Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 生物化學暨分子生物學科研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70115
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李明學
dc.contributor.authorShang-Ru Wuen
dc.contributor.author吳尚儒zh_TW
dc.date.accessioned2021-06-17T03:44:18Z-
dc.date.available2028-02-01
dc.date.copyright2018-02-22
dc.date.issued2017
dc.date.submitted2018-02-02
dc.identifier.citation1. Haas, G.P., N. Delongchamps, O.W. Brawley, C.Y. Wang, and G. de la Roza, The worldwide epidemiology of prostate cancer: perspectives from autopsy studies. Can J Urol, 2008. 15(1): p. 3866-71.
2. Siegel, R.L., K.D. Miller, and A. Jemal, Cancer Statistics, 2017. CA Cancer J Clin, 2017. 67(1): p. 7-30.
3. Humphrey, P.A., Histological variants of prostatic carcinoma and their significance. Histopathology, 2012. 60(1): p. 59-74.
4. Gjertson, C.K. and P.C. Albertsen, Use and assessment of PSA in prostate cancer. Med Clin North Am, 2011. 95(1): p. 191-200.
5. Yang, Z., L. Yu, and Z. Wang, PCA3 and TMPRSS2-ERG gene fusions as diagnostic biomarkers for prostate cancer. Chin J Cancer Res, 2016. 28(1): p. 65-71.
6. Keyes, M., J. Crook, G. Morton, E. Vigneault, N. Usmani, and W.J. Morris, Treatment options for localized prostate cancer. Can Fam Physician, 2013. 59(12): p. 1269-74.
7. Moreau, J.P., P. Delavault, and J. Blumberg, Luteinizing hormone-releasing hormone agonists in the treatment of prostate cancer: a review of their discovery, development, and place in therapy. Clin Ther, 2006. 28(10): p. 1485-508.
8. Phillips, I., S.I. Shah, T. Duong, P. Abel, and R.E. Langley, Androgen Deprivation Therapy and the Re-emergence of Parenteral Estrogen in Prostate Cancer. Oncol Hematol Rev, 2014. 10(1): p. 42-47.
9. Turo, R., M. Smolski, R. Esler, M.L. Kujawa, S.J. Bromage, N. Oakley, A. Adeyoju, S.C. Brown, R. Brough, A. Sinclair, and G.N. Collins, Diethylstilboestrol for the treatment of prostate cancer: past, present and future. Scand J Urol, 2014. 48(1): p. 4-14.
10. Shore, N.D. and E.D. Crawford, Intermittent androgen deprivation therapy: redefining the standard of care? Rev Urol, 2010. 12(1): p. 1-11.
11. Higano, C.S., Intermittent versus continuous androgen deprivation therapy. J Natl Compr Canc Netw, 2014. 12(5): p. 727-33.
12. Ferraldeschi, R., J. Welti, J. Luo, G. Attard, and J.S. de Bono, Targeting the androgen receptor pathway in castration-resistant prostate cancer: progresses and prospects. Oncogene, 2015. 34(14): p. 1745-57.
13. Teply, B.A. and R.J. Hauke, Chemotherapy options in castration-resistant prostate cancer. Indian J Urol, 2016. 32(4): p. 262-270.
14. Torre, L.A., R.L. Siegel, and A. Jemal, Lung Cancer Statistics. Adv Exp Med Biol, 2016. 893: p. 1-19.
15. Molina, J.R., P. Yang, S.D. Cassivi, S.E. Schild, and A.A. Adjei, Non-small cell lung cancer: epidemiology, risk factors, treatment, and survivorship. Mayo Clin Proc, 2008. 83(5): p. 584-94.
16. Bunn, P.A., Jr. and K. Kelly, New chemotherapeutic agents prolong survival and improve quality of life in non-small cell lung cancer: a review of the literature and future directions. Clin Cancer Res, 1998. 4(5): p. 1087-100.
17. Chang, A., Chemotherapy, chemoresistance and the changing treatment landscape for NSCLC. Lung Cancer, 2011. 71(1): p. 3-10.
18. Ho, C., K.M. Tong, K. Ramsden, D.N. Ionescu, and J. Laskin, Histologic classification of non-small-cell lung cancer over time: reducing the rates of not-otherwise-specified. Curr Oncol, 2015. 22(3): p. e164-70.
19. Koo, L.C. and J.H. Ho, Worldwide epidemiological patterns of lung cancer in nonsmokers. Int J Epidemiol, 1990. 19 Suppl 1: p. S14-23.
20. Kenfield, S.A., E.K. Wei, M.J. Stampfer, B.A. Rosner, and G.A. Colditz, Comparison of aspects of smoking among the four histological types of lung cancer. Tob Control, 2008. 17(3): p. 198-204.
21. Zappa, C. and S.A. Mousa, Non-small cell lung cancer: current treatment and future advances. Transl Lung Cancer Res, 2016. 5(3): p. 288-300.
22. Timmerman, R.D., B.D. Kavanagh, L.C. Cho, L. Papiez, and L. Xing, Stereotactic body radiation therapy in multiple organ sites. J Clin Oncol, 2007. 25(8): p. 947-52.
23. Ramalingam, S. and C. Belani, Systemic chemotherapy for advanced non-small cell lung cancer: recent advances and future directions. Oncologist, 2008. 13 Suppl 1: p. 5-13.
24. Akcali, Z., Z. Calikusu, H. Sakalli, and O. Ozyilkan, Gemcitabine and cisplatin treatment of advanced-stage non-small-cell lung cancer in patients given cisplatin on day 8. Tumori, 2008. 94(4): p. 474-80.
25. He, G., X. Xiao, M. Zou, C. Zhang, and S. Xia, Pemetrexed/cisplatin as first-line chemotherapy for advanced lung cancer with brain metastases: A case report and literature review. Medicine (Baltimore), 2016. 95(32): p. e4401.
26. Zarogoulidis, K., P. Zarogoulidis, K. Darwiche, E. Boutsikou, N. Machairiotis, K. Tsakiridis, N. Katsikogiannis, I. Kougioumtzi, I. Karapantzos, H. Huang, and D. Spyratos, Treatment of non-small cell lung cancer (NSCLC). J Thorac Dis, 2013. 5 Suppl 4: p. S389-96.
27. Shen, D.W., L.M. Pouliot, M.D. Hall, and M.M. Gottesman, Cisplatin resistance: a cellular self-defense mechanism resulting from multiple epigenetic and genetic changes. Pharmacol Rev, 2012. 64(3): p. 706-21.
28. Chan, B.A. and B.G. Hughes, Targeted therapy for non-small cell lung cancer: current standards and the promise of the future. Transl Lung Cancer Res, 2015. 4(1): p. 36-54.
29. Spano, D., C. Heck, P. De Antonellis, G. Christofori, and M. Zollo, Molecular networks that regulate cancer metastasis. Semin Cancer Biol, 2012. 22(3): p. 234-49.
30. Christofori, G., New signals from the invasive front. Nature, 2006. 441(7092): p. 444-50.
31. van Zijl, F., G. Krupitza, and W. Mikulits, Initial steps of metastasis: cell invasion and endothelial transmigration. Mutat Res, 2011. 728(1-2): p. 23-34.
32. Egeblad, M. and Z. Werb, New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer, 2002. 2(3): p. 161-74.
33. Lynch, C.C. and L.M. Matrisian, Matrix metalloproteinases in tumor-host cell communication. Differentiation, 2002. 70(9-10): p. 561-73.
34. Mohamed, M.M. and B.F. Sloane, Cysteine cathepsins: multifunctional enzymes in cancer. Nat Rev Cancer, 2006. 6(10): p. 764-75.
35. Gocheva, V. and J.A. Joyce, Cysteine cathepsins and the cutting edge of cancer invasion. Cell Cycle, 2007. 6(1): p. 60-4.
36. Antalis, T.M., M.S. Buzza, K.M. Hodge, J.D. Hooper, and S. Netzel-Arnett, The cutting edge: membrane-anchored serine protease activities in the pericellular microenvironment. Biochem J, 2010. 428(3): p. 325-46.
37. Lopez-Otin, C. and L.M. Matrisian, Emerging roles of proteases in tumour suppression. Nat Rev Cancer, 2007. 7(10): p. 800-8.
38. Uhland, K., Matriptase and its putative role in cancer. Cell Mol Life Sci, 2006. 63(24): p. 2968-78.
39. List, K., Matriptase: a culprit in cancer? Future Oncol, 2009. 5(1): p. 97-104.
40. Shi, Y.E., J. Torri, L. Yieh, A. Wellstein, M.E. Lippman, and R.B. Dickson, Identification and characterization of a novel matrix-degrading protease from hormone-dependent human breast cancer cells. Cancer Res, 1993. 53(6): p. 1409-15.
41. Lin, C.Y., J. Anders, M. Johnson, Q.A. Sang, and R.B. Dickson, Molecular cloning of cDNA for matriptase, a matrix-degrading serine protease with trypsin-like activity. J Biol Chem, 1999. 274(26): p. 18231-6.
42. Takeuchi, T., M.A. Shuman, and C.S. Craik, Reverse biochemistry: use of macromolecular protease inhibitors to dissect complex biological processes and identify a membrane-type serine protease in epithelial cancer and normal tissue. Proc Natl Acad Sci U S A, 1999. 96(20): p. 11054-61.
43. Oberst, M.D., B. Singh, M. Ozdemirli, R.B. Dickson, M.D. Johnson, and C.Y. Lin, Characterization of matriptase expression in normal human tissues. J Histochem Cytochem, 2003. 51(8): p. 1017-25.
44. List, K., C.C. Haudenschild, R. Szabo, W. Chen, S.M. Wahl, W. Swaim, L.H. Engelholm, N. Behrendt, and T.H. Bugge, Matriptase/MT-SP1 is required for postnatal survival, epidermal barrier function, hair follicle development, and thymic homeostasis. Oncogene, 2002. 21(23): p. 3765-79.
45. Le Gall, S.M., R. Szabo, M. Lee, D. Kirchhofer, C.S. Craik, T.H. Bugge, and E. Camerer, Matriptase activation connects tissue factor-dependent coagulation initiation to epithelial proteolysis and signaling. Blood, 2016. 127(25): p. 3260-9.
46. Lee, S.L., R.B. Dickson, and C.Y. Lin, Activation of hepatocyte growth factor and urokinase/plasminogen activator by matriptase, an epithelial membrane serine protease. J Biol Chem, 2000. 275(47): p. 36720-5.
47. Jin, X., M. Yagi, N. Akiyama, T. Hirosaki, S. Higashi, C.Y. Lin, R.B. Dickson, H. Kitamura, and K. Miyazaki, Matriptase activates stromelysin (MMP-3) and promotes tumor growth and angiogenesis. Cancer Sci, 2006. 97(12): p. 1327-34.
48. Takeuchi, T., J.L. Harris, W. Huang, K.W. Yan, S.R. Coughlin, and C.S. Craik, Cellular localization of membrane-type serine protease 1 and identification of protease-activated receptor-2 and single-chain urokinase-type plasminogen activator as substrates. J Biol Chem, 2000. 275(34): p. 26333-42.
49. Bocheva, G., A. Rattenholl, C. Kempkes, T. Goerge, C.Y. Lin, M.R. D'Andrea, S. Stander, and M. Steinhoff, Role of matriptase and proteinase-activated receptor-2 in nonmelanoma skin cancer. J Invest Dermatol, 2009. 129(7): p. 1816-23.
50. Chou, F.P., Y.W. Chen, X.F. Zhao, Z.Y. Xu-Monette, K.H. Young, R.B. Gartenhaus, J.K. Wang, H. Kataoka, A.H. Zuo, R.J. Barndt, M. Johnson, and C.Y. Lin, Imbalanced matriptase pericellular proteolysis contributes to the pathogenesis of malignant B-cell lymphomas. Am J Pathol, 2013. 183(4): p. 1306-17.
51. Tsai, W.C., Y.C. Chao, W.H. Lee, A. Chen, L.F. Sheu, and J.S. Jin, Increasing EMMPRIN and matriptase expression in hepatocellular carcinoma: tissue microarray analysis of immunohistochemical scores with clinicopathological parameters. Histopathology, 2006. 49(4): p. 388-95.
52. Nakamura, K., A. Hongo, J. Kodama, F. Abarzua, Y. Nasu, H. Kumon, and Y. Hiramatsu, Expression of matriptase and clinical outcome of human endometrial cancer. Anticancer Res, 2009. 29(5): p. 1685-90.
53. Vogel, L.K., M. Saebo, C.F. Skjelbred, K. Abell, E.D. Pedersen, U. Vogel, and E.H. Kure, The ratio of Matriptase/HAI-1 mRNA is higher in colorectal cancer adenomas and carcinomas than corresponding tissue from control individuals. BMC Cancer, 2006. 6: p. 176.
54. Zoratti, G.L., L.M. Tanabe, F.A. Varela, A.S. Murray, C. Bergum, E. Colombo, J.E. Lang, A.A. Molinolo, R. Leduc, E. Marsault, J. Boerner, and K. List, Targeting matriptase in breast cancer abrogates tumour progression via impairment of stromal-epithelial growth factor signalling. Nat Commun, 2015. 6: p. 6776.
55. Tsai, W.C., C.H. Chu, C.P. Yu, L.F. Sheu, A. Chen, H. Chiang, and J.S. Jin, Matriptase and survivin expression associated with tumor progression and malignant potential in breast cancer of Chinese women: tissue microarray analysis of immunostaining scores with clinicopathological parameters. Dis Markers, 2008. 24(2): p. 89-99.
56. Saleem, M., V.M. Adhami, W. Zhong, B.J. Longley, C.Y. Lin, R.B. Dickson, S. Reagan-Shaw, D.F. Jarrard, and H. Mukhtar, A novel biomarker for staging human prostate adenocarcinoma: overexpression of matriptase with concomitant loss of its inhibitor, hepatocyte growth factor activator inhibitor-1. Cancer Epidemiol Biomarkers Prev, 2006. 15(2): p. 217-27.
57. Santin, A.D., S. Cane, S. Bellone, E. Bignotti, M. Palmieri, L.E. De Las Casas, S. Anfossi, J.J. Roman, T. O'Brien, and S. Pecorelli, The novel serine protease tumor-associated differentially expressed gene-15 (matriptase/MT-SP1) is highly overexpressed in cervical carcinoma. Cancer, 2003. 98(9): p. 1898-904.
58. Oberst, M.D., M.D. Johnson, R.B. Dickson, C.Y. Lin, B. Singh, M. Stewart, A. Williams, A. al-Nafussi, J.F. Smyth, H. Gabra, and G.C. Sellar, Expression of the serine protease matriptase and its inhibitor HAI-1 in epithelial ovarian cancer: correlation with clinical outcome and tumor clinicopathological parameters. Clin Cancer Res, 2002. 8(4): p. 1101-7.
59. Tanimoto, H., K. Shigemasa, X. Tian, L. Gu, J.B. Beard, T. Sawasaki, and T.J. O'Brien, Transmembrane serine protease TADG-15 (ST14/Matriptase/MT-SP1): expression and prognostic value in ovarian cancer. Br J Cancer, 2005. 92(2): p. 278-83.
60. Cheng, M.F., C. Tzao, W.C. Tsai, W.H. Lee, A. Chen, H. Chiang, L.F. Sheu, and J.S. Jin, Expression of EMMPRIN and matriptase in esophageal squamous cell carcinoma: correlation with clinicopathological parameters. Dis Esophagus, 2006. 19(6): p. 482-6.
61. Cheng, T.S., W.C. Chen, Y.Y. Lin, C.H. Tsai, C.I. Liao, H.Y. Shyu, C.J. Ko, S.F. Tzeng, C.Y. Huang, P.C. Yang, P.W. Hsiao, and M.S. Lee, Curcumin-targeting pericellular serine protease matriptase role in suppression of prostate cancer cell invasion, tumor growth, and metastasis. Cancer Prev Res, 2013. 6(5): p. 495-505.
62. Rawlings, N.D., M. Waller, A.J. Barrett, and A. Bateman, MEROPS: the database of proteolytic enzymes, their substrates and inhibitors. Nucleic Acids Res, 2014. 42(Database issue): p. D503-9.
63. Brew, K. and H. Nagase, The tissue inhibitors of metalloproteinases (TIMPs): an ancient family with structural and functional diversity. Biochim Biophys Acta, 2010. 1803(1): p. 55-71.
64. Law, R.H., Q. Zhang, S. McGowan, A.M. Buckle, G.A. Silverman, W. Wong, C.J. Rosado, C.G. Langendorf, R.N. Pike, P.I. Bird, and J.C. Whisstock, An overview of the serpin superfamily. Genome Biol, 2006. 7(5): p. 216.
65. De Meester, P., P. Brick, L.F. Lloyd, D.M. Blow, and S. Onesti, Structure of the Kunitz-type soybean trypsin inhibitor (STI): implication for the interactions between members of the STI family and tissue-plasminogen activator. Acta Crystallogr D Biol Crystallogr, 1998. 54(Pt 4): p. 589-97.
66. Rimphanitchayakit, V. and A. Tassanakajon, Structure and function of invertebrate Kazal-type serine proteinase inhibitors. Dev Comp Immunol, 2010. 34(4): p. 377-86.
67. Seki, M., R. Matsura, T. Iwamori, N. Nukumi, K. Yamanouchi, K. Kano, K. Naito, and H. Tojo, Identification of whey acidic protein (WAP) in dog milk. Exp Anim, 2012. 61(1): p. 67-70.
68. Andersen, G.R., T.J. Koch, K. Dolmer, L. Sottrup-Jensen, and J. Nyborg, Low resolution X-ray structure of human methylamine-treated alpha 2-macroglobulin. J Biol Chem, 1995. 270(42): p. 25133-41.
69. Jordan, R.E., G.M. Oosta, W.T. Gardner, and R.D. Rosenberg, The kinetics of hemostatic enzyme-antithrombin interactions in the presence of low molecular weight heparin. J Biol Chem, 1980. 255(21): p. 10081-90.
70. Antonini, E., P. Ascenzi, M. Bolognesi, G. Gatti, M. Guarneri, and E. Menegatti, Interaction between serine (pro)enzymes, and Kazal and Kunitz inhibitors. J Mol Biol, 1983. 165(3): p. 543-58.
71. Ohmuraya, M. and K. Yamamura, Roles of serine protease inhibitor Kazal type 1 (SPINK1) in pancreatic diseases. Exp Anim, 2011. 60(5): p. 433-44.
72. Wood, J.P., P.E. Ellery, S.A. Maroney, and A.E. Mast, Biology of tissue factor pathway inhibitor. Blood, 2014. 123(19): p. 2934-43.
73. Drag, M. and G.S. Salvesen, Emerging principles in protease-based drug discovery. Nat Rev Drug Discov, 2010. 9(9): p. 690-701.
74. Shimomura, T., K. Denda, A. Kitamura, T. Kawaguchi, M. Kito, J. Kondo, S. Kagaya, L. Qin, H. Takata, K. Miyazawa, and N. Kitamura, Hepatocyte growth factor activator inhibitor, a novel Kunitz-type serine protease inhibitor. J Biol Chem, 1997. 272(10): p. 6370-6.
75. Lin, C.Y., J. Anders, M. Johnson, and R.B. Dickson, Purification and characterization of a complex containing matriptase and a Kunitz-type serine protease inhibitor from human milk. J Biol Chem, 1999. 274(26): p. 18237-42.
76. Fan, B., J. Brennan, D. Grant, F. Peale, L. Rangell, and D. Kirchhofer, Hepatocyte growth factor activator inhibitor-1 (HAI-1) is essential for the integrity of basement membranes in the developing placental labyrinth. Dev Biol, 2007. 303(1): p. 222-30.
77. Tanaka, H., K. Nagaike, N. Takeda, H. Itoh, K. Kohama, T. Fukushima, S. Miyata, S. Uchiyama, S. Uchinokura, T. Shimomura, K. Miyazawa, N. Kitamura, G. Yamada, and H. Kataoka, Hepatocyte growth factor activator inhibitor type 1 (HAI-1) is required for branching morphogenesis in the chorioallantoic placenta. Mol Cell Biol, 2005. 25(13): p. 5687-98.
78. Szabo, R., A. Molinolo, K. List, and T.H. Bugge, Matriptase inhibition by hepatocyte growth factor activator inhibitor-1 is essential for placental development. Oncogene, 2007. 26(11): p. 1546-56.
79. Oberst, M., J. Anders, B. Xie, B. Singh, M. Ossandon, M. Johnson, R.B. Dickson, and C.Y. Lin, Matriptase and HAI-1 are expressed by normal and malignant epithelial cells in vitro and in vivo. Am J Pathol, 2001. 158(4): p. 1301-11.
80. Carney, T.J., S. von der Hardt, C. Sonntag, A. Amsterdam, J. Topczewski, N. Hopkins, and M. Hammerschmidt, Inactivation of serine protease Matriptase1a by its inhibitor Hai1 is required for epithelial integrity of the zebrafish epidermis. Development, 2007. 134(19): p. 3461-71.
81. Kojima, K., S. Tsuzuki, T. Fushiki, and K. Inouye, Roles of functional and structural domains of hepatocyte growth factor activator inhibitor type 1 in the inhibition of matriptase. J Biol Chem, 2008. 283(5): p. 2478-87.
82. Zhao, B., C. Yuan, R. Li, D. Qu, M. Huang, and J.C. Ngo, Crystal structures of matriptase in complex with its inhibitor hepatocyte growth factor activator inhibitor-1. J Biol Chem, 2013. 288(16): p. 11155-64.
83. Oberst, M.D., L.Y. Chen, K. Kiyomiya, C.A. Williams, M.S. Lee, M.D. Johnson, R.B. Dickson, and C.Y. Lin, HAI-1 regulates activation and expression of matriptase, a membrane-bound serine protease. Am J Physiol Cell Physiol, 2005. 289(2): p. C462-70.
84. Oberst, M.D., C.A. Williams, R.B. Dickson, M.D. Johnson, and C.Y. Lin, The activation of matriptase requires its noncatalytic domains, serine protease domain, and its cognate inhibitor. J Biol Chem, 2003. 278(29): p. 26773-9.
85. Lee, M.S., K. Kiyomiya, C. Benaud, R.B. Dickson, and C.Y. Lin, Simultaneous activation and hepatocyte growth factor activator inhibitor 1-mediated inhibition of matriptase induced at activation foci in human mammary epithelial cells. Am J Physiol Cell Physiol, 2005. 288(4): p. C932-41.
86. Kiyomiya, K., M.S. Lee, I.C. Tseng, H. Zuo, R.J. Barndt, M.D. Johnson, R.B. Dickson, and C.Y. Lin, Matriptase activation and shedding with HAI-1 is induced by steroid sex hormones in human prostate cancer cells, but not in breast cancer cells. Am J Physiol Cell Physiol, 2006. 291(1): p. C40-9.
87. Wu, S.R., T.S. Cheng, W.C. Chen, H.Y. Shyu, C.J. Ko, H.P. Huang, C.H. Teng, C.H. Lin, M.D. Johnson, C.Y. Lin, and M.S. Lee, Matriptase is involved in ErbB-2-induced prostate cancer cell invasion. Am J Pathol, 2010. 177(6): p. 3145-58.
88. Ko, C.J., S.W. Lan, Y.C. Lu, T.S. Cheng, P.F. Lai, C.H. Tsai, T.W. Hsu, H.Y. Lin, H.Y. Shyu, S.R. Wu, H.H. Lin, P.W. Hsiao, C.H. Chen, H.P. Huang, and M.S. Lee, Inhibition of cyclooxygenase-2-mediated matriptase activation contributes to the suppression of prostate cancer cell motility and metastasis. Oncogene, 2017.
89. Ko, C.J., C.C. Huang, H.Y. Lin, C.P. Juan, S.W. Lan, H.Y. Shyu, S.R. Wu, P.W. Hsiao, H.P. Huang, C.T. Shun, and M.S. Lee, Androgen-Induced TMPRSS2 Activates Matriptase and Promotes Extracellular Matrix Degradation, Prostate Cancer Cell Invasion, Tumor Growth, and Metastasis. Cancer Res, 2015. 75(14): p. 2949-60.
90. Friis, S., K. Uzzun Sales, S. Godiksen, D.E. Peters, C.Y. Lin, L.K. Vogel, and T.H. Bugge, A matriptase-prostasin reciprocal zymogen activation complex with unique features: prostasin as a non-enzymatic co-factor for matriptase activation. J Biol Chem, 2013. 288(26): p. 19028-39.
91. Marlor, C.W., K.A. Delaria, G. Davis, D.K. Muller, J.M. Greve, and P.P. Tamburini, Identification and cloning of human placental bikunin, a novel serine protease inhibitor containing two Kunitz domains. J Biol Chem, 1997. 272(18): p. 12202-8.
92. Parr, C. and W.G. Jiang, Hepatocyte growth factor activation inhibitors (HAI-1 and HAI-2) regulate HGF-induced invasion of human breast cancer cells. Int J Cancer, 2006. 119(5): p. 1176-83.
93. Szabo, R., J.P. Hobson, K. Christoph, P. Kosa, K. List, and T.H. Bugge, Regulation of cell surface protease matriptase by HAI2 is essential for placental development, neural tube closure and embryonic survival in mice. Development, 2009. 136(15): p. 2653-63.
94. Fukai, K., O. Yokosuka, T. Chiba, Y. Hirasawa, M. Tada, F. Imazeki, H. Kataoka, and H. Saisho, Hepatocyte growth factor activator inhibitor 2/placental bikunin (HAI-2/PB) gene is frequently hypermethylated in human hepatocellular carcinoma. Cancer Res, 2003. 63(24): p. 8674-9.
95. Schuster, J.M., M. Longo, and P.S. Nelson, Differential expression of bikunin (HAI-2/PB), a proposed mediator of glioma invasion, by demethylation treatment. J Neurooncol, 2003. 64(3): p. 219-25.
96. Morris, M.R., D. Gentle, M. Abdulrahman, E.N. Maina, K. Gupta, R.E. Banks, M.S. Wiesener, T. Kishida, M. Yao, B. Teh, F. Latif, and E.R. Maher, Tumor suppressor activity and epigenetic inactivation of hepatocyte growth factor activator inhibitor type 2/SPINT2 in papillary and clear cell renal cell carcinoma. Cancer Res, 2005. 65(11): p. 4598-606.
97. Yue, D., Q. Fan, X. Chen, F. Li, L. Wang, L. Huang, W. Dong, Z. Zhang, J. Liu, F. Wang, M. Wang, B. Zhang, and Y. Zhang, Epigenetic inactivation of SPINT2 is associated with tumor suppressive function in esophageal squamous cell carcinoma. Exp Cell Res, 2014. 322(1): p. 149-58.
98. Hwang, S., H.E. Kim, M. Min, R. Raghunathan, I.P. Panova, R. Munshi, and B. Ryu, Epigenetic Silencing of SPINT2 Promotes Cancer Cell Motility via HGF-MET Pathway Activation in Melanoma. J Invest Dermatol, 2015. 135(9): p. 2283-91.
99. Parr, C., G. Watkins, R.E. Mansel, and W.G. Jiang, The hepatocyte growth factor regulatory factors in human breast cancer. Clin Cancer Res, 2004. 10(1 Pt 1): p. 202-11.
100. Kongkham, P.N., P.A. Northcott, Y.S. Ra, Y. Nakahara, T.G. Mainprize, S.E. Croul, C.A. Smith, M.D. Taylor, and J.T. Rutka, An epigenetic genome-wide screen identifies SPINT2 as a novel tumor suppressor gene in pediatric medulloblastoma. Cancer Res, 2008. 68(23): p. 9945-53.
101. Dong, W., X. Chen, J. Xie, P. Sun, and Y. Wu, Epigenetic inactivation and tumor suppressor activity of HAI-2/SPINT2 in gastric cancer. Int J Cancer, 2010. 127(7): p. 1526-34.
102. Tsai, C.H., C.H. Teng, Y.T. Tu, T.S. Cheng, S.R. Wu, C.J. Ko, H.Y. Shyu, S.W. Lan, H.P. Huang, S.F. Tzeng, M.D. Johnson, C.Y. Lin, P.W. Hsiao, and M.S. Lee, HAI-2 suppresses the invasive growth and metastasis of prostate cancer through regulation of matriptase. Oncogene, 2014. 33(38): p. 4643-52.
103. Bergum, C. and K. List, Loss of the matriptase inhibitor HAI-2 during prostate cancer progression. Prostate, 2010. 70(13): p. 1422-8.
104. Tung, E.K., C.M. Wong, T.O. Yau, J.M. Lee, Y.P. Ching, and I.O. Ng, HAI-2 is epigenetically downregulated in human hepatocellular carcinoma, and its Kunitz domain type 1 is critical for anti-invasive functions. Int J Cancer, 2009. 124(8): p. 1811-9.
105. Nakamura, K., F. Abarzua, A. Hongo, J. Kodama, Y. Nasu, H. Kumon, and Y. Hiramatsu, Hepatocyte growth factor activator inhibitor-2 (HAI-2) is a favorable prognosis marker and inhibits cell growth through the apoptotic pathway in cervical cancer. Ann Oncol, 2009. 20(1): p. 63-70.
106. Nakamura, K., F. Abarzua, J. Kodama, A. Hongo, Y. Nasu, H. Kumon, and Y. Hiramatsu, Expression of hepatocyte growth factor activator inhibitors (HAI-1 and HAI-2) in ovarian cancer. Int J Oncol, 2009. 34(2): p. 345-53.
107. Nakamura, K., A. Hongo, J. Kodama, and Y. Hiramatsu, The role of hepatocyte growth factor activator inhibitor (HAI)-1 and HAI-2 in endometrial cancer. Int J Cancer, 2011. 128(11): p. 2613-24.
108. Kirchhofer, D., M. Peek, M.T. Lipari, K. Billeci, B. Fan, and P. Moran, Hepsin activates pro-hepatocyte growth factor and is inhibited by hepatocyte growth factor activator inhibitor-1B (HAI-1B) and HAI-2. FEBS Lett, 2005. 579(9): p. 1945-50.
109. Szabo, R., J.P. Hobson, K. List, A. Molinolo, C.Y. Lin, and T.H. Bugge, Potent inhibition and global co-localization implicate the transmembrane Kunitz-type serine protease inhibitor hepatocyte growth factor activator inhibitor-2 in the regulation of epithelial matriptase activity. J Biol Chem, 2008. 283(43): p. 29495-504.
110. Delaria, K.A., D.K. Muller, C.W. Marlor, J.E. Brown, R.C. Das, S.O. Roczniak, and P.P. Tamburini, Characterization of placental bikunin, a novel human serine protease inhibitor. J Biol Chem, 1997. 272(18): p. 12209-14.
111. Qin, L., K. Denda, T. Shimomura, T. Kawaguchi, and N. Kitamura, Functional characterization of Kunitz domains in hepatocyte growth factor activator inhibitor type 2. FEBS Lett, 1998. 436(1): p. 111-4.
112. Cesarman-Maus, G. and K.A. Hajjar, Molecular mechanisms of fibrinolysis. Br J Haematol, 2005. 129(3): p. 307-21.
113. Rabbani, S.A. and A.P. Mazar, The role of the plasminogen activation system in angiogenesis and metastasis. Surg Oncol Clin N Am, 2001. 10(2): p. 393-415, x.
114. Del Rosso, M., G. Fibbi, M. Pucci, F. Margheri, and S. Serrati, The plasminogen activation system in inflammation. Front Biosci, 2008. 13: p. 4667-86.
115. Duffy, M.J., The urokinase plasminogen activator system: role in malignancy. Curr Pharm Des, 2004. 10(1): p. 39-49.
116. Syrovets, T., O. Lunov, and T. Simmet, Plasmin as a proinflammatory cell activator. J Leukoc Biol, 2012. 92(3): p. 509-19.
117. Andreasen, P.A., R. Egelund, and H.H. Petersen, The plasminogen activation system in tumor growth, invasion, and metastasis. Cell Mol Life Sci, 2000. 57(1): p. 25-40.
118. Chan, J.C., D.A. Duszczyszyn, F.J. Castellino, and V.A. Ploplis, Accelerated skin wound healing in plasminogen activator inhibitor-1-deficient mice. Am J Pathol, 2001. 159(5): p. 1681-8.
119. Green, K.A., B.S. Nielsen, F.J. Castellino, J. Romer, and L.R. Lund, Lack of plasminogen leads to milk stasis and premature mammary gland involution during lactation. Dev Biol, 2006. 299(1): p. 164-75.
120. Suelves, M., R. Lopez-Alemany, F. Lluis, G. Aniorte, E. Serrano, M. Parra, P. Carmeliet, and P. Munoz-Canoves, Plasmin activity is required for myogenesis in vitro and skeletal muscle regeneration in vivo. Blood, 2002. 99(8): p. 2835-44.
121. Ulisse, S., E. Baldini, S. Sorrenti, and M. D'Armiento, The urokinase plasminogen activator system: a target for anti-cancer therapy. Curr Cancer Drug Targets, 2009. 9(1): p. 32-71.
122. Levin, E.G., L. Santell, and K.G. Osborn, The expression of endothelial tissue plasminogen activator in vivo: a function defined by vessel size and anatomic location. J Cell Sci, 1997. 110 ( Pt 2): p. 139-48.
123. Andreasen, P.A., L. Kjoller, L. Christensen, and M.J. Duffy, The urokinase-type plasminogen activator system in cancer metastasis: a review. Int J Cancer, 1997. 72(1): p. 1-22.
124. Schmitt, M., N. Harbeck, C. Thomssen, O. Wilhelm, V. Magdolen, U. Reuning, K. Ulm, H. Hofler, F. Janicke, and H. Graeff, Clinical impact of the plasminogen activation system in tumor invasion and metastasis: prognostic relevance and target for therapy. Thromb Haemost, 1997. 78(1): p. 285-96.
125. Reuning, U., V. Magdolen, O. Wilhelm, K. Fischer, V. Lutz, H. Graeff, and M. Schmitt, Multifunctional potential of the plasminogen activation system in tumor invasion and metastasis (review). Int J Oncol, 1998. 13(5): p. 893-906.
126. Plow, E.F., D.E. Freaney, J. Plescia, and L.A. Miles, The plasminogen system and cell surfaces: evidence for plasminogen and urokinase receptors on the same cell type. J Cell Biol, 1986. 103(6 Pt 1): p. 2411-20.
127. Petersen, L.C., Kinetics of reciprocal pro-urokinase/plasminogen activation--stimulation by a template formed by the urokinase receptor bound to poly(D-lysine). Eur J Biochem, 1997. 245(2): p. 316-23.
128. Dano, K., P.A. Andreasen, J. Grondahl-Hansen, P. Kristensen, L.S. Nielsen, and L. Skriver, Plasminogen activators, tissue degradation, and cancer. Adv Cancer Res, 1985. 44: p. 139-266.
129. Bugge, T.H., K.W. Kombrinck, Q. Xiao, K. Holmback, C.C. Daugherty, D.P. Witte, and J.L. Degen, Growth and dissemination of Lewis lung carcinoma in plasminogen-deficient mice. Blood, 1997. 90(11): p. 4522-31.
130. Kwaan, H.C. and B. McMahon, The role of plasminogen-plasmin system in cancer. Cancer Treat Res, 2009. 148: p. 43-66.
131. Duffy, M.J., P.M. McGowan, N. Harbeck, C. Thomssen, and M. Schmitt, uPA and PAI-1 as biomarkers in breast cancer: validated for clinical use in level-of-evidence-1 studies. Breast Cancer Res, 2014. 16(4): p. 428.
132. Smith, R., A. Xue, A. Gill, C. Scarlett, A. Saxby, A. Clarkson, and T. Hugh, High expression of plasminogen activator inhibitor-2 (PAI-2) is a predictor of improved survival in patients with pancreatic adenocarcinoma. World J Surg, 2007. 31(3): p. 493-502; discussion 503.
133. Duggan, C., S. Kennedy, M.D. Kramer, C. Barnes, P. Elvin, E. McDermott, N. O'Higgins, and M.J. Duffy, Plasminogen activator inhibitor type 2 in breast cancer. Br J Cancer, 1997. 76(5): p. 622-7.
134. Croucher, D.R., D.N. Saunders, S. Lobov, and M. Ranson, Revisiting the biological roles of PAI2 (SERPINB2) in cancer. Nat Rev Cancer, 2008. 8(7): p. 535-45.
135. Cox, G., W.P. Steward, and K.J. O'Byrne, The plasmin cascade and matrix metalloproteinases in non-small cell lung cancer. Thorax, 1999. 54(2): p. 169-79.
136. Mars, W.M., R. Zarnegar, and G.K. Michalopoulos, Activation of hepatocyte growth factor by the plasminogen activators uPA and tPA. Am J Pathol, 1993. 143(3): p. 949-58.
137. Naldini, L., E. Vigna, A. Bardelli, A. Follenzi, F. Galimi, and P.M. Comoglio, Biological activation of pro-HGF (hepatocyte growth factor) by urokinase is controlled by a stoichiometric reaction. J Biol Chem, 1995. 270(2): p. 603-11.
138. Yee, J.A., L. Yan, J.C. Dominguez, E.H. Allan, and T.J. Martin, Plasminogen-dependent activation of latent transforming growth factor beta (TGF beta) by growing cultures of osteoblast-like cells. J Cell Physiol, 1993. 157(3): p. 528-34.
139. Mekkawy, A.H., D.L. Morris, and M.H. Pourgholami, Urokinase plasminogen activator system as a potential target for cancer therapy. Future Oncol, 2009. 5(9): p. 1487-99.
140. Mazar, A.P., The urokinase plasminogen activator receptor (uPAR) as a target for the diagnosis and therapy of cancer. Anticancer Drugs, 2001. 12(5): p. 387-400.
141. Thiery, J.P., H. Acloque, R.Y. Huang, and M.A. Nieto, Epithelial-mesenchymal transitions in development and disease. Cell, 2009. 139(5): p. 871-90.
142. Lamouille, S., J. Xu, and R. Derynck, Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol, 2014. 15(3): p. 178-96.
143. Kalluri, R. and R.A. Weinberg, The basics of epithelial-mesenchymal transition. J Clin Invest, 2009. 119(6): p. 1420-8.
144. Kong, D., Y. Li, Z. Wang, and F.H. Sarkar, Cancer Stem Cells and Epithelial-to-Mesenchymal Transition (EMT)-Phenotypic Cells: Are They Cousins or Twins? Cancers (Basel), 2011. 3(1): p. 716-29.
145. Thiery, J.P., Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer, 2002. 2(6): p. 442-54.
146. Lee, J.M., S. Dedhar, R. Kalluri, and E.W. Thompson, The epithelial-mesenchymal transition: new insights in signaling, development, and disease. J Cell Biol, 2006. 172(7): p. 973-81.
147. Thiery, J.P. and J.P. Sleeman, Complex networks orchestrate epithelial-mesenchymal transitions. Nat Rev Mol Cell Biol, 2006. 7(2): p. 131-42.
148. Viebahn, C., B. Mayer, and A. Miething, Morphology of incipient mesoderm formation in the rabbit embryo: a light- and retrospective electron-microscopic study. Acta Anat (Basel), 1995. 154(2): p. 99-110.
149. Huang, R.Y., P. Guilford, and J.P. Thiery, Early events in cell adhesion and polarity during epithelial-mesenchymal transition. J Cell Sci, 2012. 125(Pt 19): p. 4417-22.
150. Wheelock, M.J., Y. Shintani, M. Maeda, Y. Fukumoto, and K.R. Johnson, Cadherin switching. J Cell Sci, 2008. 121(Pt 6): p. 727-35.
151. Mendez, M.G., S. Kojima, and R.D. Goldman, Vimentin induces changes in cell shape, motility, and adhesion during the epithelial to mesenchymal transition. FASEB J, 2010
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70115-
dc.description.abstract在腫瘤侵襲和癌症惡化過程中,細胞表面蛋白降解系統的失調經常扮演重要角色。過去已報導第二型肝細胞生長因子活化抑制者HAI-2 (Hepatocyte growth factor activator inhibitor-2)在人類攝護腺癌細胞中,當其表現降低時會導致間質蛋白酶Matriptase活化,進而促使攝護腺癌細胞的侵襲與腫瘤生長。此研究中,我進一步探討HAI-2是如何抑制Matriptase,細究HAI-2是利用那個蛋白結構區域(domain)來影響Matritpase的活化以及細胞侵襲能力。結果顯示過度表達HAI-2能夠抑制Matriptase活化,且造成攝護腺癌細胞侵襲能力降低。進一步研究顯示HAI-2是利用第一個結構域(KD1)來抑制Matriptase的活化與攝護腺癌細胞的移動力,儘管酵素實驗與蛋白動力分析顯示HAI-2的第二個結構域(KD2)與其第一個結構域(KD1)對Matriptase也有同樣的抑制與結合效果。這些結果綜合指出HAI-2是Matriptase同源的抑制者,而且是透過其第一個結構域(KD1)來抑制細胞Mtriptase的活化以及人類攝護腺癌細胞的侵襲力。另一方面,HAI-2同樣也在人類肺腺癌細胞的侵襲力與轉移扮演重要角色。由於在肺腺癌細胞株中,只存在極少量的Matriptase,因此我鑑尋在肺腺癌中HAI-2的抑制標的蛋白。結果顯示HAI-2能夠抑制一個血中大量存在的重要蛋白酶,纖溶酶(plasmin),進而抑制肺癌細胞的侵襲力。此外,當HAI-2表現量下降時,亦會導致肺腺癌細胞發生上皮間葉細胞轉化 (epithelial-mesenchymal transition; EMT)的現象,進而增進細胞移動能力。進一步研究發現,HAI-2是透過調控plasmin抑制兩種生長因子的活化,pro-HGF (pro-form hepatocyte growth factor) 和pro-TGF-β1 (pro-form transforming growth factor-β1),來控制EMT的發生。重要的是,這些發現都能在動物實驗上觀察到。結果清楚指出在HAI-2表現下降的肺腺癌細胞中,其細胞表面plasmin的蛋白活性、EMT現象、與轉移能力都大幅提升。同時研究證實純化的重組HAI-2蛋白能有效抑制Matriptase和plasmin的活性,並且降低人類攝護腺癌細胞及肺腺癌細胞的侵襲能力。綜合以上結果,顯示HAI-2不論在未來臨床診斷以及癌症治療的研究與發展上,皆有極大的重要性。zh_TW
dc.description.abstractDysregulation of pericellular proteolysis is often required for tumor invasion and cancer progression. It has been shown that down-regulation of hepatocyte growth factor activator inhibitor-2 (HAI-2) results in activation of matriptase (a membrane-anchored serine protease), human prostate cancer cell motility and tumor growth. This study investigated the role of HAI-2 in two common human cancers, prostate cancer and lung adenocarcinoma. In prostate cancer, it is further characterized if HAI-2 was a cognate inhibitor for matriptase and identified which Kunitz domain of HAI-2 was required for inhibiting matriptase and human prostate cancer cell motility. The results showed that HAI-2 overexpression suppressed matriptase-induced prostate cancer cell motility. The data further demonstrate that HAI-2 interacts with matriptase on cell surface and inhibits matriptase proteolytic activity. Moreover, cellular HAI-2 harnesses its Kunitz domain 1 (KD1) to inhibit matriptase activation and prostate cancer cell motility although recombinant KD1 and KD2 of HAI-2 both show an inhibitory activity and interaction with matriptase protease domain. The results together indicate that HAI-2 is a cognate inhibitor of matriptase, and KD1 of HAI-2 plays a major role in the inhibition of cellular matritptase activation and cell invasion in human prostate cancer. On the other hand, HAI-2 also plays an important role in the cell motility, progression and tumor invasion of lung adenocarcinoma. Since there is none or little matriptase in lung adenocarcinoma cells, I then sought and identified a serum-derived serine protease plasmin to be an alternative target of HAI-2 in lung adenocarcinoma. The results revealed that HAI-2 repressed cell-surface plasmin activity and lung cancer cell motility. Down-regulation of HAI-2 promoted the epithelial-mesenchymal transition (EMT) of lung cancer cells which contributed to an increase of the cell motility. Moreover, the data showed that HAI-2 could suppress plasmin-mediated activations of pro-HGF (pro-form hepatocyte growth factor) and pro-TGF-β1 (pro-form transforming growth factor-β1), and then decrease the plasmin-induced EMT of lung adenocarcinoma cells. Most importantly, those findings were further proven in a xenografted animal model, indicating that down-regulation of HAI-2 can increase the EMT, plasmin activity, and lung metastatic ability of lung cancer cells. In addition, recombinant HAI-2 proteins exhibited a potent inhibition against matriptase, plasmin and cell invasion of human prostate cancer and lung adenocarcinoma. These results together indicate a suppression role of HAI-2 in the progression of human prostate and lung cancer and may exhibit a potential to develop a therapeutic strategy against human cancer.en
dc.description.provenanceMade available in DSpace on 2021-06-17T03:44:18Z (GMT). No. of bitstreams: 1
ntu-106-D99442005-1.pdf: 9547536 bytes, checksum: 19036b58a4bf6197b66351a732c71aa2 (MD5)
Previous issue date: 2017
en
dc.description.tableofcontentsIntroduction 1
Prostate cancer 1
Non-small cell lung cancer 2
Metastasis and cancer-related proteases 3
Matriptase 4
Protease inhibitors 5
Hepatocyte growth factor activator inhibitor 1 (HAI-1) 7
Hepatocyte growth factor activator inhibitor-2 (HAI-2) 8
Plasminogen activation system 9
Epithelial-mesenchymal transition 11
Materials and Methods 13
Cell culture- 13
Transfection 14
Genetic knockdown by shRNA with lentiviral particles- 14
Western blot- 15
Transwell migration/invasion assay 17
Immunofluorescence and confocal microscopy 18
Immunoprecipitation 19
Purification of recombinant matriptase protease domain (Trx-MTX PD) 19
Purification of GST fusion proteins- 21
Matriptase activity assay- 22
Baculovirus expression system and recombinant HAI-2 (rHAI-2) protein purification- 22
SPR-based BIAcore assay- 24
Computation of protein-protein docking- 25
Immunohistochemistry (IHC) of tissue array and statistical analysis- 25
GST-pulldown assay and LC/MS/MS- 26
Protease activity assay- 27
Zymography- 28
Real-time PCR 28
Lung metastatic assay- 29
In situ zymography of plasmin activity- 29
Statistical analysis- 30
Results I: The role of HAI-2 in human prostate cancer 31
Down-regulation of HAI-2 in metastatic prostate cancer of the xenografted model 31
HAI-2 represses matriptase activation through direct interaction and proteolytic inhibition 32
Recombinant HAI-2 proteins reduce matriptase activation and prostate cancer cell invasion 33
Inhibitory effects of recombinant HAI-2 KD1 and KD2 proteins on the in vitro proteolytic activity of matriptase 34
Dynamic bindings and computational docking models of HAI-2’s KD1 and KD2 with matriptase protease domain 35
Kunitz domain 1 of HAI-2 responsible for its inhibitory effect on cell migration and invasion 37
Recombinant HAI-2 proteins containing Kunitz domain 1 repressed matriptase activation and prostate cancer cell invasion 38
Results II: The role of HAI-2 in lung adenocarcinoma 39
Inverse correlation of HAI-2 expression with lung cancer progression and poor prognosis 39
HAI-2 played an inhibitory role in lung cancer cell migration and invasion 41
Identification of plasminogen as a HAI-2 target protease in lung cancer cells 41
HAI-2 repressed plasmin activity, plasmin-induced lung cancer cell motility, uPA activation and MMP2/9 activities 43
Recombinant HAI-2 proteins repressed cell surface plasmin activities, lung cancer cell migration and invasion 45
HAI-2 inhibited an EMT-like transition of lung cancer cells through suppression of plasmin/uPA, HGF and TGF-β1 signaling 46
Knockdown of HAI-2 promoted lung cancer metastasis and EMT in a xenografted mouse model 51
Discussion 52
Figures 65
Figure 1 Roles of matriptase and HAI-2 in prostate cancer progression model. 65
Figure 2 HAI-2 represses matriptase activation through the interactions with matriptase and the inhibition of matriptase activity. 67
Figure 3 Purified recombinant HAI-2 proteins repressed cellular matriptase activation and prostate cancer cell motility. 69
Figure 4 Inhibitory effects of HAI-2’s KD1 and KD2 on the in vitro proteolytic activity of matriptase. 70
Figure 5 Dynamic bindings and computational molecular docking between HAI-2’s KDs and matriptase’s protease domain. 72
Figure 6 Characterization of HAI-2’s KDs in inhibiting matriptase activation. 74
Figure 7 Recombinant HAI-2 proteins containing KD1 inhibited matriptase activation and prostate cancer cell invasion. 75
Figure 8 Down-regulation of HAI-2 is related to cell invasion, survival rate and progression of NSCLCs. 77
Figure 9 Role of HAI-2 in cancer cell motility of lung adenocarcinoma. 79
Figure 10 Identification of HAI-2’s associated proteins in lung adenocarcinoma. 81
Figure 11 HAI-2 represses plasmin activities and decreases cell migration, cell invasion, as well as the activation of uPA and MMPs. 83
Figure 12 Recombinant HAI-2 (rHAI-2) repressed cell-surface plasmin activity, uPA activation, cell migration and invasion. 87
Figure 13 Screening the transcription factors that is involved in EMT of CL1-0 to CL1-5, and A549 cells with HAI-2 knockdown. 88
Figure 14 HAI-2 mediates partial MET through repressing plasmin activity, HGF/c-MET signaling and pro-TGF-β1 activation. 89
Figure 15 Down-regulation of HAI-2 increases lung metastatic ability of A549 cells as well as promoting the tissue plasmin activity and EMT. 91
Figure 16 HAI-2 complexes with matriptase and reduces the matriptase-HAI-1 complex in the presence of HAI-1. 93
Figure 17 Cell-surface biotinylation and pulldown reveal the presence of HAI-2 on the cell surface of N2 prostate cancer cells. 94
Figure 18 The enzyme-inhibitor kinetics of HAI-2, PAI-1, and α-2-antiplasmin. 95
Figure 19 HAI-2 is physically associated and co-localized with CK8/18 in A549 cells. 96
Figure 20 Plasmin and HAI-2 did not affect EGFR signaling. 98
Figure 21 Domain functions of HAI-2 on inhibiting plasmin and cell invasion. 99
Figure 22 Matriptase expression of lung adenocarcinoma cell lines. 101
References 102
dc.language.isoen
dc.subject纖溶?zh_TW
dc.subject第二型肝細胞生長因子活化抑制者zh_TW
dc.subject轉移zh_TW
dc.subject細胞侵襲zh_TW
dc.subject間質蛋白?zh_TW
dc.subject人類攝護腺癌細胞zh_TW
dc.subject人類肺腺癌細胞zh_TW
dc.subjectcell invasionen
dc.subjectHAI-2en
dc.subjecthuman prostate canceren
dc.subjecthuman lung adenocarcinomaen
dc.subjectmatriptaseen
dc.subjectplasminen
dc.subjectmetastasisen
dc.title探討第二型肝細胞生長因子活化抑制者在抑制人類攝護腺癌細胞與肺腺癌細胞侵襲的作用機制與差異性zh_TW
dc.titleDifferential Mechanisms of Hepatocyte Growth Factor Activator Inhibitor-2 in Repressing Cell Invasion of Human Prostate Cancer and Lung Adenocarcinomaen
dc.typeThesis
dc.date.schoolyear106-1
dc.description.degree博士
dc.contributor.oralexamcommittee蕭培文,陳惠文,林敬哲,黃祥博,潘思樺
dc.subject.keyword第二型肝細胞生長因子活化抑制者,間質蛋白?,人類攝護腺癌細胞,人類肺腺癌細胞,纖溶?,細胞侵襲,轉移,zh_TW
dc.subject.keywordHAI-2,human prostate cancer,human lung adenocarcinoma,matriptase,plasmin,cell invasion,metastasis,en
dc.relation.page124
dc.identifier.doi10.6342/NTU201800283
dc.rights.note有償授權
dc.date.accepted2018-02-02
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept生物化學暨分子生物學研究所zh_TW
顯示於系所單位:生物化學暨分子生物學科研究所

文件中的檔案:
檔案 大小格式 
ntu-106-1.pdf
  未授權公開取用
9.32 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved