請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70123完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李銘仁(Ming-Jen Lee) | |
| dc.contributor.author | Tien-Yin Shih | en |
| dc.contributor.author | 史天音 | zh_TW |
| dc.date.accessioned | 2021-06-17T03:44:45Z | - |
| dc.date.available | 2020-03-29 | |
| dc.date.copyright | 2018-03-29 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2018-02-02 | |
| dc.identifier.citation | 1. Walker, B.A., et al., Hypochondroplasia. Am J Dis Child, 1971. 122(2): p. 95-104. 2. McKusick, V.A., T.E. Kelly, and J.P. Dorst, Observations suggesting allelism of the achondroplasia and hypochondroplasia genes. J Med Genet, 1973. 10(1): p. 11-6. 3. Trujillo-Tiebas, M.J., et al., Prenatal diagnosis of skeletal dysplasia due to FGFR3 gene mutations: a 9-year experience : prenatal diagnosis in FGFR3 gene. J Assist Reprod Genet, 2009. 26(8): p. 455-60. 4. Horton, W.A., J.G. Hall, and J.T. Hecht, Achondroplasia. The Lancet, 2007. 370(9582): p. 162-172. 5. 陳盈夙, <台灣青壯年軟骨發育不全者之身體健康狀況身體活動量與健康相關生活品質.pdf>. 2008. 6. Shiang, R., et al., Mutations in the transmembrane domain of FGFR3 cause the most common genetic form of dwarfism, achondroplasia. Cell, 1994. 78(2): p. 335-42. 7. Rousseau, F., et al., Mutations in the gene encoding fibroblast growth factor receptor-3 in achondroplasia. 1994. 8. Bellus, G.A., et al., Achondroplasia is defined by recurrent G380R mutations of FGFR3. Am J Hum Genet, 1995. 56(2): p. 368-73. 9. Tsai, F.J., et al., Mutations in the fibroblast growth factor receptor 3 (FGFR3) cause achondroplasia, hypochondroplasia, and thanatophoric dysplasia: Taiwanese data. Am J Med Genet, 1999. 86(3): p. 300-1. 10. Ornitz, D.M. and L. Legeai-Mallet, Achondroplasia: Development, pathogenesis, and therapy. Dev Dyn, 2017. 246(4): p. 291-309. 11. Foldynova-Trantirkova, S., W.R. Wilcox, and P. Krejci, Sixteen years and counting: the current understanding of fibroblast growth factor receptor 3 (FGFR3) signaling in skeletal dysplasias. Hum Mutat, 2012. 33(1): p. 29-41. 12. Richette, P., T. Bardin, and C. Stheneur, Achondroplasia: from genotype to phenotype. Joint Bone Spine, 2008. 75(2): p. 125-130. 13. Waters, K.A., et al., Treatment of obstructive sleep apnea in achondroplasia: evaluation of sleep, breathing, and somatosensory-evoked potentials. Am J Med Genet, 1995. 59(4): p. 460-6. 14. Pauli, R.M., et al., Prevention of fixed, angular kyphosis in achondroplasia. J Pediatr Orthop, 1997. 17(6): p. 726-33. 15. Pyeritz, R.E., G.H. Sack, Jr., and G.B. Udvarhelyi, Thoracolumbosacral laminectomy in achondroplasia: long-term results in 22 patients. Am J Med Genet, 1987. 28(2): p. 433-44. 16. Kahanovitz, N., D.L. Rimoin, and D.O. Sillence, The clinical spectrum of lumbar spine disease in achondroplasia. Spine (Phila Pa 1976), 1982. 7(2): p. 137-40. 17. Bellus, G.A., et al., Hypochondroplasia: molecular analysis of the fibroblast growth factor receptor 3 gene. Ann N Y Acad Sci, 1996. 785: p. 182-7. 18. Bober, M.B., et al., Hypochondroplasia, in GeneReviews(R), R.A. Pagon, et al., Editors. 1993, University of Washington, SeattleUniversity of Washington, Seattle. All rights reserved.: Seattle (WA). 19. Passos-Bueno, M.R., et al., Clinical spectrum of fibroblast growth factor receptor mutations. Hum Mutat, 1999. 14(2): p. 115-25. 20. Tavormina, P.L., et al., Another mutation that results in the substitution of an unpaired cysteine residue in the extracellular domain of FGFR3 in thanatophoric dysplasia type I. Hum Mol Genet, 1995. 4(11): p. 2175-7. 21. Rousseau, F., et al., Missense FGFR3 mutations create cysteine residues in thanatophoric dwarfism type I (TD1). Hum Mol Genet, 1996. 5(4): p. 509-12. 22. Chen, C.P., et al., Prenatal diagnosis and genetic analysis of type I and type II thanatophoric dysplasia. Prenat Diagn, 2001. 21(2): p. 89-95. 23. Karczeski B, C.G. Thanatophoric Dysplasia. 2004 2013 Sep 12; Available from: https://www.ncbi.nlm.nih.gov/books/NBK1366/. 24. Pazzaglia, U.E., et al., Thanatophoric dysplasia. Correlation among bone X-ray morphometry, histopathology, and gene analysis. Skeletal Radiol, 2014. 43(9): p. 1205-15. 25. Wilcox, W.R., et al., Molecular, radiologic, and histopathologic correlations in thanatophoric dysplasia. Am J Med Genet, 1998. 78(3): p. 274-81. 26. Jung, M. and S.H. Park, Genetically confirmed thanatophoric dysplasia with fibroblast growth factor receptor 3 mutation. Exp Mol Pathol, 2017. 102(2): p. 290-295. 27. Keegan, K., et al., Isolation of an additional member of the fibroblast growth factor receptor family, FGFR-3. Proc Natl Acad Sci U S A, 1991. 88(4): p. 1095-9. 28. RM., P. Achondroplasia. 1998 2012 Feb 16; Available from: https://www.ncbi.nlm.nih.gov/books/NBK1152/. 29. Narayana, J. and W.A. Horton, FGFR3 biology and skeletal disease. Connect Tissue Res, 2015. 56(6): p. 427-33. 30. Ornitz, D.M. and P.J. Marie, Fibroblast growth factor signaling in skeletal development and disease. Genes development, 2015. 29(14): p. 1463-1486. 31. Monsonego-Ornan, E., et al., The transmembrane mutation G380R in fibroblast growth factor receptor 3 uncouples ligand-mediated receptor activation from down-regulation. Mol Cell Biol, 2000. 20(2): p. 516-22. 32. Junker, K., et al., Fibroblast Growth Factor Receptor 3 Mutations in Bladder Tumors Correlate with Low Frequency of Chromosome Alterations. Neoplasia (New York, N.Y.), 2008. 10(1): p. 1-7. 33. Harada, D., et al., FGFR3-related dwarfism and cell signaling. Journal of bone and mineral metabolism, 2009. 27(1): p. 9-15. 34. Naski, M.C., et al., Graded activation of fibroblast growth factor receptor 3 by mutations causing achondroplasia and thanatophoric dysplasia. Nat Genet, 1996. 13(2): p. 233-7. 35. Su, W.C., et al., Activation of Stat1 by mutant fibroblast growth-factor receptor in thanatophoric dysplasia type II dwarfism. Nature, 1997. 386(6622): p. 288-92. 36. Xue, Y., et al., FGFR3 mutation frequency in 324 cases from the International Skeletal Dysplasia Registry. Mol Genet Genomic Med, 2014. 2(6): p. 497-503. 37. Heuertz, S., et al., Novel FGFR3 mutations creating cysteine residues in the extracellular domain of the receptor cause achondroplasia or severe forms of hypochondroplasia. Eur J Hum Genet, 2006. 14(12): p. 1240-7. 38. Almeida, M.R., et al., Clinical and molecular diagnosis of the skeletal dysplasias associated with mutations in the gene encoding Fibroblast Growth Factor Receptor 3 (FGFR3) in Portugal. Clin Genet, 2009. 75(2): p. 150-6. 39. Hatzaki, A., et al., FGFR3 related skeletal dysplasias diagnosed prenatally by ultrasonography and molecular analysis: presentation of 17 cases. Am J Med Genet A, 2011. 155a(10): p. 2426-35. 40. Briggs MD, W.M. Pseudoachondroplasia. . [GeneReviews®] 2004 Aug 20 2015 Jul 16; Available from: https://www.ncbi.nlm.nih.gov/books/NBK1487/. 41. Jackson, G.C., et al., Pseudoachondroplasia and multiple epiphyseal dysplasia: a 7-year comprehensive analysis of the known disease genes identify novel and recurrent mutations and provides an accurate assessment of their relative contribution. Hum Mutat, 2012. 33(1): p. 144-57. 42. Paassilta, P., et al., COL9A3: A third locus for multiple epiphyseal dysplasia. Am J Hum Genet, 1999. 64(4): p. 1036-44. 43. Jung, W.W., et al., COMP and Col9A3 mutations and their relationship to the pseudoachondroplasia phenotype. Int J Mol Med, 2010. 26(6): p. 885-91. 44. Binder G, R.G. SHOX Deficiency Disorders. 2005 Dec 12 2015 Aug 20; Available from: https://www.ncbi.nlm.nih.gov/books/NBK1215/. 45. Nishimura, G., et al., The phenotypic spectrum of COL2A1 mutations. Hum Mutat, 2005. 26(1): p. 36-43. 46. Bonafé L, M.-C.L., Ballhausen D, et al. Diastrophic Dysplasia. [GeneReviews®] 2004 Nov 15 2013 Jul 18; Available from: https://www.ncbi.nlm.nih.gov/books/NBK1350/. 47. Loeys, B.L., et al., The revised Ghent nosology for the Marfan syndrome. J Med Genet, 2010. 47(7): p. 476-85. 48. Krakow, D., R.S. Lachman, and D.L. Rimoin, Guidelines for the prenatal diagnosis of fetal skeletal dysplasias. Genetics in medicine : official journal of the American College of Medical Genetics, 2009. 11(2): p. 127-133. 49. Barkova, E., et al., Fetal skeletal dysplasias in a tertiary care center: radiology, pathology, and molecular analysis of 112 cases. Clin Genet, 2015. 87(4): p. 330-7. 50. Parilla, B.V., et al., Antenatal detection of skeletal dysplasias. Journal of Ultrasound in Medicine, 2003. 22(3): p. 255-258. 51. Chitty, L.S., et al., New aids for the non-invasive prenatal diagnosis of achondroplasia: dysmorphic features, charts of fetal size and molecular confirmation using cell-free fetal DNA in maternal plasma. Ultrasound Obstet Gynecol, 2011. 37(3): p. 283-9. 52. Chen, C.P., et al., Detection of a de novo Y278C mutation in FGFR3 in a pregnancy with severe fetal hypochondroplasia: prenatal diagnosis and literature review. Taiwan J Obstet Gynecol, 2013. 52(4): p. 580-5. 53. Huang, H., et al., Prenatal diagnosis of single gene disorders using amniotic fluid as the starting material for PCR. Analyst, 2016. 141(1): p. 285-290. 54. Kurt-Sukur, E.D., et al., Experience of a skeletal dysplasia registry in Turkey: a five-years retrospective analysis. Am J Med Genet A, 2015. 167a(9): p. 2065-74. 55. Pauli, R.M., et al., Prospective assessment of risks for cervicomedullary-junction compression in infants with achondroplasia. Am J Hum Genet, 1995. 56(3): p. 732-44. 56. Todros, T., et al., Fetal short femur length in the second trimester and the outcome of pregnancy. Bjog, 2004. 111(1): p. 83-5. 57. Oberklaid, F., et al., Achondroplasia and hypochondroplasia. Comments on frequency, mutation rate, and radiological features in skull and spine. Journal of medical genetics, 1979. 16(2): p. 140-146. 58. Cohen, M.M., Jr., Achondroplasia, hypochondroplasia and thanatophoric dysplasia: clinically related skeletal dysplasias that are also related at the molecular level. Int J Oral Maxillofac Surg, 1998. 27(6): p. 451-5. 59. Bridges, N.A. and C.G. Brook, Progress report: growth hormone in skeletal dysplasia. Horm Res, 1994. 42(4-5): p. 231-4. 60. Lorget, F., et al., Evaluation of the therapeutic potential of a CNP analog in a Fgfr3 mouse model recapitulating achondroplasia. Am J Hum Genet, 2012. 91(6): p. 1108-14. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70123 | - |
| dc.description.abstract | 背景 骨骼異常在新生兒中之發生率大約為1/4,000到1/5,000,常見的骨骼異常往往包含了骨骼發育、生長、骨骼平衡的整體系統異常。其中FGFR3基因相關骨骼異常疾病為最常見的骨骼發育異常,其常見種類包含以下四種:軟骨發育不全症 (Achondroplasia; ACH)、次軟骨發育不全症 (Hypochondroplasia; HCH)、和致死性畸胎侏儒症第一型及第二型 (Thanatophoric Dysplasia type I II; TD I II)。ACH的患者之智力發育正常,但普遍身形矮小、前額凸出、及鼻梁扁平,該疾病之發生率約1/15,000 到 1/40,000;HCH的患者出生時症狀並不明顯,因出生時身高體重及頭圍皆為正常,但於童年時期約2~4歲時症狀會變得顯著;而TD為新生兒期致死性的疾病,特徵是骨骼發育異常,包括四肢嚴重的變短、窄的胸部及水腦症,但軀幹長度正常,其中致死性畸胎侏儒症也可依照形態不同分成Type I 和 Type II,患者無法長大成人,疾病之發生率大約1/20,000到1/50,000。 不論在產前或者是出生後,當醫療人員觀察到腿骨短小或身材矮小的時候,往往直接懷疑為FGFR3基因相關的骨骼異常疾病,但不夠精確的診斷卻會導致FGFR3基因的檢出率低下。因此,希望可以合併症狀蒐集清單,用以建立一個更完整的篩檢流程,給予診斷一個切入的著手點。除此之外,記錄更詳盡的臨床症狀,亦可協助臨床端之醫療人員判別該症狀是否和FGFR3基因相關之骨骼異常疾病有關,藉此確立是否需要進行基因檢測,並且提高檢出效率,避免不必要的花費和檢測。 方法 蒐集2003年09月10日至2016年06月03日由臺大醫院、禾馨婦產科、和禾馨民權婦幼診所,送檢至慧智臨床基因醫學實驗室,進行FGFR3基因檢測之檢體共158份進行FGFR3 基因突變熱點之檢測,並且以FGFR3基因相關之骨骼發育異常疾病症狀蒐集清單,做回溯性臨床症狀資料搜集,藉此希望降低單靠臨床症狀診斷的偽陽性。產前個案我們蒐集「基因檢測送檢時」之臨床資料,而出生後個案則蒐集「送基因檢測前至送檢半年內」的臨床資料。其中FGFR3基因相關之骨骼發育異常疾病症狀蒐集清單,分類為產前四大項和出生後五大項,並且以各大項中之子項進行敘述統計以及多變項邏輯回歸分析。 結果 在158位蒐集個案之FGFR3基因檢出率為26% (41/158),以基因點位歸類的疾病種類比例中軟骨發育不全症 (Achondroplasia; ACH)所佔比例為54% (22/41)、次軟骨發育不全症 (Hypochondroplasia; HCH) 佔20% (8/41)、致死性畸胎侏儒症第一型 (Thanatophoric Dysplasia type I; TD I) 佔24% (10/41)、致死性畸胎侏儒症第二型 (Thanatophoric Dysplasia type II; TD II) 佔2% (1/41);其中產前108份檢體的FGFR3基因檢出率為22% (24/108),而出生後的50份檢體的FGFR3基因檢出率為34% (17/50)。 若按照症狀蒐集清單記錄之項目分析,產前個案若記錄超過三項以上的子項,檢出效率可以超過50%;出生後個案若記錄超過六項以上的子項,檢出效率可以超過50%。 結論 現行臺灣骨骼異常之個案,雖然導因於FGFR3基因相關之骨骼異常疾病在臨床上相對常見,但其檢出效率卻始終低下,經由本次的資料統計和分析後發現,若在臨床上在送基因檢測前合併使用症狀蒐集清單,或許可透過勾選的項目總數(產前個案記錄超過三項以上及出生後個案記錄超過六項以上)提升送基因診斷後的檢出效率,但更重要的是可利用症狀蒐集清單蒐集更多臨床症狀,進而建議未來於基因診斷前先以症狀蒐集清單評估個案。 另外,本症狀蒐集清單對於FGFR3基因相關之骨骼異常疾病的家族基因諮詢上,可藉由此清單分析同家族之各個體是否有表現型上的差異,進而預期疾病的病情進展和可能遭遇的症狀;對於自體突變的個案來說,此清單不但可以增加臨床症狀的資料搜集,還可以藉由勾選的清單分析個案之臨床症狀是否和FGFR3基因相關骨骼異常疾病相似,亦可邁向提升檢出效率的目標。且因骨骼發育相關之致病基因種類繁多,在目標疾病檢測流程中,未於FGFR3基因熱點找到突變點位之個案,可利用NGS平台進行其他骨骼發育異常的基因檢測。 | zh_TW |
| dc.description.abstract | BACKGROUND Skeletal dysplasia (SD), characterized by developmental delay of long bone, is not a common skeletal disorder. It has been estimated that the incidence of SD in newborns is about 1 in 4,000 ~ 5,000. In terms of etiology, most of SD are FGFR3 gene related. Clinically, there are four different types for FGFR3 gene related SD, i.e. achondroplasia (ACH), hypochondroplasia (HCH), thanatophoric dysplasia types-I (TD I) -II (TD II). Patients with ACH are often short in stature, bossing of frontal lobe and low in nasal bridge. The intelligence development for ACH patient is usually normal. The incidence of ACH is estimated to be 1 in 15,000 and 40,000. The clinical severity of HCH patients is much less than that of ACH ones. The body height, head size and body weight at birth of the HCH patient are normal; but the growth rate becomes slow since their 2 ~4 years old. Patients with TD are usually lethal. Patients with TD I and TD II present extreme short extremities, hypoplastic thorax and hydrocephalus. The incidence for TD is 1 in 20,000 and 50,000, which is much lower than that of ACH. FGFR3 gene related SD is the most common type among the patients with SD. Screening for a mutation of FGFR3 gene is frequently requested in clinical practice. However, the low detection rate might be a hurdle for diagnosis. In this study, I traced the medical recordings and evaluated the frequencies of individual symptoms and signs in both prenatal and postnatal referred patients. Frequencies of presentations were also measured in patients with a positive mutation in FGFR3 gene hotspot. The goal is to improve the detection rate of FGFR3 mutation based on the clinical screening checklist. METHOD One hundred and fifty-eight patients were recruited from National Taiwan University Hospital and Diathus MFM clinic between September 10th, 2013 and June 3rd, 2016. After the DNA is extracted, it has been subjected to screen for a mutation in FGFR3 gene. The exons with a mutation hotspot and their flanking regions were amplified by polymerase chain reaction. The amplicons were sequenced by an DNA automatic sequencer to identify a variant. In addition to determine the detection rate, the medical records of the patients were traced to obtain the clinical features. Based on the features, a clinical screening checklist has been designed. The list was categorized into prenatal and postnatal parts, which had four and five items, respectively, which we analysis with descriptive statistics and multiple logistic regression analysis. RESULTS The detection rate for FGFR3 mutations in patients with SD is 26% (41/158), which is 22% (24/108) for prenatal cases and 34% (17/50) for postnatal ones. Among the forty-one SD patients, twenty-two had a clinical diagnosis of ACH, eight with HCH, ten with TD I and only one with TD II. The detection rate could attain 50% or even higher, if the SD patients had the clinical features fulfilling 3 items in prenatal- and 6 items in postnatal- checklist. Moreover, we expect to use the clinical screening checklist to obtain more clinical symptoms of FGFR3 gene related SD patients, and by doing so, we recommend to use the clinical screening checklist before having a FGFR3 gene hotspot test. CONCLUSION Up to date, the detection rate for a FGFR3 mutation in SD patients is not high, although it is the most common cause. According to our study, the situation could be improved as long as careful scoring the clinical features based on the symptom screening checklist. For those patients with a positive family history, the list can help us to uncover the variable manifestations among the family members with the same mutation. In those patients with a de novo mutation, any newly identified clinical features can also expand the database to be more comprehensive. These findings can help a genetic counselor to estimate the detection rate of a FGFR3 mutation; then, to give a suggestion to the couple who have a positive family history of SD. Moreover, for those patients who didn't harbor a mutation in FGFR3 gene could check for skeletal Dysplasia related NGS panel for further evaluation. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T03:44:45Z (GMT). No. of bitstreams: 1 ntu-107-P04448010-1.pdf: 11429324 bytes, checksum: 31de49ed32378e013d802062f81586e2 (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | 口試委員會審定書 i 誌謝 ii 中文摘要 iii 英文摘要 vi 目 錄 ix 圖目錄 xi 表目錄 xiii 第 1 章 緒論 1 1.1 FGFR3 基因相關骨骼發育不全症 1 1.1.1 軟骨發育不全症 (Achondroplasia; ACH) 1 1.1.2 次軟骨發育不全症 (Hypochondroplasia; HCH) 3 1.1.3 致死性畸胎侏儒症第一型及第二型 (Thanatophoric Dysplasia type I II; TD I II) 3 1.2 FGFR3 基因 4 1.2.1 FGFR3 基因簡介 4 1.2.2 FGFR3 基因型及表現型 6 1.2.3 FGFR3 基因突變熱點 7 1.2.4 相關骨骼發育不全症相關基因 9 1.3 研究動機 11 1.4 研究目的 12 第 2 章 研究方法 13 2.1 個案來源 13 2.2 FGFR3 基因突變熱點定義 14 2.3 症狀蒐集清單評估項目 16 2.4 資料分析方法 19 2.5 PCR 的過程 19 2.6 電泳及純化的實驗過程 20 2.7 定序的實驗過程 21 第 3 章 結果 23 3.1 FGFR3 基因的檢出率 23 3.2 症狀蒐集清單之信度與多變項邏輯迴歸分析 23 3.3 FGFR3 基因突變點位之分析 24 3.3.1 產前具有突變點位個案的陽性比例 25 3.3.2 產前具有突變點位個案的記錄比例 25 3.3.3 出生後具有突變點位個案的陽性比例 26 3.3.4 出生後具有突變點位個案的記錄比例 27 3.4 檢出率的差異 29 第 4 章 討論 31 4.1 陽性比例及記錄比例之意義 32 4.2 信度及多變項邏輯迴歸分析之意義 35 4.3 限制 36 4.4 治療 38 4.5 遺傳諮詢師的角色 39 第 5 章 結論 40 參考文獻 42 附錄 46 | |
| dc.language.iso | zh-TW | |
| dc.subject | 骨骼發育異常 | zh_TW |
| dc.subject | FGFR3基因相關症狀蒐集清單 | zh_TW |
| dc.subject | FGFR3基因檢出率 | zh_TW |
| dc.subject | FGFR3基因 | zh_TW |
| dc.subject | FGFR3基因檢測流程 | zh_TW |
| dc.subject | FGFR3 gene test flow chart | en |
| dc.subject | skeletal dysplasia | en |
| dc.subject | FGFR3 gene | en |
| dc.subject | mutation detection rate | en |
| dc.subject | skeletal dysplasia clinical screening checklists | en |
| dc.subject | FGFR3 gene test flow chart | en |
| dc.subject | skeletal dysplasia | en |
| dc.subject | FGFR3 gene | en |
| dc.subject | mutation detection rate | en |
| dc.subject | skeletal dysplasia clinical screening checklists | en |
| dc.title | 臺灣FGFR3基因相關骨骼發育不全症之分子診斷與基因型-表現型之分析 | zh_TW |
| dc.title | Molecular Diagnosis of the FGFR3 Gene and Phenotype- Genotype Analysis in Taiwanese Patients with FGFR3 Mutation Associated Skeletal Dysplasia | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 江鴻生(Hongsen Chiang),蘇怡寧(Yi-Ning Su) | |
| dc.subject.keyword | 骨骼發育異常,FGFR3基因,FGFR3基因檢出率,FGFR3基因相關症狀蒐集清單,FGFR3基因檢測流程, | zh_TW |
| dc.subject.keyword | skeletal dysplasia,FGFR3 gene,mutation detection rate,skeletal dysplasia clinical screening checklists,FGFR3 gene test flow chart, | en |
| dc.relation.page | 70 | |
| dc.identifier.doi | 10.6342/NTU201800234 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2018-02-02 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 分子醫學研究所 | zh_TW |
| 顯示於系所單位: | 分子醫學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-1.pdf 未授權公開取用 | 11.16 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
