitschrift, 69(3-4), 503-524.
Uchman, A., & Krenmayr, H. G. (2004). Trace fossils, ichnofabrics and sedimentary facies in the shallow marine Lower Miocene Molasse of Upper Austria. Jahrbuch der Geologischen Bundesanstalt, 144(2), 233-251.
Weimer, R. J., & Hoyt, J. H. (1964). Burrows of Callianassa major Say, geologic indicators of littoral and shallow neritic environments. Journal of Paleontology, 761-767.
Wetzel, A. (1991). Ecologic interpretation of deep-sea trace fossil communities. Palaeogeography, Palaeoclimatology, Palaeoecology, 85(1-2), 47-69.
Willett, S. D., Fisher, D., Fuller, C., En-Chao, Y., & Chia-Yu, L. (2003). Erosion rates and orogenic-wedge kinematics in Taiwan inferred from fission-track thermochronometry. Geology, 31(11), 945-948.

Chen, W.-S. (2005). Characteristic trace fossils from shoreface to offshore environments of an Oligocene succession, Northeastern Taiwan. TAO, 16, 1097–1120.
Chou, J. T. (1970). A stratigraphy and sedimentary analysis of the Miocene in northern Taiwan. Petroleum Geology of Taiwan, 7, 145–189.
Ho, C. S. (1986). Introduction to the geology of Taiwan: Explanatory text of the geologic map of Taiwan (p. 163). Taipei: Central Geologic Survey, MOEA.
Ho, C. S., Hsu, M. Y., Jen, L. S., & Fong, G. S. (1964). Geology and coal resources of the northern coastal area of Taiwan. Bulletin of the Geological Survey of Taiwan, 15, 1–23.
Hong, E., & Wang, Y. (1988). Basin analysis of the upper Miocene-lower Pliocene series in northwestern foothills of Taiwan. Ti-Chih, 8, 1–20.
Huang, C. K. (1955). Gold-copper deposits in the Chinkuashih mine, Taiwan, with special reference to the mineralogy. Acta geologica Taiwanica, 7, 1–20.
Huang, C. Y. (1990). Upper Miocene stratigraphy and the horizon of post- Lushanian fauna turnover in Northeastern Taiwan. Proceedings of the Geological Society of China, 33, 303–328.
Huang, C. Y., Cheng, Y. M., & Huang, T. (1979). Preliminary biostratigraphic study of the Nankang Formation in the Shuinantung section, northern Taiwan. Ti-Chih (In Chinese), 2, 1–11.
Shyu, J. B. H., Sieh, K., Chen, Y.-G., & Liu, C.-S. (2005). Neotectonic architecture of Taiwan and its implications for future large earthquakes. Journal of Geophysical Research: Solid Earth, 110, B08402. doi:10.1029/2004JB003251
Teng, L. S., Wang, Y., Tang, C. H., Huang, T. C., Yu, M. S., & Ke, A. (1991). Tectonic aspects of the Paleogene depositional basin of northern Taiwan. Proceedings of the Geological Society of China, 34, 313–316.
Wang, Y. (1953). Geology of the Chinkuashih and Chiufen districts, Taipei hsien, Taiwan. Acta geologica Taiwanica, 5, 47–67.
Yen, T. P., & Chen, P. Y. (1953). Explanatory text of the geologic map of Taiwan, Tatunshan Sheet (9 pp). Taipei: Geological Survey of Taiwan.
Yu, N. T. (1997). Sequence stratigraphy of the middle to upper Miocene strata, northern Taiwan: A preliminary study. Proceedings of the Geological Society of China, 40, 685–707.
Yu, N. T., & Teng, L. S. (1999). Depositional environments of the Taliao and Shihti Formations, northern Taiwan. Bulletin of the Central Geological Survey, Taiwan, 12, 99–132.
Yu, N. T., & Teng, S. L. (1996). Facies characteristics and depositional cycles of middle and upper Miocene strata of the Western Foothills, northern Taiwan. Ti-Chih, 15, 29–60.
市川雄一 (1929). 台湾桃園台地の礫層に就て. 地学雑誌, 41(7), 第396-403頁
王源 (1953) 臺灣台北縣金瓜石及九份一帶地質。國立臺灣大學理學院地質學系研究報告,5期,第47-67頁
顏滄波、陳培源 (1953) 五萬分之一臺灣地質圖說明書:第五號大屯山幅。臺灣省地質調查所,共10面
黃春江 (1955) 臺灣金瓜石金銅礦床及其礦物研究。國立臺灣大學理學院地質學系研究報告,7期,第1-20頁
何春蓀、徐茂揚、任樂孫、方傑士 (1964) 臺灣北部沿海區之地質及煤礦資源,臺灣省地質調查所彙刊。第15號,第1-23頁
何春蓀 (1966) 臺灣北部石底層之研究。臺灣省地質調查所彙刊,17號,共25頁
周瑞燉 (1968) 臺灣北部中新統之地層學及沈積學之研究。行政院國家科學委員會年報,第360頁
黃奇瑜、鄭穎敏、黃敦友 (1979) 台灣北部水湳洞剖面南港層之生物地層學初步研究。地質,2卷,第1-11頁
何春蓀 (1982) 臺灣地體構造的演變: 臺灣地體構造圖說明書。中華民國經濟部,共110頁
何春蓀 (1986) 台灣地質概論-台灣地質圖說明書,增訂二版。經濟部中央地質調查所,共164頁
洪奕星、王源 (1988)台灣西北部麓山帶中新統至下部上新統之盆地分析。地質,8卷,第1、2期合刊,第1-20頁。
洪奕星 (1988) 臺灣西北部麓山帶中新統至下部上新統岩相和生痕化石相分析以及沈積環境。國立臺灣大學地質學研究所博士論文,共114頁
洪奕星、王源 (1990) 臺灣西北部麓山帶中新世與上新世地層之研究。經濟部中央地質調查所特刊,4號,第49-62頁
黃奇瑜 (1990) 臺灣東北部晚中新統地層學及後廬山階生物變化層位之研究。中國地質學會會刊,33卷,4期,第303-328頁
洪奕星 (1994) 臺灣西部麓山帶岩石地層的研究。經濟部中央地質調查所特刊,8號,8號,第27-40頁
游能悌 (1995) 南港層與南裝層之層序地層初探。國立臺灣大學地質學研究所博士論文,共95頁
游能悌、鄧屬予 (1995) 中新統的岩相與沉積環境。地質,15卷,2期,第29-60頁
游能悌、鄧屬予 (1996) 臺灣北部中上中新統的岩相與沉積循環。地質,15卷,2期,第29-60頁
游能悌、鄧屬予 (1996) 臺灣北部大寮層與石底層之沉積環境。經濟部中央地質調查所彙刊,12號,第99-132頁
游能悌、鄧屬予 (1996) 臺灣西南部高雄上部新第三系楠梓仙溪剖面的岩相特徵,地質,15卷,第29-60頁
洪崇勝、謝凱旋 (2007) 臺灣第四紀磁生物地層及蓬萊造山運動。經濟部中央地質調查所特刊,18號,第51-83頁
鄧屬予(2007)。臺灣第四紀大地構造。經濟部中央地質調查所特刊,第十八號,第1-24頁。
吳樂群 (2011) 台灣北部中期中新統至上新統的生痕化石學研究。國科會計畫
景國恩 (2011) 台灣西南部地區活斷層之活動行為及其地震潛能探討。國立成功大學新進教師專題研究計畫成果報告,共10頁
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70155-
dc.description.abstract蝦類掘穴生痕化石(Ophiomorpha)擁有良好的辨識性及分布性,在沉積學的領域上經常用以辨識環境,是使用十分頻繁的古環境指標。其中屬於Ophiomorpha的各項生痕化石種,還可以搭配各種生痕化石相指示出更為詳盡的沉積相。憑藉著獨特的泥球牆壁以及多樣化的洞穴結構,Ophiomorpha在生痕化石中有著十分顯著的辨識度。然而,這種生痕化石目前卻缺乏在形態上用以界定各式種類的量化標準。
為了得出此生痕化石分類的型態標準,本研究在臺灣東北角海岸的中新世南港層,測量岩層中數量豐富的Ophiomorpha樣本並加以記錄分析。在野外工作中,本研究測量了每個樣本的管直徑、分岔角度、管壁分岔點的大小、還有兩個分岔點之間的距離,且經過測量樣本資料近乎500份。初步測量的結果包含了管壁直徑的大小坐落在0.8至5公分間,分岔間的距離範圍橫跨1到20公分,且分岔點的大小一般都略大於管壁。
為了建立相對客觀的量化標準,並將此標準加以利用在現行的生痕化石種之內。本研究對上述的測量結果進行近一步的統計分析。發現依照野外測量的型態特徵,所有的樣本可以分成兩群,第一群的管壁直徑皆小於2公分,由分岔角度和分岔間距離的分析可知,此群的分岔模式為樹枝狀且有較低的分岔頻率。第二群的管壁直徑皆大於兩公分,分岔模式為二分岔枝狀,三個分岔角度都接近120度左右,且擁有較高的分岔頻率。
本研究試圖將量化的形態學方法應用在生痕化石的領域上,並期許這項方法可以在生痕化石中篩選出更多可以使用的型態特徵,以及替生痕分類學中的型態標準建立新的模式。
zh_TW
dc.description.abstractThe trace fossil Ophiomorpha is commonly used as a paleoenvironment indicator in sandy environments by geologists. The ichnospecies of Ophiomorpha are also used for more detailed environment characterization in sedimentology and stratigraphy. The lined burrow system with knobby wall makes Ophiomorpha easily distinguishable from most other trace fossils. However, the morphological criteria used to distinguish between different morphologies or ichnospecies of the ichnogenus Ophiomorpha still remain poorly defined. In order to determine which properties of Ophiomorpha that can be used to separate the different morphotypes, and how to apply those properties in the classification of this ichnogenus, observations on a large number of specimens are needed. The Miocene Nangang Formation on the Northeast Coast of Taiwan provides well-exposed outcrops with abundant Ophiomorpha, allowing different morphotypes to be observed and measured. Through the field work in Nangang Formation, nearly 500 specimens of lined, tubular trace fossil have been analyzed and their architectural features, such as representative tube diameter, size of junctions, the distance between two adjacent junctions, and branching angles have been measured. The tube diameters typically are around 0.8-5.0 centimeters and the junction sizes are usually slightly larger than tube diameters. The distances between junctions vary greatly, usually ranging from 1.0 to 20.0 centimeters.
This research attempts to build objective criteria to distinguish among the different characteristics of Ophiomorpha, and then clarify the connection between the observed morphologies and the established ichnospecies of Ophiomorpha. The statistical analysis of the morphological data reveals a high correlation between outer and inner tube wall diameters. Based on differences in parameters such as distance between junctions, tube diameters, and branching angles, the observed burrow systems can also be separated into two major groups. The first group have smaller tube diameter (<2 centimeters) and lower branching frequency, and their branching show a dendritic pattern. The second group has bigger tube diameters (>2 centimeters), higher branching frequency, and their branching pattern is of dichotomous type, with branching angles around 120 degrees.
This research demonstrates that the quantitative morphological method can not only be applied in paleontology on body fossils, but the method can also be used to search for patterns and set morphological criteria for trace fossils.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T03:46:32Z (GMT). No. of bitstreams: 1
ntu-106-R03224114-1.pdf: 11330422 bytes, checksum: c1328c961d10ee7b6cfe95eb38b2a8df (MD5)
Previous issue date: 2017
en
dc.description.tableofcontents致謝 3
Contents 5
List of Tables 8
List of Figures 9
中文摘要 11
Abstract 13
Chapter 1 Introduction 15
1.1 Trace fossils 15
1.2 Objectives 18
Chapter 2 Background 20
2.1 Geological setting 20
2.2 The ichnogenus Ophiomorpha Lundgren, 1891 27
2.2.1 Morphology of Ophiomorpha 27
2.3 Ichnotaxonomy of Ophiomorpha 32
2.3.1 Ichnogenera of branching burrow traces 32
2.3.2 Ichnospecies of Ophiomorpha 33
2.4 Ophiomorpha as an indicator for different environments 40
2.4.1 The indication with burrows in morphology and diversity 40
2.4.2 The ichnoassemblage containing Ophiomorpha 42
Chapter 3 Methodology 44
3.1 The morphological measurement of ichnofossils 46
3.1.1 Tube Diameter: 47
3.1.2 Junction size 48
3.1.3 Branching distance 48
3.1.4 Branching angle 49
3.1.5 Pellet size 51
3.2 The limitation of the morphological measurement 52
3.2.1 The measurements are restrained to 2- dimensions 52
3.2.2 The erosion rate in northeast coast of Taiwan 54
3.2.3 The dilemma of the tube diameters 55
3.3 Data processing 57
3.4 Mineralogical and petrographic observation 58
Chapter 4 Results 60
4.1 The sedimentary environment of the Fanziao area 60
4.2 Observations on the Ophiomorpha specimen in the Fanziao area 65
4.2.1 The features of Ophiomorpha 65
4.2.2 Ichnotaxa of the big and small type of Ophiomorpha 71
4.3 The morphological analysis 76
4.3.1 The tube diameter and wall thickness 76
4.3.2 The branching junctions 78
4.3.3 The branching distance and branching frequency 80
4.3.4 The branching angle 82
4.3.5 The shape and aspect ratio of pellets 89
4.4 The petrographic result 92
4.4.1 Petrographic observations of the smaller group 93
4.4.2 Petrographic observations of the bigger group 95
Chapter 5 Discussion 97
5.1 Grouping of Ophiomorpha according to morphological features 97
5.1.1 The outer diameter and the branching junction 97
5.1.2 The ratio of branching distance and outer diameter 98
5.1.3 The branching patterns 102
5.1.4 The pellets morphology 105
5.1.5 Morphological similarities between the two groups 107
5.2 Ethological interpretation of the small groups 108
5.2.1 The stability of the burrow structure 109
5.2.2 The consumption of energy 110
5.2.3 The main purpose of the small burrow 110
5.2.4 The relationship between the two groups of burrowers 113
5.3 The quantitative morphology in ichnotaxanomy 115
Chapter 6 Conclusion 118
Reference 120
Appendix 128
dc.language.isoen
dc.subject沉積相zh_TW
dc.subject蝦類掘穴生痕化石zh_TW
dc.subject中新世zh_TW
dc.subject南港層zh_TW
dc.subject生痕化石型態zh_TW
dc.subjectTrace fossilsen
dc.subjectNangang Formationen
dc.subjectOphiomorphaen
dc.subjectMorphologyen
dc.subjectSedimentary faciesen
dc.subjectMioceneen
dc.title臺灣東北海岸南港層生痕化石Ophiomorpha isp.量化型態類型分析zh_TW
dc.titleQuantitative Morphological Analysis of the Trace Fossil Ophiomorpha isp. in Nangang Formation, Northeast Coast of Taiwanen
dc.typeThesis
dc.date.schoolyear106-1
dc.description.degree碩士
dc.contributor.oralexamcommittee陳文山(Wen-Shan Chen),游能悌(Neng-Ti Yu),吳天偉(Tin-Wai Ng)
dc.subject.keyword南港層,蝦類掘穴生痕化石,生痕化石型態,沉積相,中新世,zh_TW
dc.subject.keywordNangang Formation,Ophiomorpha,Morphology,Sedimentary facies,Miocene,Trace fossils,en
dc.relation.page210
dc.identifier.doi10.6342/NTU201800205
dc.rights.note有償授權
dc.date.accepted2018-01-29
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept地質科學研究所zh_TW
顯示於系所單位:地質科學系

文件中的檔案:
檔案 大小格式 
ntu-106-1.pdf
  未授權公開取用
11.06 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved