Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 環境工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70112
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林郁真
dc.contributor.authorLi-Chun Liuen
dc.contributor.author劉俐君zh_TW
dc.date.accessioned2021-06-17T03:44:08Z-
dc.date.available2023-02-23
dc.date.copyright2018-02-23
dc.date.issued2018
dc.date.submitted2018-02-02
dc.identifier.citationAhmed, M.M. and Chiron, S. (2014) Solar photo-Fenton like using persulphate for carbamazepine removal from domestic wastewater. Water Research 48(Supplement C), 229-236.
Andreozzi, R., Raffaele, M. and Nicklas, P. (2003) Pharmaceuticals in STP effluents and their solar photodegradation in aquatic environment. Chemosphere 50(10), 1319-1330.
Babić, S., Periša, M. and Škorić, I. (2013) Photolytic degradation of norfloxacin, enrofloxacin and ciprofloxacin in various aqueous media. Chemosphere 91(11), 1635-1642.
Blanco, J., Malato, S., Fernández, P., Vidal, A., Morales, A., Trincado, P., Oliveira, J.C., Minero, C., Musci, M., Casalle, C., Brunotte, M., Tratzky, S., Dischinger, N., Funken, K.H., Sattler, C., Vincent, M., Collares-Pereira, M., Mendes, J.F. and Rangel, C.M. (1999) Compound parabolic concentrator technology development to commercial solar detoxification applications. Solar Energy 67(4), 317-330.
Brown, K.D., Kulis, J., Thomson, B., Chapman, T.H. and Mawhinney, D.B. (2006) Occurrence of antibiotics in hospital, residential, and dairy effluent, municipal wastewater, and the Rio Grande in New Mexico. Science of The Total Environment 366(2–3), 772-783.
Chan, P.Y., Gamal El-Din, M. and Bolton, J.R. (2012) A solar-driven UV/Chlorine advanced oxidation process. Water Research 46(17), 5672-5682.
Chen, H., Gao, B., Li, H. and Ma, L.Q. (2011) Effects of pH and ionic strength on sulfamethoxazole and ciprofloxacin transport in saturated porous media. Journal of Contaminant Hydrology 126(1–2), 29-36.
Chuang, Y.-H., Chen, S., Chinn, C.J. and Mitch, W.A. (2017) Comparing the UV/Monochloramine and UV/Free Chlorine Advanced Oxidation Processes (AOPs) to the UV/Hydrogen Peroxide AOP Under Scenarios Relevant to Potable Reuse. Environmental Science & Technology 51(23), 13859-13868.
Criquet, J. and Leitner, N.K.V. (2009) Degradation of acetic acid with sulfate radical generated by persulfate ions photolysis. Chemosphere 77(2), 194-200.
Daghrir, R. and Drogui, P. (2013) Tetracycline antibiotics in the environment: a review. Environmental Chemistry Letters 11(3), 209-227.
Dodd, M.C. and Huang, C.-H. (2004) Transformation of the Antibacterial Agent Sulfamethoxazole in Reactions with Chlorine:  Kinetics, Mechanisms, and Pathways. Environmental Science & Technology 38(21), 5607-5615.
Fang, J., Fu, Y. and Shang, C. (2014) The Roles of Reactive Species in Micropollutant Degradation in the UV/Free Chlorine System. Environmental Science & Technology 48(3), 1859-1868.
Gómez, M.J., Petrović, M., Fernández-Alba, A.R. and Barceló, D. (2006) Determination of pharmaceuticals of various therapeutic classes by solid-phase extraction and liquid chromatography–tandem mass spectrometry analysis in hospital effluent wastewaters. Journal of Chromatography A 1114(2), 224-233.
Galindo, C., Jacques, P. and Kalt, A. (2001) Photochemical and photocatalytic degradation of an indigoid dye: a case study of acid blue 74 (AB74). Journal of Photochemistry and Photobiology A: Chemistry 141(1), 47-56.
Gao, S., Zhao, Z., Xu, Y., Tian, J., Qi, H., Lin, W. and Cui, F. (2014) Oxidation of sulfamethoxazole (SMX) by chlorine, ozone and permanganate—A comparative study. Journal of Hazardous Materials 274(Supplement C), 258-269.
Giger, W., Alder, A.C., Golet, E.M., Kohler, H.-P.E., McArdell, C.S., Molnar, E., Siegrist, H. and Suter, M.J.F. (2003) Occurrence and Fate of Antibiotics as Trace Contaminants in Wastewaters, Sewage Sludges, and Surface Waters. CHIMIA International Journal for Chemistry 57(9), 485-491.
Glaze, W.H., Kang, J.-W. and Chapin, D.H. (1987) The Chemistry of Water Treatment Processes Involving Ozone, Hydrogen Peroxide and Ultraviolet Radiation. Ozone: Science & Engineering 9(4), 335-352.
Golet, E.M., Xifra, I., Siegrist, H., Alder, A.C. and Giger, W. (2003) Environmental Exposure Assessment of Fluoroquinolone Antibacterial Agents from Sewage to Soil. Environmental Science & Technology 37(15), 3243-3249.
Guan, Y.-H., Ma, J., Li, X.-C., Fang, J.-Y. and Chen, L.-W. (2011) Influence of pH on the Formation of Sulfate and Hydroxyl Radicals in the UV/Peroxymonosulfate System. Environmental Science & Technology 45(21), 9308-9314.
Guo, H.-G., Gao, N.-Y., Chu, W.-H., Li, L., Zhang, Y.-J., Gu, J.-S. and Gu, Y.-L. (2013) Photochemical degradation of ciprofloxacin in UV and UV/H2O2 process: kinetics, parameters, and products. Environmental Science and Pollution Research 20(5), 3202-3213.
Gurr, C.J., Reinhard, M. (2006) Harnessing natural attenuation of pharmaceuticals and hormones in rivers. Environ. Sci. Technol. 40, 2872-2876.
Hartmann, A., Golet, E.M., Gartiser, S., Alder, A.C., Koller, T. and Widmer, R.M. (1999) Primary DNA Damage But Not Mutagenicity Correlates with Ciprofloxacin Concentrations in German Hospital Wastewaters. Archives of Environmental Contamination and Toxicology 36(2), 115-119.
Heberer, T., Massmann, G., Fanck, B., Taute, T. and Dünnbier, U. (2008) Behaviour and redox sensitivity of antimicrobial residues during bank filtration. Chemosphere 73(4), 451-460.
Huang, K.-C., Couttenye, R.A. and Hoag, G.E. (2002) Kinetics of heat-assisted persulfate oxidation of methyl tert-butyl ether (MTBE). Chemosphere 49(4), 413-420.
Kim, S.D., Cho, J., Kim, I.S., Vanderford, B.J. and Snyder, S.A. (2007) Occurrence and removal of pharmaceuticals and endocrine disruptors in South Korean surface, drinking, and waste waters. Water Research 41(5), 1013-1021.
Klavarioti, M., Mantzavinos, D. and Kassinos, D. (2009) Removal of residual pharmaceuticals from aqueous systems by advanced oxidation processes. Environment International 35(2), 402-417.
Kolpin, D.W., Furlong, E.T., Meyer, M.T., Thurman, E.M., Zaugg, S.D., Barber, L.B. and Buxton, H.T. (2002) Pharmaceuticals, Hormones, and Other Organic Wastewater Contaminants in U.S. Streams, 1999−2000:  A National Reconnaissance. Environmental Science & Technology 36(6), 1202-1211.
Kuster, M., López de Alda, M.J., Hernando, M.D., Petrovic, M., Martín-Alonso, J. and Barceló, D. (2008) Analysis and occurrence of pharmaceuticals, estrogens, progestogens and polar pesticides in sewage treatment plant effluents, river water and drinking water in the Llobregat river basin (Barcelona, Spain). Journal of Hydrology 358(1–2), 112-123.
Liang, C., Bruell, C.J., Marley, M.C. and Sperry, K.L. (2004) Persulfate oxidation for in situ remediation of TCE. I. Activated by ferrous ion with and without a persulfate–thiosulfate redox couple. Chemosphere 55(9), 1213-1223.
Liang, C. and Su, H.-W. (2009) Identification of Sulfate and Hydroxyl Radicals in Thermally Activated Persulfate. Industrial & Engineering Chemistry Research 48(11), 5558-5562.
Lin, A.Y.-C., Lin, Y.-C. and Lee, W.-N. (2014) Prevalence and sunlight photolysis of controlled and chemotherapeutic drugs in aqueous environments. Environmental Pollution 187, 170-181.
Lin, A.Y.-C. and Reinhard, M. (2004) Photodegradation of common environmental pharmaceuticals and estrogens in river water. Environmental Toxicology and Chemistry 24(6).
Lin, A.Y.-C., Yu, T.-H. and Lin, C.-F. (2008) Pharmaceutical contamination in residential, industrial, and agricultural waste streams: Risk to aqueous environments in Taiwan. Chemosphere 74(1), 131-141.
Lin, H.-R. (2001) Solution polymerization of acrylamide using potassium persulfate as an initiator: kinetic studies, temperature and pH dependence. European Polymer Journal 37(7), 1507-1510.
Lin, Y.-T., Liang, C. and Chen, J.-H. (2011) Feasibility study of ultraviolet activated persulfate oxidation of phenol. Chemosphere 82(8), 1168-1172.
Lindberg, R., Jarnheimer, P.-Å., Olsen, B., Johansson, M. and Tysklind, M. (2004) Determination of antibiotic substances in hospital sewage water using solid phase extraction and liquid chromatography/mass spectrometry and group analogue internal standards. Chemosphere 57(10), 1479-1488.
Lindberg, R.H., Olofsson, U., Rendahl, P., Johansson, M.I., Tysklind, M. and Andersson, B.A.V. (2006) Behavior of Fluoroquinolones and Trimethoprim during Mechanical, Chemical, and Active Sludge Treatment of Sewage Water and Digestion of Sludge. Environmental Science & Technology 40(3), 1042-1048.
Miao, X.-S., Bishay, F., Chen, M. and Metcalfe, C.D. (2004) Occurrence of Antimicrobials in the Final Effluents of Wastewater Treatment Plants in Canada. Environmental Science & Technology 38(13), 3533-3541.
Niu, J., Zhang, L., Li, Y., Zhao, J., Lv, S. and Xiao, K. (2013) Effects of environmental factors on sulfamethoxazole photodegradation under simulated sunlight irradiation: Kinetics and mechanism. Journal of Environmental Sciences 25(6), 1098-1106.
Nowell, L.H. and Hoigné, J. (1992) Photolysis of aqueous chlorine at sunlight and ultraviolet wavelengths—II. Hydroxyl radical production. Water Research 26(5), 599-605.
Oommen, R. and Jayaraman, S. (2001) Development and performance analysis of compound parabolic solar concentrators with reduced gap losses – oversized reflector. Energy Conversion and Management 42(11), 1379-1399.
Pal, A., Gin, K.Y.-H., Lin, A.Y.-C. and Reinhard, M. (2010) Impacts of emerging organic contaminants on freshwater resources: Review of recent occurrences, sources, fate and effects. Science of The Total Environment 408(24), 6062-6069.
Rabl, A. (1976) Comparison of solar concentrators. Solar Energy 18(2), 93-111.
Rabl, A. and Winston, R. (1976) Ideal concentrators for finite sources and restricted exit angles. Applied Optics 15(11), 2880-2883.
Renew, J.E. and Huang, C.-H. (2004) Simultaneous determination of fluoroquinolone, sulfonamide, and trimethoprim antibiotics in wastewater using tandem solid phase extraction and liquid chromatography–electrospray mass spectrometry. Journal of Chromatography A 1042(1–2), 113-121.
Ryan, C.C., Tan, D.T. and Arnold, W.A. (2011) Direct and indirect photolysis of sulfamethoxazole and trimethoprim in wastewater treatment plant effluent. Water Research 45(3), 1280-1286.
Santos, J.L., Aparicio, I., Callejón, M. and Alonso, E. (2009) Occurrence of pharmaceutically active compounds during 1-year period in wastewaters from four wastewater treatment plants in Seville (Spain). Journal of Hazardous Materials 164(2–3), 1509-1516.
Sellami, N. and Mallick, T.K. (2013) Optical efficiency study of PV Crossed Compound Parabolic Concentrator. Applied Energy 102(Supplement C), 868-876.
Shuai, Y., Xia, X.-L. and Tan, H.-P. (2008) Radiation performance of dish solar concentrator/cavity receiver systems. Solar Energy 82(1), 13-21.
Sundstrom, D.W., Weir, B.A. and Klei, H.E. (1989) Destruction of aromatic pollutants by UV light catalyzed oxidation with hydrogen peroxide. Environmental Progress 8(1), 6-11.
Tixier, C., Singer, H.P., Canonica, S. and Müller, S.R. (2002) Phototransformation of Triclosan in Surface Waters:  A Relevant Elimination Process for This Widely Used BiocideLaboratory Studies, Field Measurements, and Modeling. Environmental Science & Technology 36(16), 3482-3489.
Torniainen, K., Tammilehto, S. and Ulvi, V. (1996) The effect of pH, buffer type and drug concentration on the photodegradation of ciprofloxacin. International Journal of Pharmaceutics 132(1), 53-61.
Trovó, A.G., Nogueira, R.F.P., Agüera, A., Fernandez-Alba, A.R., Sirtori, C. and Malato, S. (2009a) Degradation of sulfamethoxazole in water by solar photo-Fenton. Chemical and toxicological evaluation. Water Research 43(16), 3922-3931.
Trovó, A.G., Nogueira, R.F.P., Agüera, A., Sirtori, C. and Fernández-Alba, A.R. (2009b) Photodegradation of sulfamethoxazole in various aqueous media: Persistence, toxicity and photoproducts assessment. Chemosphere 77(10), 1292-1298.
Vieno, N.M., Härkki, H., Tuhkanen, T. and Kronberg, L. (2007) Occurrence of Pharmaceuticals in River Water and Their Elimination in a Pilot-Scale Drinking Water Treatment Plant. Environmental Science & Technology 41(14), 5077-5084.
Wammer, K.H., Korte, A.R., Lundeen, R.A., Sundberg, J.E., McNeill, K. and Arnold, W.A. (2013) Direct photochemistry of three fluoroquinolone antibacterials: Norfloxacin, ofloxacin, and enrofloxacin. Water Research 47(1), 439-448.
Wang, X.-H. and Lin, A.Y.-C. (2014) Is the phototransformation of pharmaceuticals a natural purification process that decreases ecological and human health risks? Environmental Pollution 186, 203-215.
Watkinson, A.J., Murby, E.J., Kolpin, D.W. and Costanzo, S.D. (2009) The occurrence of antibiotics in an urban watershed: From wastewater to drinking water. Science of The Total Environment 407(8), 2711-2723.
Watts, M.J. and Linden, K.G. (2007) Chlorine photolysis and subsequent OH radical production during UV treatment of chlorinated water. Water Research 41(13), 2871-2878.
Wei, X., Chen, J., Xie, Q., Zhang, S., Ge, L. and Qiao, X. (2013) Distinct Photolytic Mechanisms and Products for Different Dissociation Species of Ciprofloxacin. Environmental Science & Technology 47(9), 4284-4290.
Weidauer, C., Davis, C., Raeke, J., Seiwert, B. and Reemtsma, T. (2016) Sunlight photolysis of benzotriazoles – Identification of transformation products and pathways. Chemosphere 154(Supplement C), 416-424.
Winston, R. and Hinterberger, H. (1975) Principles of cylindrical concentrators for solar energy. Solar Energy 17(4), 255-258.
Wols, B.A. and Hofman-Caris, C.H.M. (2012) Review of photochemical reaction constants of organic micropollutants required for UV advanced oxidation processes in water. Water Research 46(9), 2815-2827.
Xu, W., Zhang, G., Li, X., Zou, S., Li, P., Hu, Z. and Li, J. (2007) Occurrence and elimination of antibiotics at four sewage treatment plants in the Pearl River Delta (PRD), South China. Water Research 41(19), 4526-4534.
Xu, W., Zhang, G., Zou, S., Ling, Z., Wang, G. and Yan, W. (2009) A Preliminary Investigation on the Occurrence and Distribution of Antibiotics in the Yellow River and its Tributaries, China. Water Environment Research 81(3), 248-254.
Yamamoto, H., Nakamura, Y., Moriguchi, S., Nakamura, Y., Honda, Y., Tamura, I., Hirata, Y., Hayashi, A. and Sekizawa, J. (2009) Persistence and partitioning of eight selected pharmaceuticals in the aquatic environment: Laboratory photolysis, biodegradation, and sorption experiments. Water Research 43(2), 351-362.
Yang, B., Kookana, R.S., Williams, M., Du, J., Doan, H. and Kumar, A. (2016) Removal of carbamazepine in aqueous solutions through solar photolysis of free available chlorine. Water Research 100(Supplement C), 413-420.
Yang, S., Wang, P., Yang, X., Shan, L., Zhang, W., Shao, X. and Niu, R. (2010) Degradation efficiencies of azo dye Acid Orange 7 by the interaction of heat, UV and anions with common oxidants: Persulfate, peroxymonosulfate and hydrogen peroxide. Journal of Hazardous Materials 179(1–3), 552-558.
Yuan, F., Hu, C., Hu, X., Wei, D., Chen, Y. and Qu, J. (2011) Photodegradation and toxicity changes of antibiotics in UV and UV/H2O2 process. Journal of Hazardous Materials 185(2–3), 1256-1263.
Zhao, C., Pelaez, M., Duan, X., Deng, H., O'Shea, K., Fatta-Kassinos, D. and Dionysiou, D.D. (2013) Role of pH on photolytic and photocatalytic degradation of antibiotic oxytetracycline in aqueous solution under visible/solar light: Kinetics and mechanism studies. Applied Catalysis B: Environmental 134-135(Supplement C), 83-92.
Zhou, L., Ferronato, C., Chovelon, J.-M., Sleiman, M. and Richard, C. (2017) Investigations of diatrizoate degradation by photo-activated persulfate. Chemical Engineering Journal 311(Supplement C), 28-36.
內政部營建署 全國公共污水處理資料管理系統.(網址: https://data.gov.tw/dataset/26496)
台北市政府工務局衛生下水道工程處 迪化污水處理廠.(網址: http://www.sso.gov.taipei/News_Content.aspx?n=AACA1DD3515C73D7&sms=C4B1D81C0A0892E0&s=4442E9C0B5609CB5)
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/70112-
dc.description.abstract藥物及個人保健用品(pharmaceuticals and personal care products, PPCPs)為近十年於環境水體中頻繁被檢出的一類新興污染物,其濃度分佈為ng/L-μg/L。由於部分藥物無法經由一般生物處理程序完全去除,但卻被認為可藉由光降解程序有效地降解,目前已應用於污水處理程序之光解程序多以UV光配合其他氧化方法去除廢水中的藥物。然而,UV光照設備需耗費較多能源及操作經費,為節省光降解藥物處理系統的耗能情形,本研究目標為設計一套聚光處理系統,利用太陽光降解環境水體中的藥物,並以實驗室之模擬光照研究探討最適化之處理條件;此外,為提升聚光的效果,將聚光系統配合追日系統,並提高聚光系統反射面的UV光反射率,使太陽光聚集的能量最大化。
研究中以廣泛被人類及動物使用且常在環境水體中存在的兩種抗生素-ciprofloxacin及sulfamethoxazole做為目標污染物,測試聚光追日系統以及於系統內添加氧化劑對於提升其光降解效率的效果。研究結果顯示相較於直接照射太陽光之系統,在台灣夏季正午,改良後之聚光追日系統對水中ciprofloxacin降解效率可增加約40%-48%,而對sulfamethoxazole之降解率可增加約4.2%-13.6%。為加強系統處理效果,在聚光追日系統中添加氧化劑,將1 mg/L 次氯酸根(HOCl, OCl−, free chlorine, FC)加入系統中,相較於直接照射太陽光的系統,sulfamethoxazole降解效率最高可增加達33%;而添加50 mg/L 過硫酸根(S2O82- , persulfate, PS)在系統中,sulfamethoxazole降解效率最高可提升達61%。由於PS不僅可藉由光激發,也可被熱激發,改良後之聚光追日系統除了可增加光強度外,亦可增加系統溫度,結果顯示在系統中添加PS對sulfamethoxazole的光降解確有明顯加成效果。本研究在聚光追日系統添加50 mg/L PS對於降解水中sulfamethoxazole獲得最佳降解效率,故藉由聚集的光及熱激發PS生成硫酸自由基(·SO4−)於此系統中極具應用之優勢。綜合以上結果,聚光追日系統配合氧化劑添加做為降解水中藥物污染的水處理程序實具有發展的潛力。
zh_TW
dc.description.abstractPharmaceuticals and personal care products (PPCPs) are commonly detected in the aqueous environment at ng/L to ng/g concentration levels since pharmaceuticals in wastewaters cannot be effectively removed through biological wastewater treatment. In recent years, UV based advanced oxidation procedures (UV-AOPs) was applied to improve degradation of PPCPs; however, energy consumption and power costs are important issues. Therefore, this study is aimed to design a sunlight concentrator treatment system to replace UV lamps for further degradation of pharmaceuticals. To increase efficiency of the sunlight concentrator treatment system, the sunlight tracker was used jointly in this study, and the surface of concentrator was also modified to enhance UV reflection rates.
Two common antibiotics, ciprofloxacin and sulfamethoxazole, were chosen as target compounds in this study. The results show that degradation efficiencies of ciprofloxacin and sulfamethoxazole respectively increased in water-based substrate as high as 40%-48% and 4.2%-13.6% in the enhanced system at noon on the summer of Taiwan compared with direct sunlight photolysis system. In order to further improve the degradation efficiency of the system, free chlorine (HOCl, OCl−, FC) and persulfate (S2O82- , PS) were added. For sulfamethoxazole, 1 mg/L of FC addition could lead to 33% increase of degradation efficiency, and 50 mg/L of PS addition could improve further degradation as high as 61%. The enhanced system can not only collect sunlight but also raise the temperature in the reactor. Because PS can be activated by light and heat, the enhanced system was suitable to activate PS to generate sulfate radical (·SO4−) and degrade sulfamethoxazole. The result shows that PS addition leads to synergic effect on sulfamethoxazole degradation in the system. Therefore, this developed sunlight concentrator treatment system will have potential to be utilized in the wastewater treatment process.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T03:44:08Z (GMT). No. of bitstreams: 1
ntu-107-R04541102-1.pdf: 4009583 bytes, checksum: ac28b50f5ceebdb668dcc7d8bb9b7d62 (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents誌謝 i
中文摘要 iii
ABSTRACT iv
目錄 vi
圖目錄 viii
表目錄 xii
第一章 緒論 1
1.1 研究源起 1
1.2 研究目的及新穎性 3
1.3 研究架構及內容 5
第二章 文獻回顧 6
2.1 藥物及個人保健用品 6
2.2 藥物的降解機制 7
2.3 高級氧化處理與光解結合之處理程序 9
2.4 太陽能聚光設備 11
第三章 研究材料與方法 14
3.1 實驗用化學品 14
3.2 光降解實驗 15
3.3 系統材料 15
3.3.1 聚光材料 15
3.3.2 追日系統(菘銓科技) 17
3.3.3 連續式反應系統 21
3.4 聚光追日系統光降解實驗 22
3.5 光強度測定 25
3.6 分析方法 27
第四章 結果與討論 28
4.1 實驗室模擬光照研究 29
4.1.1 pH值對藥物光降解之影響 29
4.1.2 溫度對藥物降解之影響 31
4.1.3 H2O2添加對藥物降解之影響 32
4.2 聚光追日系統設計 39
4.2.1 光強度對ciprofloxacin光降解之影響 41
4.2.2 反應容器形狀ciprofloxacin光降解之影響 42
4.2.3 聚光器對ciprofloxacin光降解影響試驗 44
4.2.4 聚光系統之比較 46
4.3 聚光追日系統光降解之實驗 47
4.3.1 聚光系統有無鍍UV反射膜對光降解之影響 49
4.3.2 添加FC對光降解之影響 53
4.3.3 添加PS對光降解之影響 54
第五章 結論與建議 60
參考文獻 62
dc.language.isozh-TW
dc.subject過硫酸根zh_TW
dc.subject聚光追日系統zh_TW
dc.subject自然光解zh_TW
dc.subject抗生素zh_TW
dc.subjectantibioticsen
dc.subjectsunlight concentratoren
dc.subjectnatural photolysisen
dc.subjectpersulfateen
dc.title聚光追日搭配氧化劑處理系統之建置及應用於處理污水中藥物污染之可行性研究zh_TW
dc.titleRemoval of Pharmaceuticals in Wastewaters in Sunlight Concentrator Treatment System with the Addition of Oxidantsen
dc.typeThesis
dc.date.schoolyear106-1
dc.description.degree碩士
dc.contributor.oralexamcommittee李公哲,林正芳,林逸彬
dc.subject.keyword聚光追日系統,自然光解,過硫酸根,抗生素,zh_TW
dc.subject.keywordsunlight concentrator,natural photolysis,persulfate,antibiotics,en
dc.relation.page66
dc.identifier.doi10.6342/NTU201800263
dc.rights.note有償授權
dc.date.accepted2018-02-03
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept環境工程學研究所zh_TW
顯示於系所單位:環境工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  未授權公開取用
3.92 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved